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I. I. INTRODUCTION

Fano resonance was originally discovered in the study of atomic physics [1] and manifests as an asymmetric line shape

in the atomic absorption spectrum. In recent years, however, there has been an explosion of interest in exploration

of Fano interference effect in nanophotonic structures [2–13]. Such interest arises since Fano interference effects in

fact occur rather frequently in a wide variety of nanophotonic structures. Moreover, there has been strong interest to

use Fano interference effect for applications such as add-drop filters [14–16], sensors [10, 17, 18] and optimal bistable

switches [19–22].

In nanophotonics, the Fano interference effect is typically a linear effect where the interference results in an asym-

metric line shape in the transmission and reflection spectra. On the other hand, there has been interest in exploiting

such linear interference effect as a basis for engineering and enhancing nonlinear optical interactions, in particular

for optical switching applications [6–8, 23–26]. In all these studies, light is treated as classical electromagnetic waves.

Connected to these works, it would be interesting to explore the implication of Fano interference effect in the quantum

regime for photon-photon interaction. The effect of Fano interference in single photon transport has been studied

in [27]. In the study of waveguide quantum electrodynamics system, there has also been extensive studies on multi-

photon transport [28–52]. However, there has not been any study on the effect of single-photon Fano interference for

the quantum transport of multi-photon Fock state, especially in the presence of strong photon-photon interactions.

In this paper, we consider a general waveguide quantum electrodynamics (QED) system of a localized optical mode,

such as those found in an optical cavity, coupling to multiple input and output waveguide channels. The cavity in

addition can incorporate nonlinear elements that result in strong optical nonlinearity at the two-photon level such as

Kerr-nonlinear cavity or optomechanical cavity[42]. For this system, we develop an input-output formalism to study

the effect of Fano resonance in the single and two-photon transport. We show that the coupling constants in such

formalism are strongly constrained by the fundamental principles of quantum mechanics and symmetry considerations.

For single photon transport, Fano line shape directly arises from these constraints. For two-photon transport, we show

that the Fano line shape does not appear in the two-photon resonance fluorescences. Nevertheless, an asymmetric

line shape related to Fano interference does appear in two-photon correlation functions.

The paper is organized as follows. In Section II we present a general input-output formalism of Fano resonance

in a local cavity coupled to multiple waveguide channels. In Section III we prove that the coupling constants are

strongly constrained by fundamental principles of quantum mechanics and time-reversal symmetry. In Section IV

we provide a general formula of the multi-photon S matrix and the resulting two-photon correlation functions based
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on the input-output formalism. In Section V, we consider a specific example of a two-mode waveguide coupled to a

two-level atom that exhibits Fano resonance in the single photon S matrix and two-photon correlation functions.

II. II. INPUT-OUTPUT FORMALISM

We consider a general class of waveguide QED systems that consist of a cavity coupled to N waveguide channels.

For simplicity we assume that the cavity has only one mode, as described by the bosonic operator a, that couples to

the waveguide channels. [a, a†] = 1. Also, for our purpose here, the cavity can support strong nonlinearity at the few

photon level. The waveguide channels can arise from the use of multiple waveguides, or they can correspond to modes

of a single multi-mode waveguide. Also, in consistency with the waveguide QED literature [29], modes propagating

along forward and backward directions are treated as different channels. The dynamics of the system is described by

the input-output formalism [30, 48, 53]:

d

dt
a = −i [a,Hc]− Σ a+ κT cin (1)

cout(t) = C cin(t) + a(t) d , (2)

where Hc = H†c is the Hamiltonian of the cavity. Σ is the self-energy correction due to the coupling of the cavity to

the waveguide channels. The imaginary part of Σ describes the decay of the cavity mode. The resonance is excited

by the input operators

cin(t) =



c1,in(t)

c2,in(t)

...

cN,in(t)


(3)

from waveguide channels 1 to N , respectively, with the coupling constants

κ =



κ1

κ2

...

κN


. (4)
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The resonant excitation can decay into the waveguides and couples with the output operators

cout(t) =



c1,out(t)

c2,out(t)

...

cN,out(t)


(5)

with the coupling constants

d =



d1

d2

...

dN


. (6)

As seen in (2), the excitation of the resonance therefore results in the coupling between the input and output of different

waveguide channels. In addition to such a resonant pathway for scattering among different waveguide channels, the

channels may also couple among themselves directly in the absence of the resonance, as defined by a scattering matrix

C that describes such a coupling. The scattering matrix C for the direct pathway is unitary, i.e. CC† = I. In the

standard input-output formalism [30, 48, 53], C = I. Here we assume that C is an arbitrary unitary matrix in order

to treat Fano interference.

In Appendix A.1, we provide the underlying Hamiltonian of a specific waveguide QED system from which one can

derive the input-output formalism that has the form of (1)-(2). As far as the scattering properties are concerned,

however, the input-output formalism provides a more convenient starting point for the theoretical developments.

Therefore, in consistency with much of the quantum optics literature where the input-output formalisms are used,

one can in fact treat (1) and (2) as the starting ansatz. Also, (1) and (2) are similar to that in the temporal coupled

mode theory widely used in nanophotonics to treat classical electromagnetic effects, including the Fano interference

effects [5], but here all the dynamic variables are Heisenberg operators rather than c-numbers.

III. III. CONSTRAINTS ON THE COUPLING CONSTANTS

For a given scattering matrix C in the direct pathway, the coupling constants κ, d and self-energy correction Σ

in the input-output formalism (1)-(2) cannot be arbitrary. Instead, they are related to one another by fundamental

principles in quantum mechanics and additional symmetry requirements. In this section, we derive the constraints

imposed by flux conservation, quantum causality and time-reversal symmetry.
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A. A. Flux Conservation

We suppose that the cavity system, in the absence of the waveguide, conserves the total number of excitations inside

the cavity, i.e. there exists a conserved excitation number operator N for the total number of excitations, satisfying

[N, Hc] = 0 . (7)

The operator N takes non-negative integer as its eigenvalues. Removing a cavity photon should reduce the total

number of excitations in the cavity system by unity, and hence

[N, a] = −a . (8)

In order to satisfy the commutation relation (8), a natural form of the number operator N is therefore

N = a†a+O , (9)

where O consists of other degrees of freedom in the cavity with [a, O] = 0. In our form of the input-output formalism

(1)-(2), only the cavity operator a couples to the waveguide, whereas these other degrees of freedom do not couple

with the waveguide directly, i.e.

d

dt
O = −i [O, Hc] . (10)

Having defined the excitation number operator, we can describe the condition for flux conservation as:

d

dt
N = c†in cin − c†out cout . (11)

Using (1), as well as (7)-(10) that describe the properties of the excitation number operator, we have

d

dt
N = − (Σ + Σ∗) a†a+ c†in κ

∗ a+ a† κT cin . (12)

On the other hand, using (2) we have

c†in cin − c†out cout = −d†d a†a− c†in C† d a− a† d†C cin . (13)

The flux conservation condition (12) then requires

d†d = Σ + Σ∗ , C† d = −κ∗ . (14)
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B. B. Quantum Causality

In the input-output formalism (1)-(2), the operator a(t), which characterizes the physical field in the cavity, depends

only on the input field cin(t′) with t′ < t, and generates only output field cout(t
′) with t′ > t. This can be formulated

as the quantum causality condition [48, 53]:

[
a(t) , c†in(t′)

]
= 0 , for t < t′ (15)[

a(t) , c†out(t
′)
]

= 0 , for t > t′ . (16)

The commutator
[
a(t) , c†in(t′)

]
for t > t′ can then be computed as:

[
a(t) , c†in(t′)

]
=
[
a(t) , c†out(t

′)C− a(t′)d†C
]

= −d†C
[
a(t) , a†(t′)

]
. (17)

Combining (15) and (17) leads to the relation

[
a(t) , c†in(t′)

]
= −d†C

[
a(t) , a†(t′)

]
θ(t− t′) , (18)

where

θ(t) ≡


1 t > 0

1/2 t = 0

0 t < 0

is the Heaviside step function. Similarly, we can derive

[
a(t) , c†out(t

′)
]

= d†
[
a(t) , a†(t′)

]
θ(t′ − t) . (19)

Since a and a† here are the bosonic creation and annihilation operators, we expect d
dt

[
a(t), a†(t)

]
to vanish for all

t because of the equal-time commutator
[
a(t), a†(t)

]
= 1. Therefore, using (1) we have

d

dt

[
a(t), a†(t)

]
= − (Σ + Σ∗) [a(t), a†(t)] + κT

[
cin(t), a†(t)

]
+
[
a(t), c†in(t)

]
κ∗ = 0 . (20)

Further applying (18) and (85) leads to a constraint between C, d, κ, and Σ:

Σ + Σ∗ = −1

2

[
κT C† d + d†Cκ∗

]
. (21)

Note that this constraint is implied by the constraint of flux conservation (14).
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C. C. Time-Reversal Symmetry

There are additional constraints on the parameters C, d, κ, and Σ from symmetries of the full system. Here we

consider the implication of time-reversal symmetry. Let Θ be the time-reversal operator, which is antiunitary and in

addition has the following properties:

Θ cin(t) Θ−1 = cout(−t) , Θ a(t) Θ−1 = a(−t) , ΘHc Θ−1 = Hc . (22)

In Appendix A. 1, we provide a concrete construction of such an operator for a specific waveguide QED Hamiltonian.

Under the operation of Θ, the input-output formalism (1)-(2) becomes:

d

dt
a = −i [a,Hc]− (κ†d− Σ∗) a− κ†C cin . (23)

cout(t) = CT cin(t)− a(t) CT d∗ , (24)

On the other hand, suppose the system has time-reversal symmetry, (23) and (24) should be identical to (1) and (2),

and consequently, we have

C = CT , C d∗ = −d , Cκ∗ = −κ , κ†d = Σ + Σ∗ . (25)

In the following we will focus on systems that have the properties of flux conservation, quantum causality and

time-reversal symmetry. That is, the parameters in the input-output formalism (1)-(2) satisfy all the constraints of

(14), (21) and (25). As a result, they are related to each other as

C C† = I , C = CT , (26)

C d∗ = −d , (27)

d†d = Σ + Σ∗ , (28)

κ = d . (29)

In particular, κ is determined from d.

We note that the input-output formalism (1)-(2), as well as the constraints on the parameters as shown in (26)-

(29), agrees in form with the temporal coupled mode theory as developed in Ref.[5] for classical electromagnetic

waves. In deriving (26)-(29), the constraints of flux conservation and time-reversal symmetry correspond to similar

constraints used in the development of the temporal coupled mode theory [5]. The quantum causality condition has

no classical counter parts. However, as we have shown in section III B above, the quantum causality condition does

not give any additional constraint if one assumes flux conservation. Our results here show that the temporal coupled
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mode theory that was previously developed for classical waves can be adopted to treat the propagations of quantized

electromagnetic waves and can be applied for few-photon states.

IV. IV. MULTI-PHOTON S MATRIX

The single and two-photon S matrices are defined by the input and output operators as [30, 48]

Sµp;νk =

∫
dt′√
2π
eipt

′
∫

dt√
2π
e−ikt〈0|cµ,out(t

′) c†ν,in(t)|0〉 , (30)

Sµp1,νp2;ρk1,σk2 =

(
2∏
l=1

∫
dt′l√
2π
eiplt

′
l

∫
dtl√
2π
e−ikltl

)
〈0|cµ,out(t

′
1)cν,out(t

′
2) c†ρ,in(t1)c†σ,in(t2)|0〉 , (31)

where µ, ν, ρ, σ denote waveguide channels that take values from 1 to N . With the input-output formalism (1)-(2)

and the quantum causality condition (18)-(85), we can adopt the computational scheme in [48] to decompose the S

matrices as

Sµp;νk = Cµν δ(p− k) + SCµp;νk , (32)

Sµp1,νp2;ρk1,σk2 = Sµp1;ρk1Sνp2;σk2 + Sµp1;σk2Sνp2;ρk1 + SCµp1,νp2;ρk1,σk2 , (33)

where SCµp;νk and SCµp1,νp2;ρk1,σk2
are related to the connected parts of the cavity’s Green functions:

SCµp;νk = dµdν

∫
dt′√
2π
eipt

′
∫

dt√
2π
e−ikt 〈0|T a(t′)a†(t)|0〉 , (34)

SCµp1,νp2;ρk1,σk2 = dµdνdρdσ

(
2∏
l=1

∫
dt′l√
2π
eiplt

′
l

∫
dtl√
2π
e−ikltl

)
〈0|T a(t′1)a(t′2)a†(t1)a†(t2)|0〉C . (35)

Using the flux conservation relation (14), we prove in Appendix A.2 that Green functions in (34) and (35) can be

computed using the effective Hamiltonian of the cavity

Heff = Hc − iΣ a†a (36)

without involving any waveguide degrees of freedom.

The single photon S matrix (32) shows explicitly that the transmission amplitude of single photon transport comes

from the interference between a directly pathway as described by the scattering matrix C and a resonance-assisted

indirect pathway as described by the two-point Green function of the cavity. This interference can produce the Fano

resonance in transmission spectrum [5].

For the two-photon transport, the two-photon resonance fluorescence spectrum is described by the connected

two-photon S matrix as
∣∣∣SCµp1,νp2;ρk1,σk2

∣∣∣2. From (35), for different waveguide channels, the two-photon fluorescence
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spectrums are the same up to an overall prefactor |dµdνdρdσ|2. They share the same pole structure that is completely

determined by the cavity’s effective Hamiltonian (36). Therefore, we expect that two-photon resonance fluorescence

spectrums are qualitatively the same as that in the single channel case and thus there are no Fano interferences in

the fluorescence spectrums.

On the other hand, the full two-photon S matrix in (33) does contain contributions from the direct pathway (Sµp;νk

contains contribution from C), as well as the resonant pathway related to the cavity excitation. Therefore, the physics

of Fano interference should appear in experimental quantities that are directly related to the two-photon S matrix. As

an example, we consider the two-photon correlation function that describes the photon statistics of the outgoing two-

photon state. Without loss of generality, we consider an incident two-photon planewave state |ν, k1; ν, k2〉, comprised

of two photons in the waveguide channel ν with individual frequencies k1 and k2, as described by

|ν, k1; ν, k2〉 =

∫
dx1dx2Pk1k2(x1, x2)

1√
2
c†ν(x1)c†ν(x2)|0〉 , (37)

where Pk1k2(x1, x2) = 1√
22π

[
eik1x1eik2x2 + eik1x2eik2x1

]
is a symmetrized two-photon planewave and c†µ(x) is the

creation operator in the coordinate space with the commutation relation
[
cµ(x), c†ν(y)

]
= δµ,νδ(x− y). Here we focus

on the resulting outgoing state with both photons in the same waveguide channel, say the µ-th channel. From the

two-photon S matrix (33), the outgoing state is

|φ〉µµ =
1

2

∫
dp1dp2 |µ, p1;µ, p2 〉Sµp1,µp2;νk1,νk2

=

∫
dx1dx2 [tµν(k1)tµν(k2)Pk1k2(x1, x2) +Hµν(x1, x2)]

1√
2
c†µ(x1)c†µ(x2)|0〉 , (38)

where tµν(k) is the single photon transmission amplitude that is defined by the single photon S matrix as Sµp;νk ≡

tµν(k)δ(p − k). Hµν(x1, x2) is the wavefunction of the two-photon bound state that is determined by the connected

two-photon S matrix as [28, 31]

Hµν(x1, x2) =
1

2

∫
dp1dp2 Pp1p2(x1, x2)SCµp1,µp2;νk1,νk2 . (39)

The two-photon correlation function associated with the outgoing state (38) can then be computed by

G(2)(τ) = µµ〈φ|c†µ(y)c†µ(y + τ)cµ(y + τ)cµ(y)|φ〉µµ

= 2 |tµν(k1)tµν(k2)Pk1k2(y + τ, y) +Hµν(y + τ, y)|2 . (40)

In (40), tµν(k1) and tµν(k2) are the single photon transmission amplitude, which in general can exhibit an asym-

metric Fano line shape with respect to k1 and k2. Therefore, the two-photon correlation function is also influenced

by Fano interference.
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FIG. 1. A two-mode waveguide coupled to a two-level atom.

V. V. A TWO-MODE WAVEGUIDE COUPLED TO A TWO-LEVEL ATOM

To support the general argument above, in this section we consider a specific example of a two-mode waveguide

coupled to a two-level atom. Each mode of the waveguide is treated as an individual channel so that the transport

property can be described by the input-output formalism (1)-(2). As shown in Fig.1, the left-moving photon state is

related to the operators c1,in(t) and c1,out(t) while c2,in(t) and c2,out(t) represent the right-moving photon state.

The two-level atom is described by the Hamiltonian

Hatom = Ω |e〉〈e| , (41)

where Ω is the atom’s resonant frequency and |g〉, |e〉 are the respective ground and excited states. To apply the input-

output formalism (1)-(2), we map the Hamiltonian of the two-level atom (41) to the Hamiltonian of a Kerr-nonlinear

cavity with infinite Kerr-nonlinearity strength:

Hc = Ω a†a+
χ

2
a†a†aa , χ→∞ , (42)

which can be diagonalized as Hc|n〉 = En|n〉 for n ≥ 0 and En = Ωn + χ
2n(n − 1). When χ → ∞, we have E0 = 0,

E1 = Ω and En → ∞ for all n ≥ 2. As a result, the cavity cannot be excited twice and thus has exactly the same

behavior as the two-level atom during the few-photon transport process. The total excitation number operator is

N = a†a satisfying [N,Hc] = 0. For validation, we solve the system directly in Appendix A.3 without mapping to the

cavity case.

We describe the background process as a general 2× 2 symmetric unitary matrix

C = eiφ

 t i r

i r t

 (43)
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with |r|2 + |t|2 = 1. Here we take t ∈ [0, 1] and r =
√

1− t2. It is known that any two-port system can be written in

this form. Moreover, with (43) and additional mirror symmetry d1 = ±d2, we can solve d from the constraint (27) as

d = ei
φ
2M i(1 + t)− r√

2(1 + t)

 1

±1

 . (44)

The ± sign corresponds to the case where the atom excitation is even (odd) with respect to the mirror plane, in which

case d1 = +(−)d2. Using the constraint (28) and assuming Σ is real, we determine M =
√

Σ.

Following (32) and (34), we compute the single photon S matrix as

Sµp;νk =

[
Cµν + dµ dν

i

k − Ω + iΣ

]
δ(p− k) ≡ tµν(k)δ(p− k) , (45)

where C and d are shown in (43) and (44), respectively. Suppose we send in a right-moving photon with frequency

k, according to our channel convention, t11(k) is the transmission amplitude and t21(k) is the reflection amplitude.

In Fig.2 we plot the transmission coefficient |t11(k)|2. For t = 0 where there is no background transmission, the

t=0

t=0.4

t=0.8

0.5 1 1.5 2
0

0.25

0.5

0.75

1

k�W

Èt 1
1

Hk
L2

FIG. 2. The transmission coefficient as a function of photon frequency. Σ = 0.2 Ω. Fano resonances appear when varying t

from 0 to 1.

transmission spectrum is a Lorentizian and the maximal transmission occurs at the resonant frequency Ω. For all

other cases where t is between 0 and 1, the transmission spectrum exhibits a Fano asymmetric line shape where the

transmission coefficient vary from 0 to 1 from a small change in incident photon frequency.

For the two-photon transport, following (35), when χ→∞, the connected two-photon S matrix is

SCµp1,νp2;ρk1,σk2 =
i

π
dµdνdρdσ

k1 + k2 − 2Ω + 2iΣ

(p1 − Ω + iΣ) (p2 − Ω + iΣ) (k1 − Ω + iΣ) (k2 − Ω + iΣ)
δ(p1 + p2 − k1 − k2) . (46)
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FIG. 3.
∣∣∣ 1√

2π
t11t11

∣∣∣2, |H11(0, 0)|2 and 1
2
G(2)(0) versus E/2 for different values of t when k1 = k2 = E/2 and Σ = 0.2 Ω.

By (39) and (46), if we send in two right-moving photons (in the waveguide channel 1) with frequencies k1 and k2,

the wavefunction of the transmitted two-photon bound state is

H11(x1, x2) =
1√
2π

d4
1 e

iE
x1+x2

2
e−i(E/2−Ω+iΣ)|x1−x2|

(k1 − Ω + iΣ)(k2 − Ω + iΣ)
, (47)

where E ≡ k1 +k2 is the total frequency of the two incident photons. Finally, the transmitted two-photon correlation

function can be obtained by substituting (45) and (47) into (40). As a result, we have

G(2) (0) = 2

∣∣∣∣ 1√
2π
t11(k1)t11(k2) +H11(0, 0)

∣∣∣∣2 . (48)

From now on we focus on the case that two incident photons have the same frequencies, i.e. k1 = k2 = E/2. In
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this case,

∣∣∣∣ 1√
2π
t11 t11

∣∣∣∣2 =
1

2π2

[(
E
2 − Ω

)
t+ rΣ

]4[(
E
2 − Ω

)2
+ Σ2

]2 (49)

|H11(0, 0)|2 =
1

2π2

Σ4[(
E
2 − Ω

)2
+ Σ2

]2 , (50)

1

2
G(2) (0) =

1

2π2

Σ4[(
E
2 − Ω

)2
+ Σ2

]2
∣∣∣∣∣∣
(
t
E
2 − Ω

Σ
+ r

)2

e−2i arccot t + 1

∣∣∣∣∣∣
2

. (51)

In Fig.3, we plot the probability of two-photon product state 1
2π2 |t11 t11|2, the probability of the two-photon bound

state |H11(0, 0)|2 and the transmitted two-photon correlation function 1
2G

(2)(0) as a function of E/2 in three separate

columns, respectively. In this plot, we fix Σ and vary the scattering matrix of the direct pathway, i.e., the value

of t in (43). As t increases from 0 to 1, 1
2π2 |t11 t11|2 exhibit Fano asymmetric line shapes. On the other hand,

|H11(0, 0)|2, which characterizes the contribution of the two-photon bound state and is related to the two-photon

fluorescence spectrum, always has a symmetric line shape with respect to E and is independent of t. Consequently,

the transmitted two-photon correlation function G(2)(0), which has contributions from the two terms described above,

also exhibit an asymmetric line shape with respect to E when t 6= 0, 1. The physics of Fano interference therefore

manifests in the two-photon correlation function.

Examining (48), we see that the relative phase of the two terms is also important in determining G(2)(0). In

particular, when t = 0, the two terms have exactly the same magnitude but opposite phase as shown in (51) , in which

case G(2)(0) = 0 for all E. Thus remarkably the system exhibits complete anti-bunching for all E. When t = 1, the

interference of such two terms also results in a G(2)(0) that is independent of E. In this case, 1
2G

(2)(0) = 1
2π2 is the

same as the G(2)(0) of a two-photon plane wave.

VI. VI. SUMMARY

To summarize, in this paper, we present a general input-output formalism for waveguide QED systems where a

local cavity is coupled to multiple waveguide channels. We show that the parameters of this formalism are strongly

constrained by general arguments such as flux conservation and time-reversal symmetry. Using this formalism, we

study the effect of Fano interference on multi-photon transport in such systems. We show that Fano interference does

manifest in the two-photon correlation function. One therefore can use the physics of Fano interference to tailor the

quantum transport properties of multi-photon states in these systems such as tailoring the two-photon correlation
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functions by tuning the background scattering matrix. Our work points to the importance of Fano interference in the

quantum regime of light transport.
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VIII. APPENDIX

A. A.1 A specific system that has input-output formalism (1)-(2)

We provide an explicit derivation of the input-output formalism as shown in (1)-(2) from the following Hamiltonian

of a specific waveguide QED system:

H =

N∑
µ=1

∫
dk k c†µ,kcµ,k +

N∑
µ=1

ξµ

∫
dk√
2π

(
c†µ,ka+ a†cµ,k

)
+Hc +

∑
i 6=j

Vµν

∫
dk√
2π

∫
dk′√
2π

c†µ,kcν,k′ , (52)

where cµ,k (c†µ,k) is the annihilation (creation) operator of the photon state in the waveguide channel µ satisfying the

standard commutation relation
[
cµ,k, c

†
ν,k′

]
= δ(k − k′)δµν . We consider only a narrow range of frequencies in which

the dispersion relations in all the channels can be linearized, and all the group velocities are taken to be 1. Hc is

the cavity Hamiltonian whose strong nonlinearity forms the basis for strong photon-photon interactions. a (a†) is the

bosonic annihilation (creation) operator of the cavity that commutes with cµ,k, c
†
ν,k and satisfies the commutation

relation [a, a†] = 1. ξµ is the coupling constant between the cavity and the corresponding waveguide channel µ. The

last term in (52) is the direct coupling among waveguide channels with Vµν be the coupling constant between channels

µ and ν. Vµν satisfies the constraint Vµν = Vνµ as required by the Hermitian of the Hamiltonian.

For the Hamiltonian (52), the Heisenberg equations are

d

dt
cµ,k = −i k cµ,k − i

ξµ√
2π

a− i
∑
ν 6=µ

Vµν√
2π

∫
dk′√
2π

cν,k′ , (53)

d

dt
a = −i [a, Hc]− i

N∑
µ=1

ξµ

∫
dk√
2π
cµ,k . (54)

We define

Φµ(t) ≡
∫

dk√
2π

cµ,k(t) , (55)
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and define the input and output operators

cµ,in(t) =

∫
dk√
2π

cµ,k(t0) e−ik(t−t0) ,

cµ,out(t) =

∫
dk√
2π

cµ,k(t1) e−ik(t−t1) , (56)

with t0 → −∞ , t1 → +∞.

After multiplying (53) by the factor exp(ikt), we integrate it from an initial time t0 < t to get

cµ,k(t) = cµ,k(t0)e−ik(t−t0) − i ξµ√
2π

∫ t

t0

dτ a(τ)e−ik(t−τ) − i
∑
ν 6=µ

Vµν√
2π

∫ t

t0

dτ Φν(τ)e−ik(t−τ) . (57)

Integrating (57) with respect to k, we get

Φµ(t) = cµ,in(t)− i ξµ
2
a(t)− i

∑
ν 6=µ

Vµν
2

Φν(t) . (58)

Similarly, we integrate (53) up to a final time t1 > t and obtain

Φµ(t) = cµ,out(t) + i
ξµ
2
a(t) + i

∑
ν 6=µ

Vµν
2

Φν(t) . (59)

We introduce matrices

cin(t) =



c1,in(t)

c2,in(t)

...

cN,in(t)


, cout(t) =



c1,out(t)

c2,out(t)

...

cN,out(t)


, ξ =



ξ1

ξ2

...

ξN


, V =



0 V12 · · · V1N

V21 0 · · · V2N

...
...

. . .
...

VN1 VN2 · · · 0


. (60)

Then (58), (59) and (54) can be written as:(
I +

i

2
V

)
Φ(t) = cin(t)− i

2
a(t) ξ , (61)(

I− i

2
V

)
Φ(t) = cout(t) +

i

2
a(t) ξ , (62)

d

dt
a = −i [a,Hc]− i ξT Φ(t) . (63)

Eliminating the variable Φ leads to the input-output formalism:

cout(t) =

(
I− i

2
V

)(
I +

i

2
V

)−1

cin(t)− i a(t)

(
I +

i

2
V

)−1

ξ

cin(t) =

(
I +

i

2
V

)(
I− i

2
V

)−1

cout(t) + i a(t)

(
I− i

2
V

)−1

ξ

d

dt
a(t) = −i [a, Hc] (t)− 1

2
ξT
(

I +
i

2
V

)−1

ξ a(t)− i ξT
(

I +
i

2
V

)−1

cin(t) (64)
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Finally, by identifying

C ≡
(

I− i

2
V

)(
I +

i

2
V

)−1

, d ≡ −i
(

I +
i

2
V

)−1

ξ ,

Σ ≡ 1

2
ξT
(

I +
i

2
V

)−1

ξ , κ ≡ −i
(

I +
i

2
VT

)−1

ξ , (65)

we reduce (64) to the general form (1)-(2). One can check explicitly that C, d, κ, and Σ defined in (65) satisfy the

general constraints (14) and (25).

The Hamiltonian (52) has the parity-time symmetry. Let P and T be the respective parity and (antiunitary)

time-reversal operator such that

P cµ(x)P−1 = cµ(−x) , T cµ(x)T−1 = cµ(x) , P aP−1 = a , T a T−1 = a , (66)

where cµ(x) is the annihilation operator in the real operator. Since cµ,k =
∫

dx√
2π
cµ(x)e−ikx, we have

P cµ,k P
−1 = cµ,−k , T cµ,k T

−1 = cµ,−k , P aP−1 = a , T a T−1 = a . (67)

Let Θ ≡ PT , for the Hamiltonian (52), one can check that [Θ, H] = 0. Note that Θ is antiunitary, applying Θ to the

Heisenberg operator a(t) and cµ,in(t0) gives

Θ a(t) Θ−1 = Θ
(
eiHtae−iHt

)
Θ−1 = e−iHt

(
Θ aΘ−1

)
eiHt = e−iHtaeiHt = a(−t) ,

Θ cµ,k(t0) Θ−1 = Θ
(
eiHt0cµ,ke

−iHt0
)

Θ−1 = e−iHt0
(
Θ cµ,k Θ−1

)
eiHt0 = e−iHt0cµ,ke

iHt0 = cµ,k(−t0) = cµ,k(t1) .

As a result, for the input and output operators (56), we have

Θ cµ,in(t) Θ−1 =

∫
dk√
2π

Θ cµ,k(t0)Θ−1 eik(t−t0) =

∫
dk√
2π

cµ,k(t1) e−ik(−t−t1) = cµ,out(−t) , (68)

which agrees with (22).

B. A.2. Effective Hamiltonian

In this Appendix, we prove that the Green functions in (34) and (35) can be computed using the effective Hamil-

tonian of the cavity

Heff ≡ Hc − iΣ a†a (69)

without involving any waveguide degrees of freedom.



17

We first prove that the propagator of the cavity can be computed using the effective Hamiltonian. That is, when

Hc = H
(0)
c ≡ ω a†a,

G(0)(t′, t) = G̃(0)(t′, t) , (70)

where

G(0)(t′, t) ≡ 〈0|T a(t′)a†(t)|0〉 , (71)

G̃(0)(t′, t) ≡ 〈0|T ã(t′)ã†(t)|0〉 . (72)

a(t) and a†(t) are Heisenberg operators in the input-output formalism (1)-(2). ã(t) and ã†(t) are evolved by the

effective Hamiltonian (69) as

ã(t) ≡ eiHefft a e−iHefft , ã†(t) ≡ eiHefft a† e−iHefft . (73)

With the identity (70), the computation of the propagator is simplified since no operators of waveguide photons are

involved in (72). We only need to solve a system which has a finite, and typically small, number of degrees of freedom.

The proof is as follows. When t′ > t,

∂

∂t′
G(0)(t′, t) = 〈0| da(t′)

dt′
a†(t) |0〉

= −i (ω − iΣ) 〈0|a(t′) a†(t)|0〉+ 〈0|κT cin(t′)a†(t)|0〉 (74)

= −i (ω − iΣ)G(0)(t′, t) , (75)

∂

∂t
G(0)(t′, t) = 〈0| a(t′)

da†(t)

dt
|0〉

= i (ω + iΣ∗ + id†Cκ∗) 〈0|a(t′) a†(t)|0〉+ 〈0|a(t′) c†out(t) Cκ∗|0〉 (76)

= i (ω − iΣ)G(0)(t′, t) . (77)

In (74) and (76), we use the input-output formalism (1)-(2). To obtain (75) and (77), we use the respective quantum

casualties (18) and (85) so that 〈0|cin(t′)a†(t)|0〉 = 〈0|a†(t) cin(t′)|0〉 = 0 and 〈0|a(t′) c†out(t)|0〉 = 〈0|c†out(t) a(t′)|0〉 = 0.

In (77), we also use the constraint of flux conservation (14) to transform Σ∗ to Σ. On the other hand, by (73), one

can compute

∂

∂t′
G̃(0)(t′, t) = 〈0| dã(t′)

dt′
ã†(t) |0〉 = −i 〈0| [ã, Heff](t′) ã†(t) |0〉

= −i (ω − iΣ) 〈0|ã(t′) ã†(t)|0〉 = −i (ω − iΣ) G̃(0)(t′, t) , (78)

∂

∂t
G̃(0)(t′, t) = 〈0|ã(t′)

dã†(t)

dt
|0〉 = −i 〈0| ã(t′) [ã†, Heff](t) |0〉

= i (ω − iΣ) 〈0|ã(t′) ã†(t)|0〉 = i (ω − iΣ) G̃(0)(t′, t) . (79)
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So G(0)(t′, t) and G̃(0)(t′, t) satisfy exactly the same differential equations when t′ > t. They also have the same initial

values at t′ = t. Therefore, by the uniqueness theorem for differential equations, we complete the proof of (70).

Now for a general Hamiltonian Hc = H
(0)
c + V , according to the perturbation theory in quantum field theory, all

Green functions in principle are completely determined by the propagator and the interaction vertices. The vertices

only reply on the form of the interaction term V and is independent of the waveguide photons. As a result, all Green

functions, including higher-order ones, can be computed by the effective Hamiltonian (73).

In Ref.[43, 48], the effective Hamiltonian is obtained in the path integral formalism by integrating out the waveguide

degrees of freedom in the full Hamiltonian. The derivation here only relies on the input-output formalism (1)-(2) and

the resulting quantum causalities (18)-(85) .

C. A.3. A two-mode waveguide coupled to a two-level atom

Following Ref.[30], here we present the input-output formalism for the waveguide QED systems that consist of a

two-level atom coupled to N waveguide channels:

d

dt
σ− = −iΩσ− − Σσ− − σz κT cin (80)

cout(t) = C cin(t) + σ−(t) d . (81)

In the equations above, Ω is the atomic transition frequency. σ+ (σ−) is the atomic raising (lowering) operator. These

operators satisfy the commutation relations [σz, σ±] = ±2σ± and [σ+, σ−] = σz. The total excitation number here

is N = 1
2 (σz + 1) = σ+σ−. With (80), one can show that

d

dt
N = − (Σ + Σ∗) N + σ+ κT cin + c†inκ

∗σ− . (82)

We first sketch the proof that the constraints imposed by flux conservation, quantum causality and time-reversal

symmetry are the same as that in the cavity case. Applying the input-output formalism (81)-(82) to the flux conser-

vation condition (11) gives the same constraint as that in (14). Similarly, we define the (antiunitary) time-reversal

operator Θ as

Θ cin(t) Θ−1 = cout(−t) , Θσ±(t) Θ−1 = σ±(−t) . (83)

Then the invariance of the input-output formalism (80)-(81) under the time-reversal operation (83) gives the same

constraint as that in (25). Only the quantum causality condition requires a slightly different treatment. From the
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input-output formalism (80)-(81), we can prove the following quantum causality condition

[
σ−(t) , c†in(t′)

]
= −d†C [σ−(t) , σ+(t′)] θ(t− t′) , (84)[

σ−(t) , c†out(t
′)
]

= d† [σ−(t) , σ+(t′)] θ(t′ − t) . (85)

With (84) and the input-output formalism (80), we can compute

d

dt
N =

1

2

d

dt
[σ+(t), σ−(t)] =

1

2

[
d

dt
σ+, σ−

]
+

1

2

[
σ+,

d

dt
σ−

]
= − (Σ + Σ∗)

(
N − 1

2

)
+

1

4

(
κT C† d + d†Cκ∗

)
+ σ+ κT cin + c†inκ

∗σ− . (86)

By comparing (82) with (86), we obtain the same constraint as that in (21). Therefore, all the constraints for the

two-level atom are exactly the same as that in the cavity case. As a result, for the system consisting of a two-mode

waveguide coupled to a two-level atom, the parameters in the input-output formalism (80)-(82) have the same form

as described in (43) and (44).

Now we can compute the single photon S matrix Sµp;νk and two-photon S matrix Sµp1,νp2;ρk1,σk2 using the method

presented in [30]. The computations in [30] only relies on the input-output formalism and can be straightforwardly

generalized to the multi-channel case here. Following [30], one can check that the final results of the S matrices are

exactly the same as that in (45) and (46).

Finally, we point out that the input-output formalism for a two-level atom (80)-(81) can also be adopted to develop

an input-output formalism for a free fermion coupled to waveguide channels. By applying the single-site Jordan-

Wigner transformation

σ+ = f† , σ− = f , σz = 2f†f − 1 (87)

to the input-output formalism (80)-(81), we have

d

dt
f = −iΩ f − Σ f − (2f†f − 1)κT cin (88)

cout(t) = C cin(t) + f(t) d , (89)

where f, f† are the fermionic annihilation and creation operators satisfying
{
f, f†

}
= 1. For the single-channel case,

we can check that (88)-(89) agrees with the input-output formalism derived from the Hamiltonian

Hf =

∫
dk k c†kck + Ω f†f +

√
γ

2π

∫
dk
(
f†ck + c†kf

)
.

In sum, we show that the Kerr-nonlinear cavity with infinite Kerr-nonlinearity strength, the two-level atom and the

free fermion have the same S matrix in the few-photon scattering process since they have the same internal energy
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