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Photonic crystal fibers doped with silver nanoparticles exhibit a Kerr nonlinearity that can be positive or 
negative depending on the input wavelength and vanishes at a specific wavelength. The existence of 
negative nonlinearity allows soliton formation even in the normal-dispersion region of the fiber, and the 
zero-nonlinearity wavelength (ZNW) acts as a barrier for the Raman-induced red shift of solitons. We 
adopted variational principle to understand the role of zero-nonlinearity point on Raman red-shift and 
verified its prediction numerically for fundamental and higher-order solitons. We show how the 
simultaneous presence of a ZNW and a zero-dispersion wavelength affects soliton evolution inside such 
fibers and find a number of unique features like the position and the spectral bandwidth of the dispersive 
wave that change with the location of the ZNW.  

 
PACS number(s):42.65.Tg, 42.65.Wi, 42.65. Re 
 

I. INTRODUCTION 
Study of nonlinear phenomena in optical fibers has been 

an active area of research, both from the fundamental and 
application perspectives [1-15]. It is well known that 
optical pulses can propagate as solitons by balancing the 
effects of group-velocity dispersion (GVD) through self-
phase modulation induced by the Kerr nonlinearity [2]. 
Photonic crystal fibers (PCFs) have an added advantage 
over conventional optical fibers as they offer endlessly 
single mode behavior and an easy dispersion tailoring with 
enhanced nonlinearity [3-5]. Solitons react to the presence 
of higher-order dispersion by generating dispersive waves 
(DWs) that play a pivotal role in supercontinuum 
generation when short optical pulses propagate inside PCFs 
[6-8]. Evolution of such pulses inside a PCF with more than 
one zero-dispersion wavelength (ZDW) leads to fascinating 
effects such as suppression of the Raman-induced 
frequency shift (RIFS) [9-11], controllable RIFS in 
nonlinear metamaterials [12], a blue shift of solitons [13], 
and all-optical control of GVD [14-15]. In all these cases 
the formation of optical solitons required anomalous 
dispersion because most optical fibers exhibit a positive 
Kerr nonlinearity ( 2 0n > ) at all wavelengths. 

       Recent work has shown that PCFs whose core is 
doped with metal nanoparticles exhibit 2n  that varies 
rapidly with wavelength and can even change sign at a 

specific wavelength [16-18]. The existence of a zero-
nonlinearity wavelength (ZNW) is intriguing since such 
PCFs can exhibit both a ZNW and a ZDW that do not 
coincide, making it possible to realize four spectral regions 
with different signs of the GVD parameter 2β  and the Kerr 
parameter 2n . In this work we study numerically the 
propagation of short optical pulses inside silver-doped 
PCFs. By focusing on the wavelength dependence of 2n  
and tailoring the ZNW, we discover new physics. In 
particular, we find that, ZNW suppresses the spectral red 
shift arising from Raman scattering. We adopt a variational 
technique where the frequency dependent higher-order 
nonlinear term acts as a perturbation. In this entire work our 
emphasis is on understanding the role of the ZNW on the 
evolution of pulse spectrum. 

This paper is organized as follows. In section II, we 
introduce the simple design of the doped PCF exhibiting 
negative nonlinearity and for that generalized nonlinear 
Schrödinger equation (GNLSE) is formulated. In Sec. III, 
we adopt the variational method to explain the restriction of 
Raman red-shift due to ZNW. In section IV, we 
numerically study the evolution of higher order solitons 
when ZDW and ZNW are present in the system 
simultaneously. Section V focuses on the graphical 
examination of how the variation of doping concentration 
changes the ZNW which changes the position and the 



  

bandwidth of DW as described in Sec. IV.  Finally in Sec. 
VI, we conclude our findings. 

II. GNLSE FOR A SILVER-DOPED 
FIBER 

We consider a PCF in the form of a solid-core 
microstructure optical fiber shown in Fig. 1. Its silica core 
is doped with silver nanoparticles. The pitch of air holes 
surrounding the core of the PCF is 3 mμ  with an air-filling 
fraction of 0.9. Geometrical parameters of the fibre are 
selected from the fabrication point of view. 

 

 

 

 

 

 

 

FIG. 1. (Color online) (a) Schematic cross-section of the proposed 
fiber. (b) Fundamental mode field distribution calculated at the 
operating wavelength of 880 nm. 

Before proceeding it is important to modify the standard 
GNLSE for doped PCFs [1] for which the Kerr nonlinearity 
changes rapidly with wavelength. In our previous work [18] 
we assumed that both Kerr and Raman parts were affected 
by the silver nanoparticles. This led to Raman-induced 
spectral blue shifts that appeared to be nonphysical. In this 
work, we assume that silver nanoparticles do not affect the 
Raman contribution to the fiber nonlinearity and write the 
nonlinear polarization in the form, 
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electric field containing the spatial distribution F(x, y) and 
time-domain envelope function (z, t)A . Here Rf  the 

fractional Raman contribution, (3)
effχ  is the effective third-

order susceptibility in the presence of metal nanoparticles 
and (3)

hχ  is the third-order susceptibility of host glass. 
Using this expression of nonlinear polarization and under 
slowly varying envelope approximation, the GNLSE takes 
the following form [1]. 
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nβ  is the nth order dispersion parameter. Both

( )0 1 0( )γ ω γ γ ω ω≈ + −  and ( )effγ ω  are frequency 
dependent nonlinear coefficients of the undoped and the 
doped PCF defined as, 
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permittivity of the silver-doped PCF calculated from 
Maxwell-Garnett theory [19]. The filling factor f  is the 
volume fraction of the silver nano-metric inclusions. 
Further, iε  and hε  are the dielectric functions of silver [20] 
and silica, respectively. 

The effective third-order susceptibility of silver-doped 
fibers has been calculated using theory of composite 
nonlinear materials [21] and is given by [18] 
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The susceptibility of host silica glass and silver are
22 2 22.233 10 /h m Vχ −= × and

16 2 2( 6.3 1.9) 10 /i i m Vχ −= − + ×  respectively.  
Dispersion and the nonlinear parameters of the fiber 

shown in Fig. 1 are calculated using the finite element 
method (FEM) using a filling factor of 36 10f −= × . At the 
pump wavelength of 0 880nmλ =  we found

2
2 0.0297 /ps mβ = , 1 1

0 0.040W mγ − −= ,
1 1

1 0.0186W m fsγ − −≈ . Frequency dependence of 
effγ  is 

included using 0 0 1 0( ) ( ) ( )eff eff effγ ω γ ω γ ω ω= + −  with 
1 1

0 0.5334eff W mγ − −= −  and 1 1
1 0.925eff W m fsγ − −≈−  for the 

chosen value of f . The ZDW and ZNW of the PCF are 
found to be at 1023 nm and 1205 nm respectively. 



  

III. RESTRICTION OF RAMAN RED-
SHIFT DUE TO ZNW 

In this section we try to understand the effect of ZNW on 
pulse dynamics. We adopt the standard variational method 
[22] and treat the higher-order nonlinear terms resulting 
from Taylor-series expansion of the frequency dependent 
nonlinearity as a perturbation. The GNLSE as given in Eq. 
(2) can be written in a normalized form as, 
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where the parameters are rescaled as, 
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= . Here, 0P  , 0T   and 

gv  are the input peak power, initial pulse width and the 
group velocity of the pulse respectively. 

To study the impact of ZNW, we adopt the soliton 
perturbation analysis treating Eq. (6) as a perturbed NLSE:  
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Where ( )uΔ contains all first-order perturbation terms: 
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The perturbative theory is developed by introducing the 
ansatz, 
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where all six normalised parameters energy E , amplitude 
η , temporal position q , phase φ , frequency shift Ω  and 
chirp κ are dimensionless which are functions of 
propagation distance ξ . Using the standard Lagrangian 
density and integrating it over the time parameter τ  we get 
the total Lagrangian in the form,  

( )

2 2

2

2 2
2 2

2

612

1 1
2 3 3

E EL E q E

EE E i u u d

ξ
ξ ξ

π κ ηφ
η

π κη τ
η

∞
∗ ∗

−∞

⎡ ⎤
= − + Ω − +⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

− + Ω + + Δ − Δ⎢ ⎥
⎣ ⎦

∫
  (10) 

This normalized Lagrangian lead to a set of ordinary 
differential equations for the six parameters that describe 
the soliton dynamics. Exploiting the perturbation ( )uΔ  and 
denoting the ξ  derivative with a subscript, four of these 
equations are 
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The equation for Ω  is the most relevant for us as it 
describes changes in the soliton frequency with distance. 
The first term in Eq. (13) corresponds to the standard RIFS. 
The presence of the second term containing 1effμ  shows 
that RIFS is reduced by the presence of a ZNW. Note that 
we omitted the third order dispersion (TOD) effects in this 
calculation to capture the sole effect of ZNW on pulse 
dynamics.  
    To compare the variational predictions with the full 
GNLSE, we solved numerically Eq. (6) using parameters 

0 50T fs= ; 0 880nmλ = ; 2
2 0.0297 /ps mβ = ; and 

2 0nβ > = ; 1 1
0 0.040W mγ − −= ; 1 1

0 0.5334eff W mγ − −= − and

( ) 1 1
1 1,0 0.925eff W m fsγ − −= ± × . The value and numeric sign 

of 1effγ  control the location of the ZNW and slope of the 
nonlinear dispersion, respectively. In Fig. 2(a) and 2(b) we 
show the evolution of a second-order soliton ( 2)N = in the 
presence and absence of the ZNW. In the absence of ZNW, 
Raman soliton accelerates and its spectrum shifts 
considerably toward the red side as shown by an arrow in 
Fig. 2(b). This shift is reduced significantly when a ZNW is 
present [vertical dotted line in Figs. 2(a) and 2(b)]. The 
temporal shift is also reduced because of a reduced RIFS. 
Variational treatment also shows that the RIFS is reduced 
in presence of ZNW. We solve the coupled differential 
equations given as Eq. (11-14) and plot the evolution of 
soliton’s frequency shift Ω  with distance in Fig. 2(c). 
Three curves correspond to three different values of the 
parameter 1effμ . The middle curve is for 1 0effμ = which 
implies no ZNW. The other two curves show that the RIFS 
becomes less (more) when the numeric sign of 1effμ  is 



  

negative (positive). As a final check, we solve Eq. (6) 
numerically for a fundamental ( 1)N = soliton and find the 
reduced RIFS as shown in Fig. 2(d). Here we must 
emphasize that a major approximation in variational 
method is the preservation of pulse shape. Because of this 
constrain we are forced to use 1N = for which the changes 
in the RIFS are relatively small. However, even for 1N =
the RIFS reduction is evident in Fig. 2(d). Moreover, the 
variational predictions agree with the numerical data shown 
in Fig. 2 (c) by blue squares. We conclude that the 
variational method qualitatively describes how the interplay 
between the ZNW and accumulated chirp on the pulse 
limits the extent of RIFS.  

 

 
 
 
 

 

 
 
 
 
 
 
 

 

FIG. 2. (Color online) (a) Raman-induced spectral shift at 20ξ =
of a second-order soliton ( 2)N = in the absence (red pulse) (dark 
grey pulse) and presence (pink pulse) (light grey pulse) of a ZNW. 
(b) Spectral evolution inside the PCF in the two cases. The arrow 
marks the absence of a ZNW. (c) Frequency shifts with distance 
as predicted by the variational technique for 1N = ; blue squares 
represents numerical data that agrees with the dashed blue line. 
Dashed blue line (upper) represents the negative higher order 
nonlinear coefficient and dotted red line represents the positive 
higher order nonlinear coefficient. Black solid line (middle) 
indicates absence of higher order nonlinear coefficient. (d) 
Variational prediction comparing soliton spectrum at a distance of 

8ξ = with the input spectrum (dotted curve). Red dot at the peak 
shows the extent of RIFS. 

IV. HIGHER ORDER SOLITONS AND 
DISPERSIVE WAVES 

In this section we study how a higher-order soliton is 
influenced by the ZDW and ZNW when both are present 
simultaneously. To simulate the soliton dynamics inside 
adopted PCF, we solved Eq. (1) to (5) numerically. Figure 

3(c) shows wavelength dependence of 
2β  and effγ  for a 

silver-doped PCF with 1 1
1 0.694eff W m fsγ − −≈ −  so that 

ZNW is 1374 nm. For numerical simulations we expand the 
frequency dependent nonlinear parameter in a Taylor series 
and retain the linear term, which is a reasonable 
approximation in the spectral range of 800-1300 nm. We 
checked our results by solving Eq. (2) in the frequency 
domain, and the results were almost identical. 

Numerical simulations are performed for the input pulse 

shape, 0
0
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= ≈  at the input wavelength of 880 nm. In 

this case as shown in Fig 3(c), the optical pulse encounters 
three distinct propagation regions: region (1) is solitonic

2( 0, 0)effβ γ> < , region (2) 2( 0, 0)effβ γ< < is non-
solitonic and region (3) is again solitonic with

2( 0, 0)effβ γ< > .  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. 3. (Color online) Spectral (a) and temporal (b) evolution of 
the pulse over 3 m. Black and red vertical lines in (a) mark the 
ZDW (1023nm) and the ZNW (1374 nm), respectively (c) GVD 
and nonlinear profiles of the PCF as a function of wavelength. (d) 



  

Spectrogram at 1.2 m where DW initiates. (e) Phase-matched 
curve; a red circle indicates the location of DW (f) Spectrogram at 
2 m. 

  We launch the pulse in region 1 so that it begins its 
evolution as a soliton. Figures 3(a) and 3(b) shows the 
evolution of a third-order soliton over a 3-m-long PCF 
whose dispersion and nonlinear profiles are depicted in Fig. 
3(c). As expected, pulse spectrum shifts initially toward the 
red side through RIFS, but the presence of a ZDW (black 
vertical line) at 1023 nm suppresses RIFS. The dispersive 
wave radiation emitted due to the presence of ZDW falls in 
region 2 near 1220 nm. Location of this radiation is 
obtained analytically from the phase-matching argument 
[1,23] between the soliton and dispersive wave using 
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Here ωs is the soliton frequency at the onset of the 
radiation. Position of this frequency is recorded from the 
spectrogram at 1.2 m length where the radiation initiates in 
Fig. 3(d). Ps is the peak power of a fundamental soliton 
formed after the fission process. Dispersion and the 
nonlinear parameters appearing in Eq. (15) are at the soliton 
central frequency ωs. Phase matching curve is plotted in 
Fig. 3 (e). The predicted frequency of the dispersive wave 
matches well with simulation. 
To understand the pulse dynamics in detail, we show a 
spectrogram in Fig. 3(f) at a distance of 2 m. The formation 
of two Raman solitons after the fission process is seen 
clearly. The spectra of both Raman solitons are red-shifted 
compared to the input pulse. Their positions are shifted 
toward negative delay because red-shifted solitons travel 
faster compared to the input pulse. As soon as the spectrum 
of the first Raman soliton overlaps with the ZDW, a strong 
spectral peak appears on the red side of the ZDW around 
1220 nm [see Fig. 3(a)]. This peak represents radiation shed 
by the Raman soliton in the non-solitonic region [region 2 
in Fig. 3(c)]. As it is well known [1], spectral recoil from 
this DW suppresses the RIFS. Exponential amplification of 
this DW seen in Fig. 3 (a) agrees with the results in [10] 
where a PCF with two ZDWs was used. In Fig. 3 the ZNW 
is too far to play a significant role. However, the 
configuration studied in sec. II gives a ZNW of 1205 nm. In 
Fig. 4 we show what happens when the ZNW is moved to 
1205 nm while keeping all other parameters identical to 
those in Fig. 3. From the spectral evolution seen in Fig 4 
(a), it is clear that the ZNW acts as a barrier. Both the 
bandwidth and position of the DW change when the 
location of ZNW changes from 1374 to 1205 nm. Now the 
radiation initiates at a distance of 1.5 m compared to the 
previous case where it initiated at 1.2 m. Also, the pulse 
spectrum hits the ZDW further away. The ZNW pushes the 
location of DW from 1220 nm to nearly 1177 nm. Location 
of the DW is cross-checked analytically using Eq. (15). It 

matches with the simulation quite well. Rest of the pulse 
dynamics remains nearly the same.  
In order to understand how the width of region 2 in Fig. 4 
affects soliton evolution, we shift the ZNW to 1135 nm in 
Fig. 5, while keeping other parameters same. From the 
spectral evolution seen in Fig 5(a), it is clear that the ZNW 
acts as a barrier as the spectrum is mostly confined to 
regions 1 and 2. However, now two distinct DWs are 
visible in Fig. 5(a) and 5(b). One DW is formed at a 
distance of 1.3 m and the other around 1.8 m. The 
spectrogram in Fig. 5(d) shows a weak DW in the region 3 
at its original wavelength near 1200 nm. Since this DW lies 
in the region 3, it is not amplified. Rather, a second much 
stronger DW is emitted in the spectral region 2 at a distance 
of 1.8 m when the RIFS is suppressed at the ZDW 
boundary.  The cone shape region on 
the left in Fig. 5(b) shows how this DW spreads, traveling 
faster than the input pulse. The phase-match curve is 
plotted for the stronger DW in Fig. 5(e). Both the DWs in 
Fig. 5(f) are clearly visible in the spectrogram at a distance 
of 2 m. Dark blue wing corresponds to the weak one and 
the turquoise region to the strong one.     

  
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

FIG. 4. (Color online) Spectral (a) and temporal (b) evolution of 
the pulse over 3 m. Black and red vertical lines in (a) mark the 
ZDW (1023 nm) and the ZNW (1205 nm), respectively (c) GVD 
and nonlinear profiles of the PCF as a function of wavelength. (d) 
Spectrogram at 1.5 m. (e) Phase-matching curve; a red circle 
indicates the wavelength of the DW. (f) Spectrogram at 2 m. 



  

In Fig. 6 we further reduce the region 2 by shifting the 
ZNW to 1073 nm so that its bandwidth is just 50 nm. All 
other parameters remain same. The spectral evolution in 
Fig. 6(a) shows that a DW begins to form near 1180 nm 
after 1.6 m, but its spectrum blue-shifts toward the ZNW 
with further propagation. At the same time, the RIFS is no 
longer blocked by the ZDW, and the Raman soliton 
occupies the region 2 where solitons are not supposed to 
form.  To understand the underlying physics, we show in 
Fig. 6(d) to 6(f) three spectrograms at a distance of 1.7 m, 2 
m and 3 m respectively. As expected, a weak DW forms at 
1.7 m when the spectrum of red-shifted Raman soliton just 
overlaps the ZDW [Fig. 6 (d)].  We also see that the Raman 
soliton has trapped this DW and forces it to shift its 
spectrum through cross-phase modulation. Indeed, at a 
distance of 2 m, the spectrogram in Fig. 6(e) shows that the 
DW is dragged by the Raman soliton, whose spectrum is 
now much wider and ranges from 850 to 1250 nm. At this 
distance, most of the DW energy is at a wavelength near the 
ZNW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5. (Color online) Spectral (a) and temporal (b) evolution 
over 3 m. Black and red vertical lines in (a) mark the ZDW (1023 
nm) and the ZNW (1135 nm), respectively (c) GVD and nonlinear 
profiles of the PCF. (d) Spectrogram at 1.3 m. (e) Phase-matching 
curve; a red circle indicates the location of DW. (f) Spectrogram 
at 2 m. 

 
The spectrogram in Fig. 6 (f) also shows that Raman soliton 
drags the DW with it even at larger distance (3 m), and both 
are travelling faster than the original pulse. At this point, 
the spectrum of DW lies within the broad soliton spectrum. 
The important conclusion is that, when the region 2 is made 
narrower by bringing the ZNW closer to the ZDW, Raman 
soliton can tunnel through it, resulting in a much shorter 
soliton with a very broad spectrum. At the same 
time,solitons drags the DW with it.  

As a further check, we move the ZNW so close to the 
ZDW that the two coincide, i.e., the bandwidth of the 
region 2 has been reduced to zero. The top row of Fig. 7 
shows the spectral and temporal evolutions of the pulse in 
this situation and should be compared with the top row of 
Fig. 6. The temporal evolutions are quite similar with the 
main difference that the DW, trapped by the Raman soliton, 
is much less spread. Figure 7(a) shows that the soliton 
spectrum is now confined to the region 1 and does not 
penetrate the ZNW barrier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6. (Color online) Spectral (a) and temporal (b) evolution 
over 3m. Black and red vertical lines in (a) mark the ZDW 
(1023nm) and the ZNW (1073nm), respectively (c) GVD and 
nonlinear profiles of the PCF. (d), (e) and (f) are the spectrograms 
corresponding to 1.7 m, 2 m and 3 m. Notice that the DW blue-
shifts along the length of the fiber. 



  

It also confirms from the spectrogram at 4 m fiber length in 
Fig. 7(d), that mostly solitonic energy is not able to 
overcome the barrier. In contrast, both DWs lie in the 
region 3 beyond the ZNW.   

Finally, we change the dispersive properties of the PCF 
such that of all higher-order dispersion terms are negligible 
( 0nβ = for 2n > ). Clearly no ZDW exists for such a fiber. 
The bottom row of Fig. 7 shows this case by keeping the 
ZNW still at 1023 nm.  From Fig. 7(e) it is evident that the 
RIFS is reduced, and no DW exists in the region 3 that lies 
beyond the ZNW. Here ZNW plays the role of a true barrier 
that restricts the RIFS. This case has already been discussed 
in sec. III in detail.    

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FIG. 7. (Color online) Spectral (a) and temporal (b) evolution 
when the ZDW and ZNW coincide at 1023 nm. (c) and (d) are the 
spectrograms at 2 m and 4 m respectively. Fiber dispersion is 
modified in (e) and (f) such that the ZDW is absent but ZNW 
coincides at 1023 nm (red vertical line in (e)). 

V.  CONTROLLING DISPERSIVE 
WAVES BY TAILORING THE ZNW 

In this section we study how the ZNW controls the 
frequency (or wavelength) of DWs. To see how the 
presence of ZNW affects the generation of DWs, we plot 
the DW wavelength DWλ  as a function of ZNW in Fig. 8(a) 
and 8(b) both numerically using Eq. (2) and analytically 

using Eq. (15). In both cases the analytical predictions 
match well with the numerical results. From the data in Fig. 
8(a) we see that DWλ follows the ZNW almost linearly in 
the100-nm-wide spectral region shown there. Physically 
speaking, the ZNW affects the RIFS of solitons, and it is 
the Raman soliton that drags the DW along with it. Note 
that, for a conventional PCF, DWλ  does not change as long 
as dispersion of the fiber remains the same. 

One may wonder how far the linear variation seen in Fig. 
8 (a) persists. To answer this question, we varied the ZNW 
over a much wider spectral range by modifying the Kerr 
nonlinearity through the filling factor of silver 
nanoparticles, and the results are shown in Fig 8 (b). The 
plot indicates that DWλ  increases initially in a linear fashion, 
but soon saturates and almost stops increasing after ZNWλ
exceeds 2000 nm. This saturation region is also predicted 
analytically (circles in fig. 8 (b)).  The reason for this 
behavior is not difficult to understand. If we push the ZNW 
far away from the input wavelength, there is less chance 
that the spectrum of Raman soliton will approach the ZNW. 
However, we found that, if the doped fiber has a negative 
constant value equal to 0 0( )effγ ω ,  i.e. no ZNW exists, then 

DWλ is close to 1275 nm, as indicated by the horizontal line 
in Fig. 8 (b). This suggests that the ZNW affects the DW 
even when it is far from the input wavelength. It seems that 

DWλ  will merge to actual DW wavelength (1275 nm) 
asymptotically only in the limit ZNWλ → ∞ . In Fig. 8 (c) we 
used the filling factor f  for tailoring the location of the 
ZNW. Fig. 8 (c) shows the variation of ZNW with the 
filling factor in the range 0 0.1f< < .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  FIG. 8. (Color online)  (a) Variation of DW wavelength with 
the ZNW both numerically (dot-dashed line) and analytically from 
phase-matched equation 15 (circle). (b) Same variation over a 



  

wider range of ZNW. The horizontal line shows the wavelength of 
DW when ZNW does not exist. (c) Variation of ZNW with the 
filling factor f . (d) Variation of spectral bandwidth width of DW 
with the ZNW. Bandwidth is defined as the difference between 
the two points that are 10 dB below the peak intensity of the DW. 
The horizontal line shows the width of DW when ZNW does not 
exist. 

 
Since the spectral bandwidth of the DW is also affected by 
the location of the ZNW (see Figs. 3-7), in Fig. 8(d) we 
show the extent of this variation. Similar to the behavior 
seen in Fig. 8 (b) for the central wavelength of DW, the 
DW bandwidth also increases rapidly initially with an 
increasing ZNW, but then saturates at a value of about 70 
nm.  Indeed, the DW bandwidth is quite large in Fig. 3(a) 
but is reduced considerably as the ZNW moves close to 
ZDW in Figs. 4-7. Since energy of the DW is also reduced 
under these conditions, we conclude that the ZNW affects 
the emission of DWs if moves closer to the ZDW of a silver 
doped PCF. 
 

VI. CONCLUSIONS 
We have studied, for the first time to our knowledge, the 

role of the ZNW on the dynamics of ultrashort pulses 
launched into a PCF whose core has been doped with silver 
nanoparticles. The effective nonlinear parameter effγ  in 
such PCFs varies rapidly with wavelength, vanishes at a 
specific wavelength (the ZNW), and then it becomes 
negative. As a result, such PCFs acquire unique nonlinear 
features, one of them being that solitons can exist in the 
normal dispersion region. Theoretically we have confirm 
that how this ZNW affects the pulse evolution by creating 
suppression to the Raman soliton. We studied numerically 

the propagation of femtosecond pulses in presence of ZDW 
and ZNW and found a number of intriguing features. Our 
PCF has a single ZDW, yet it shows generation of a DW 
through suppression of RIFS. This DW encounters 
anomalous dispersion but cannot form a soliton because it 
experiences a negative nonlinearity. The simultaneous 
presence of a ZNW and a ZDW, whose relative spacing can 
be controlled by changing the filling factor of dopants, 
provides a fertile ground where new optical phenomena 
may occur. We found that both the central wavelength and 
the bandwidth of the DW are affected considerably when 
ZNW is varied. Position of the DW is verified analytically 
from the phase-matched equation and it matches quite well 
with the simulation.  In particular, the ZNW behave like a 
barrier that suppresses the RIFS and does not allow red 
shifting of a Raman soliton beyond wavelengths longer 
than the ZNW.  We believe that the concept of ZNW is 
fascinating in the context of nonlinear fiber optics and is 
likely to open up new and promising avenues. We are in the 
process of fabricating a PCF doped with silver 
nanoparticles so that we can verify our theoretical 
predictions experimentally. 
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