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The scattering matrix S obeys the symmetry property PT SPT = S−1 in a Parity-Time (PT )
symmetric system and the unitary relation S†S = 1 in the absence of gain and loss. Here we report a
different symmetry relation of S in a one-dimensional heterostructure, which is given by the amplitude
ratio of the incident waves in the scattering eigenstates. It originates from the optical reciprocity and
holds independent of the presence of gain and loss in the system. Guided by this symmetry relation,
we probe the reminiscence of the spontaneous symmetry breaking of a PT -symmetric S matrix,
when the system does not have exact PT symmetry due to unbalanced gain and loss and even in
the absence of gain. We show that the additional symmetry relation provides a clear evidence of a
quasi-transition, even when all previously found signatures of the PT symmetry breaking of S are
completely erased.

PACS numbers: 42.25.Bs, 11.30.Er

Parity-Time (PT ) symmetric optical systems have at-
tracted growing interest in the past few years. These
systems are non-Hermitian due to the presence of gain
and loss, which are delicately balanced such that the re-
fractive index satisfies n(x) = n∗(−x) with respect to
a symmetry plane at x = 0. The plethora of findings
in these systems are tied to the spontaneous symmetry
breaking of the effective Hamiltonian at an exceptional
point (EP) [1–12]. This spontaneous symmetry breaking
was first suggested in non-Hermitian quantum mecha-
nism [14–16] and later realized in wave propagation in
the paraxial regime [17–22], which takes the system from
a regime of real energy eigenvalues to complex conjugate
pairs of eigenvalues. It has been shown that qualitatively
similar behaviors exist even when such systems do not
have exact PT symmetry, which leads to, for example,
enhanced transmission with increased loss [8], reduced
lasing emission with increased gain [10–12] and other
interesting phenomena [13].

Recently another type of spontaneous PT symmetry
breaking was found for the scattering matrix of a PT -
symmetric system [23], independent of its shape and di-
mension: the eigenvalues of the scattering (S) matrix can
remain on the unit circle in the complex plane, conserving
optical flux despite the non-Hermiticity; the symmetry
breaking results in pairs of scattering eigenvalues with
inverse moduli [23–25]. However, unlike in previous stud-
ies of the effective Hamiltonian, it was believed that all
signatures of this symmetry breaking are erased if PT
symmetry is non-exact, e.g., in the presence of unbalanced
gain and loss [26]. Given the difficulty of maintaining an
exact PT symmetry and dealing with a strong optical
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gain, the second kind of PT symmetry breaking has not
been demonstrated to date among other reasons.

In this report we tackle this outstanding problem from
a new perspective, i.e., we search for another symmetry
property of the scattering system that can be utilized to
reveal the reminiscence of PT symmetry breaking in the
presence of unbalanced gain and loss. The key relation,
we find, relies on optical reciprocity [27–29], and more
specifically, the identical transmission coefficient through
a one-dimensional (1D) photonic heterostructure that is
independent of the propagation direction [30]. Optical
reciprocity has been known since the early days of elec-
tromagnetism, and recently its study has been revitalized
in the quest of on-chip optical isolators for optical com-
puting [31–34]. We find that optical reciprocity leads to
a novel symmetry property of the S matrix eigenstates
in a 1D heterostructure, which is given in terms of the
amplitude ratio of the incident waves (referred to as ν
below) and independent of PT symmetry of the system.
We note that this new symmetry applies to the scattering
eigenstates instead of the system itself. Therefore, it plays
a different role than PT symmetry and cannot become
spontaneously broken.

Guided by this relation, we probe the reminiscence of
the aforementioned scattering PT symmetry breaking us-
ing the behavior exhibited by ν when the system does not
have exact PT symmetry. When there is PT symmetry,
|ν| undergoes a bifurcation at the EP where the sponta-
neous PT symmetry breaking of the scattering matrix
takes place. The EP persists with unbalanced gain and
loss and even in the absence of gain, and we show that
the additional symmetry relation enables a clear visual-
ization of |ν| when it undergoes a quasi-bifurcation near
the EP, even when all previously found signatures of PT
symmetry breaking are completely erased, including the
bifurcation of the moduli of the scattering eigenvalues.
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Finally, we show the existence of a “final” exceptional
point in a multi-layer heterostructure, which is attributed
to asymmetric reflections from the two sides of the het-
erostructure.

Before we introduce this optical reciprocity induced
symmetry property, it is worth reviewing the spontaneous
symmetry breaking of the S matrix in a 1D PT -symmetric
heterostructure. The S matrix connects the incident
waves to the scattered waves (see the inset in Fig. 1), e.g.,(

A
D

)
=

(
rL t
t rR

)(
B
C

)
≡ S

(
B
C

)
, (1)

where t ≡ tL = tR and rL,R are the transmission and
reflection coefficients from the left and right sides [35].
Using the parametrization introduced in Ref. [24], i.e.,

S =
1

a

(
ib 1
1 ic

)
, (2)

the eigenvalues of the S matrix are given by

σ± =
i

2a

[
(c+ b)±

√
(c− b)2 − 4

]
. (3)

When the system is PT -symmetric, b, c are two real
parameters and a is complex parameter. They satisfy
|a|2 − 1 = bc, which is another way of writing the gen-
eralized conservation law |T − 1| =

√
RLRR [24], where
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FIG. 1. (Color online) Exceptional points in a two-layer
heterostructure (black dots) with weak unbalanced gain and
loss. Loss is fixed at Im[n1] = 0.05 in the left half and the
gain is reduced from Im[n2] = −0.05 to −0.04 in the gain
half. Re[n] = 3 in the system and its length is L = 23µm.
False color plot of the product Re[G− i]Im[G− i] is also shown.
Nearly vertical and wavy diagonal lines show the zeros of
Re[G − i] and Im[G − i], respectively. Their intersections show
the locations of the exceptional points. G = −i does not hold
in this region. Inset: Schematic of scattering from a two-layer
heterostructure.

T ≡ |t|2, RL,R = |rL,R|2 are the transmittance and re-
flectances. One finds |σ±| = 1 when |c− b| < 2, which is
the PT -symmetric phase of the S matrix; when |c−b| > 2,
one finds that σ± have the same phase angle but their
moduli are no longer 1, which is the PT -broken phase of
the S matrix.

Another manifestation of the spontaneous PT symme-
try breaking, which is more relevant for the additional
symmetry of the S matrix we will introduce shortly, is ex-
hibited in the amplitude ratios of the incident waves from
the left and right sides in the two scattering eigenstates
[i.e., ν ≡ B/C = A/D in Eq. (1)]. They are given by

ν± =
i

2

[
(b− c)±

√
(c− b)2 − 4

]
, (4)

which display the same qualitative change as σ± when
the value of |c− b| crosses 2. The latter is an exceptional
point, at which σ± coalesce and so do ν±. We note
that this condition for an exceptional point, as well as
both Eq. (3) and (4), holds even when the system is not
PT -symmetric, in which case a, b, c are three complex
parameters in general.

Now let us return to the PT -symmetric case. It can be
easily checked that |σ+σ−| = 1 and

|ν+ν−| = 1. (5)

These two relations, however, have very different origins.
On the one hand, |σ+σ−| = 1 holds only when |a2|−1 = bc,
i.e., it is due to PT symmetry and breaks down when
the gain and loss become unbalanced. |ν+ν−| = 1, on the
other hand, only requires that the S matrix is a symmetric
matrix with two identical off-diagonal elements (i.e., the
transmission coefficient t), which is a result of optical
reciprocity as we have mentioned in the introduction [27–
30]. Since the optical reciprocity holds in general and
does not rely on PT symmetry, |ν+ν−| = 1 holds also
with unbalanced gain and loss and even in the absence of
gain.
|ν+ν−| = 1 is the symmetry relation that will guide

us to probe the reminiscence of the spontaneous PT
symmetry breaking of the S matrix when the system
no longer has PT symmetry. We start by considering
the simplest case, a heterostructure with two layers of
equal width, the refractive index in which is n1 and n2,
respectively. The analytical expression of S is given by

S =
1

D

(
G + iF 1

1 −G + iF

)
, (6)

where D ≡ c1c2 − gs1s2 − i(h1s1c2 + h2s2c1), G ≡ qs1s2,
F ≡ u1s1c2 + u2s2c1, and g = (n1/n2 + n2/n1)/2, q =
(n1/n2−n2/n1)/2, hj = (nj+1/nj)/2, uj = (nj−1/nj)/2,
sj = sin(njωLj/2c), cj = cos(njωLj/2c) (j = 1, 2). ω is
the frequency of the incident light, and we note that sj , cj
are complex if nj is complex, i.e., when there is gain or
loss. The eigenvalues of this S matrix are given by

σ± =
iF ±

√
1 + G2
D

, (7)
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which indicates that if there is an exceptional point, then
it occurs at

G = ±i, (8)

where the radicand in Eq. (7) vanishes.
In the PT -symmetric case we have n1 = n∗2 ≡ n+ iτ ,

and it is straightforward to show that the S matrix
given by Eq. (6) satisfies PT SPT = S−1 [23], or simply
PS∗P = S−1, using s1 = s∗2, c1 = c∗2, h1 = h∗2, u1 = u∗2,
Re[q] = 0, and Im[g] = 0. The superscript “∗” denotes
the complex conjugate as usual, and P = ( 0 1

1 0 ) is the ma-
trix representation of the parity operator P ; it exchanges
the incoming/outgoing waves on the left side of the het-
erostructure with those on the right side. We also note
that G = inτ |s1|2/(n2 + τ2) is purely imaginary in this
case, and hence the above condition (8) for an exceptional
point is reachable even if only one system parameter is
varied, in contrast to the general requirement of sweeping
at least a two-dimensional parameter space in non-PT
systems [2]. This property guarantees the two distinct
phases of the S matrix.

In the absence of PT symmetry, the S matrix still
has exceptional points for complex values n1 and n2,
since it is a non-Hermitian matrix [2]. For example, in
Fig. 1 we show a two-layer heterostructure with fixed
loss (Im[n1] = 0.05) in one half and weakly unbalanced
gain (Im[n2]) in the other. We found that its exceptional
points are given by G = i in this regime, which exist at
discrete pairs of {Im[n2], λ}. λ = 2πc/ω is the wavelength
in vacuum, and its value at the exceptional points reduces
with Im[n2]. Since G now is complex in general and has
an arbitrary phase angle, it no longer leads to two distinct
phases of the S matrix.

To be more specific, we note that |σ±| display a bi-
furcation at an exceptional point when the system is
PT -symmetric [see Fig. 2(a)], which delineates the two
phases of S mentioned previously. We also note that
the relation |σ+σ−| = 1 mentioned previously is satisfied
in both phases of S. This bifurcation no longer exists
when there is a weak imbalance between gain and loss
[see Fig. 2(b)], letting alone the case in which there is
only loss in the heterostructure. Another indication of the
spontaneous PT symmetry breaking is the transition of
the difference (RL +RR)/2−T from sub-unitary to super-
unitary at an exceptional point [see Fig. 2(c)], which was
derived using |c− b| = 2 at an exceptional point in Eq. (3)
and the PT symmetry relation |a|2 − 1 = bc mentioned
previously [24]. This signature is also erased completely
even when the gain and loss are weakly unbalanced [see
Fig. 2(d)].

Now using the symmetry relation (5) of the scattering
eigenstates, the spontaneous PT symmetry breaking of
the S matrix can also be visualized as a bifurcation of |ν±|
where the system is PT -symmetric [see Fig. 2(e)]: they are
equal in the PT -symmetric phase and reciprocal of each
other in the broken-PT phase. This behavior survives
qualitatively when there is a weak imbalance between
gain and loss, as we show in Fig. 2(f). We note that
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FIG. 2. (Color online) Contrast of the scattering behaviors
when gain and loss are balanced (a,c,e; Im[n2] = −Im[n1] =
−0.05) or weakly unbalanced (b,d,f; Im[n1] = 0.05 and
Im[n2] = −0.04). Re[n] = 3 and L = 23µm as in Fig. 1.
Shadowed areas in (a,c,e) indicate the broken symmetry phase.
Dashed line in (f) marks the wavelength of the closest ex-
ceptional point at {Im[n2] = −0.0401, λ=1326 nm} shown in
Fig. 1. Note that we have chosen Im[n2] to be slightly different
from the value of this EP intentionally, since the exact value
of the latter is unknown in an actual setup before we conduct
the experiment.

the quasi-transition point shown in Fig. 2(f) moves to a
shorter wavelength with Im[n2] = −0.04 when compared
with the PT -symmetric case (where Im[n2] = −0.05).
This is due to the blueshift of the exceptional point with
reduced gain mentioned above (see Fig. 1). We can also
check explicitly that the symmetry relation (5) holds here:
it is easy to convince oneself that the eigenstates of the S
matrix given by Eq. (6) are the same as those of

( G 1
1 −G

)
,

and we find

ν± = G ±
√
G2 + 1; (9)

their product is indeed −1.
As the imbalance between gain and loss increases, so

does the amplitude of the oscillations of |ν±| shown
Fig. 2(f). They weaken the distinctiveness of the quasi-
transition but do not smear out the latter completely
(see Fig. 3(a) at Im[n2] = −0.17, for example). Interest-
ingly, this observation holds even if the system only has
loss, i.e., with both Im[n1], Im[n2] > 0. In Fig. 3(c) we
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FIG. 3. (Color online) Amplitude ratios ν in the scattering
eigenstates of the S matrix with strongly unbalanced gain
and loss (a) and loss only (c). Im[n2] = −0.0168 in (a) and
0.04 in (c), and Im[n1] = 0.05 is fixed. Dashed lines in (a)
and (c) mark the wavelength of the closest exceptional point
at {Im[n2] = −0.0170, λ=1440 nm} and {Im[n2] = 0.038,
λ=1440 nm}, respectively (see (b) and (d)). System length
is chosen to be L = 36µm and the other parameters are the
same as in Fig. 1. (b,d) Similar to Fig. 1 for (a) and (c),
showing the EPs near the quasi-transition of |ν±|. In (d) G − i
is replaced by G + i.

show the case when Im[n2] = 0.04, where |ν±| approach
each other and become interwoven beyond an exceptional
point. We note that this exceptional point is now given
by G = −i, instead of G = i in the quasi-PT symmetric
case shown in Figs. 1 and 3(b). There is one special point
at which the quasi-transition of |ν±| vanishes completely,
that is when Im[n1] = Im[n2]. The system at this point is
parity symmetric about the center of the heterostructure
(x = 0), and the two scattering eigenstates are even and
odd functions of x, i.e., |ν±| is always 1. We note that
exceptional points in a loss-only system was previously
studied in transmission [8] and reflection [22] experiments.

Next we discuss heterostructures with more than two
layers. If the additional layers are identical and attached
symmetrically to the two sides of the central region, we
find that ν± do not change their values and hence the
quasi-transition of |ν±| persists, no matter whether the
additional layers have gain or loss. This observation
can be shown analytically by generalizing the “mirror
theorem” in PT -symmetric heterostructures [25], with
the central layers now having unbalanced gain and loss.
For this purpose we utilize the transfer matrix M , which
is defined by(

A
B

)
=

1

t

(
t2 − rLrR rL
−rR 1

)(
C
D

)
≡M

(
C
D

)
(10)

using the same notations as in Eq. (1) for the central
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FIG. 4. (Color online) Amplitude ratios ν in the scatter-
ing eigenstates of the S matrix in a 4-layer heterostruc-
ture. Re[n] = 3 and L = 72µm, and the four layers
have equal length. (a) Im[n] = 0.05, 0.01,−0.01,−0.05
for a PT -symmetric heterostructure [37]. (b) Im[n] =
0.05, 0.01, 0.005, 0.025 for a loss-only waveguide.

region. Likewise, a transfer matrix ML and MR can
be defined for the added left and right layers, and here
they satisfy PMLP = M−1R , where P is the same matrix
representing the parity operator introduced before. The
total transfer matrix of the system with the mirrors is
then given by M ′ = MLMMR. As Eq. (4) shows, ν± of
the central PT -symmetric region only depend on (c− b),
or equivalently ∆ ≡ (rL − rR)/t, which is the sum of the
two off-diagonal elements of M in Eq. (10). Therefore, to
prove that ν± do not change with the added mirrors, we
only need to show that the sum of the two off-diagonal
elements of M ′, denoted by ∆′ ≡ (r′L − r′R)/t, equals ∆.
It is straightforward to show that ∆′ = det(MR)∆. Since
the determinant of a 1D transfer matrix is 1 in general
[36], this result concludes our proof.

When the two layers added are different, the S matrix
of the PT -symmetric system has multiple regions of sym-
metric and broken symmetry phases in general [23], each
bounded by two exceptional points. The separations of
these exceptional points in terms of wavelength are com-
parable to the oscillation periods of |ν±| and can be fairly
close. Hence these oscillations become more detrimental
and obscure the bifurcations of |ν±|. However, in the
strong gain/loss limit of a PT -symmetric heterostructure,
achieved with either a large τ , a short wavelength, or a
long system size, there seems to be a “final” exceptional
point, beyond which the system stays in the broken sym-
metry phase [see Fig. 4(a)]. The existence of this final
bifurcation point persists with unbalanced gain and loss
and even in the absence of gain [see Fig. 4(b)], similar to
the simplest two-layer waveguide discussed above.

This final exceptional point provides a good opportu-
nity to gain a deeper understanding of the correspondence
between the scattering behaviors in PT -symmetric and
non-PT heterostructure. As we have discussed, the ex-
ceptional points of the S matrix is given by c− b = ±2
in Eqs. (3) and (4), or equivalently, rL − rR = ±2it. In a
PT -symmetric heterostructure, rL and rR are in phase if
|t| < 1 and π out-of-phase otherwise [24]. When combined
with a different form of the generalized conservation law,
i.e., |t|2 − 1 = −r∗LrR = −rLr∗R, the above condition for
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the exceptional points becomes

||rL| − |rR|| = 2|t|, |rL|+ |rR| = 2 (if |t| < 1), (11)

||rL| − |rR|| = 2, |rL|+ |rR| = 2|t| (if |t| > 1). (12)

For all the final exceptional point in PT -symmetric het-
erostructures, including those in Fig. 2(e) and 4(a), we
always find the first scenario above [i.e., Eq. (11)] to be
true, which indicates a significant difference of |rL|, |rR|
when compared with |t|. In other words, it is this asym-
metric reflection that leads to the final broken phase of the
S matrix in terms of the wavelength. Such asymmetric re-
flection does occur when the system is not PT -symmetric,
for example, when one half of the system has loss and the
other half has unbalanced gain, or when the two halves
have different average losses. This is especially the case
in the short wavelength or large system limit, where the
reflection from one side does not “see” the other side of
the system and |t| → 0.

In conclusion, we have shown that the optical reci-

procity leads to the symmetry relation |ν+ν−| = 1, which
holds in all 1D heterostructure. It is accompanied by a
bifurcation of |ν±| in PT -symmetric systems when the
spontaneous symmetry breaking of the S matrix takes
place, and this bifurcation persists qualitatively for the
final exceptional point with unbalanced gain and loss
and even in the absence of gain. Since tuning into the
scattering eigenstates requires comparing the amplitudes
and phases of the scattered waves to those of the in-
cident waves, measuring ν± directly in the scattering
eigenstates is rather inconvenient. One alternative is to
measure ν± indirectly using Eq. (4), with b, c replaced
by −irL/t,−irR/t. Experimental designs on a silicon
platform with Cr/Ge structures on top are currently un-
derway, and the results will be reported elsewhere once
properly characterized and measured.
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1506987. L.F. acknowledges support by NSF under grant
DMR-1506884.

[1] J. Okolowicz, M. Ploszajczak, and I. Rotter, Dynamics of
Quantum Systems Embedded in a Continuum, Phys. Rep.
374, 271 (2003).

[2] W. D. Heiss, Exceptional Points of Non-Hermitian Oper-
ators, J. Phys. A: Math. Gen. 37, 2455 (2004).

[3] M. V. Berry, Physics of Nonhermitian Degeneracies,
Czechoslovak J. Phys. 54, 1039 (2004).

[4] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cam-
bridge, New York, 2011).
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