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We measure a transverse momentum kick in a Sagnac interferometer using weak-value amplifi-
cation with two postselections. The first postselection is controlled by a polarization dependent
phase mismatch between both paths of the interferometer and the second postselection is controlled
by a polarizer at the exit port. By monitoring the darkport of the interferometer, we study the
complementary amplification of the concatenated postselections, where the polarization extinction
ratio is greater than the contrast of the spatial interference. In this case, we find an improvement
in the amplification of the signal of interest by introducing a second postselection to the system.

I. INTRODUCTION

Weak measurements were introduced by Aharonov, Al-
bert and Vaidman [1], and have proven a valuable tool for
observation of quantum phenomena [2–8]. Weak-value
amplification, a metrological technique for parameter es-
timation [9–16], has been shown to saturate the shot-
noise limit [11] by imparting the precision of N photons
into a small subset of postselected photons [17, 18]. The
weak-value amplification technique has also been shown
to exploit the geometric configurations of the experiment
to reduce technical noise [17, 18].

The weak-value amplification protocol starts with a
well defined initial state of a system, |ϕi〉, followed by an

interaction given by Û = exp(−igÂx̂) that couples the

system, Â, to a continuous degree of freedom or a meter,
given be x̂. The interaction strength between the system
and meter is given by parameter g, which we assume
small. The system is then postselected to state |ϕf 〉,
which is near orthogonal to the preselected state |ϕi〉.
The benefits for signal amplification and technical-noise
mitigation require a weak system-meter interaction, and
a strong postselection or data discarding on the meter.
The mean value of the postselected outcomes in the meter
is shifted by an amount proportional to the weak-value
given by

Awv =
〈ϕf | Â |ϕi〉
〈ϕf |ϕi〉

. (1)

Weak-value amplification gives a metrological benefit
based on an amplification of the signal relative to the
technical-noise floor of the experiment [17, 18]. Spatial
interference experiments using a Sagnac interferometer
as in Ref. [10–13, 16] have been limited to postselection
angles of slightly under 5◦, which is equivalent of discard-
ing about 99% of the input photons in the interferometer.
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Others have studied regimes to maximize the amplifica-
tion benefit of the technique by using a full theory with-
out the linear approximation and finding a non-linear
regime for very small postselection angles [19–22]. Here
we explore the complementary amplification by concate-
nating a second postselection to decrease the effective
postselection angle to measure a beam deflection.

In this work, we utilize the which-path information
from a Sagnac interferometer and a polarization depen-
dent phase offset between paths to measure a beam de-
flection. We concatenate two postselections: the first
with spatial interference and the second with polariza-
tion interference. By monitoring the dark port of the
sequence of postselections we record the beam shift pro-
portional to the weak-value. We study the complemen-
tary amplification behavior between the spatial contrast
and the polarization extinction contrast to the measured
weak-value. We evaluate the technical difficulties of an
imperfect interferometer by modeling the output of the
interferometer for the single and concatenated postselec-
tion cases with a background parameter. We optimize
the concatenated postselection and demonstrate a region
of parameter space where the concatenated postselection
provides an enhancement in the signal.

This paper is organized as follows. In Sec. II we start
with the theory for single and concatenated postselection
for weak-value amplification to measure beam deflection
with a model that includes spatial interference imper-
fections. Then in Sec. III we describe the experimental
setup. In Sec. IV, we present the result of the weak-value
techniques. In Sec. V we include a brief description of the
theory of the relative Fisher information from the inter-
ferometer. Lastly, we discuss the results and conclude in
Sec. VI.

II. THEORY

A laser beam with a TEM00 mode and 1/e2 beam ra-
dius 2σ enters a Sagnac interferometer through a piezo-
actuated 50:50 beam splitter (see Fig. 1). The reflected
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FIG. 1. We send anti-diagonal polarized light (Pol 1) through
a Sagnac interferometer. Inside the interferometer are three
wave plates arranged quarter-half-quarter (QHQ) designed to
control the phase for clockwise and counterclockwise prop-
agation (see App. A). The counterclockwise propagating
beam receives a transverse momentum kick k from the piezo-
controlled 50:50 beam splitter. When the beam recombines
it destructively interferes at the dark port. The beam is then
postselected a second time with polarizer 2 (Pol 2). The half-
wave plate after the first polarizer (Pol 1) is used for indepen-
dent calibration of the horizontal and vertical polarization
components.

beam receives a transverse momentum kick k upon both
entering and exiting the interferometer. We monitor the
spatial beam shift of the beam exiting the dark port. The
quarter-half-quarter (QHQ) wave plates combination [23]
gives a Pancharatnam-Berry phase [24] of ±φ/2 to each
counter-propagating (|�〉 , |	〉) beam (details are shown
in App. A). The interaction with the meter-system is

given by exp(−ikÂx̂), where the ancillary system opera-

tor is Â = |�〉 〈�| − |	〉 〈	|.
For the remainder of the paper, we will describe the

experiment in the classical matrix formalism [25]. For in-
put anti-diagonal polarized light the output electric field
takes the form

Eout(x;β, α) =
E0

2
√

2
e−x

2/4σ2

(
β eiα − e−i2kx−iφ
β eiα − e−i2kx+iφ

)
, (2)

in the horizontal, H = (1, 0)T , and vertical, V = (0, 1)T ,
polarization basis. We introduce a spatial interference
background using the relative amplitude β and the rela-
tive phase α. The constant β describes the relative trans-
mission amplitude through both arms in the interferom-
eter, which limits the spatial contrast from reaching the
perfect zero output from the dark port and the perfect
input power in the bright port. The introduction of the
phase α allows us to make a correct estimate of φ, which
accounts for the effective amplification in the parameter
k. The free parameters β and α in the theory account for
background light due to imperfect alignment, imperfec-
tions of the optical elements in the experimental setup,
and systematic errors in the estimates of k. These pa-
rameters are expected to take values β = 1 and α = 0

in a perfect interferometer. The difference in sign for
φ in Eq. (2) for H and V polarization comes from the
asymmetric response of the QHQ combination inside the
interferometer (see App. A).

A. Theory: Single Postselection

First we assume the ideal case of β = 1 and α = 0. The
polarization degree of freedom will be used for the second
postselection, so we assume here that the input light is ei-
ther horizontally or vertically polarized. Using the mod-
ulus square of one component of the electric field from
Eq. (2) we arrive with the intensity profile. With the in-
tensity profile we assume the momentum kick is small for
the weak interaction approximation, k2σ2 cot2(φ/2)� 1.
We expand the trigonometric functions up to first order
in k and re-exponentiate the quantity. Then we combine
the two exponentials by completing the square to arrive
at the dark port intensity profile,

Is(x) = I0 sin2

(
φ

2

)
exp

[
− 1

2σ2
(x− δxs)2

]
. (3)

The subscript s of Eq. (3) refers to the single postselec-
tion where δxs = ±2kσ2 cot(φ/2) is the beam shift from
a horizontally or vertically polarized input light. This
is the standard result from the beam deflection experi-
ment [10], with a weak-value of Awv = ±i cot(φ/2) (see
App. B).

For realistic experimental implementations when φ is
small we assume the case of β < 1 and α 6= 0 in Eq. (2).
Integrating the square modulus of the electric field of ei-
ther |H〉 or |V 〉 of Eq. (2) yields the normalization factor

Ns = β sin2

(
α∓ φ

2

)
+

(
1− β

2

)2

. (4)

The mean beam shift on the detector is then given by

〈x〉s =
1

Ns

∫
x|EoutH,V (x;β, α)|2dx

=
βkσ2 sin(α∓ φ)

Ns
.

(5)

Note that the mean shift in Eq. (5) has two solutions that
depend on the different components of Eq. (2).

B. Theory: Concatenated Postselection

The second part of the theory is to take advantage of
the polarization sensitive phase φ/2 by inputting anti-
diagonal polarized light as in Eq. (2). For the ideal case
of β = 1 and α = 0, the orthogonal components of polar-
ization will spatially separate at the dark port by 2|δxs|
since the horizontal and vertical components have op-
posite weak-values (see App. B). The electric field exits
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the Sagnac interferometer and passes through a polarizer
with a Jones matrix given by

P(θ) =
1

2

(
1 + sin(2θ) cos(2θ)

cos(2θ) 1− sin(2θ)

)
. (6)

The polarizer angle θ is aligned to be nearly orthogonal to
the polarization of the exit beam from the interferometer.

We assume the momentum kick is small for the weak
interaction approximation, k2σ2 cot2(φ/2) cot2(θ) � 1.
We expand the trigonometric functions up to first order
in k and re-exponentiate the result. We then combine
the exponentials by completing the square to arrive at
the dark port intensity profile,

Ic(x) = I0 sin2

(
φ

2

)
sin2(θ) exp

[
− (x− δxc)2

2σ2

]
. (7)

The beam shift after the concatenated postselection is
given by δxc = 2kσ2 cot(φ/2) cot(θ) = δxs cot θ. The
subscript c refers to the concatenated postselected case.

We now assume the realistic case where β < 1 and
α 6= 0. After the polarizer we have a new normalization
term

Nc =
1 + β2

8
[1 + cos(2θ) cosφ]

+
β

4
[sinα sinφ sin(2θ)− cosα(cos(2θ) + cosφ)] ,(8)

and a new mean shift of the beam on the detector

〈x〉c =
1

Nc

∫
x|P(θ)Eout(x;β, α)|2dx

=
βkσ2

2Nc
[sinα(cos(2θ) + cosφ) + cosα sin(2θ) sinφ] .

(9)

Note that by setting β = 1 and α = 0 we recover the
expressions Nc → sin2(φ/2) sin2(θ) and 〈x〉c → δxc in
Equations (8) and (9).

III. EXPERIMENT

The experimental setup shown in Fig. 1 starts with a
grating feedback laser with a 780 nm center wavelength.
Two objectives and a 50 µm pinhole are used to create a
collimated Gaussian beam with radius 2σ, and a polar-
izer (Pol 1) selects the anti-diagonal linear polarization
for the experiment. The beam enters the Sagnac interfer-
ometer through a 50:50 beam splitter on a piezo-actuated
mount that provides a transverse momentum kick k at
each reflection. The interferometer has three wave plates,
QHQ, that give a phase difference between paths. The
quarter-wave-plates are set to +45◦ and −45◦. The half-
wave plate sets the added phase of ±φ/2 to each path (see
App. A). When the beams recombine, they destructively
interfere at the dark port. We monitor the beam shift of
the light exiting the dark port with a split detector. In

the second part of the experiment, we add a polarizer be-
fore the detector for the concatenated postselection (Pol
2 in Fig. 1).

We use a beam radius of 2σ = 1100 µm with a po-
larization extinction ratio of 25000:1. The polarization
quality of the interferometer is limited to 5000:1 by the
wave plate combination inside the interferometer (QHQ
in Fig. 1). The traverse momentum kick k is driven
by a piezo stack calibrated separately for 100 Hz with
a response of α ≈ 63.9 nm/V. For all the measure-
ments, we apply a 100 mV sinusoidal wave to the piezo
stack which corresponds to a momentum kick k = 2.74
m−1. The first postselection angle φ/2 is determined
by the ratio of the measured power at the dark port,
Pφ/2, to the power of the bright port, Pbright,1, given by

Pφ/2 = sin2(φ/2)Pbright,1. The second interference post-
selection angle θ is determined by the ratio of the power
after the output polarizer dark port, Pθ, (Pol 2 in Fig. 1)
to the power of the polarization interference bright port,
Pbright,2, as in Pθ = sin2(θ)Pbright,2.

IV. RESULTS

A. Single Postselection

In Fig. 2, we plot (red circles for single postselection)
the absolute mean value of the beam shift versus the
generalized postselection angle Θ. The generalized post-
selection angle for the single postselection case is given
by Θ = φ/2. The data consists of both horizontal and
vertical polarized input light with dark port contrast of
1400:1. From Eq. (4), the dark port contrast ratio is given
by (1− β)2/(1 + β)2, so a value of β ≈ 0.95 is expected.
However, we numerically fit the data to Eq. (5) and label
β and α as free parameters. The fit to the single posts-
election data is labeled as Fit: SPS (solid teal line) and
takes on the positive values of δxs as in the horizontal
polarized case of Eq. (5). From Fit: SPS we extract the
optimal postselection angle Θopt, where the weak-value
amplification shows the largest shift before the signal is
overcome by the background for small postselection an-
gles. From Fit: SPS we observe that the largest signal
is found with a postselection angle of φ/2 = 2.6◦. We
also see that the relative transmission amplitude param-
eter is given by β = 0.9543(8). The data differs slightly
from the theory of Eq. (3) (dotted blue line) because of
a systematic error in calibration of the piezo-actuated
beam splitter. This theory of Eq. (3) is the beam shift
δxs = 2kσ2 cot(φ/2) without the spatial interference im-
perfection consideration.

We note that as the alignment improved, the quality
of the dark port also improved and the optimal angle
for greatest amplification decreased. The results from
the single postselection case of Fig. (2) show that the
relative amplitude transmission β < 1 limits the weak-
value amplification from the theoretical upper bound [20,
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FIG. 2. The average beam shift as a function of postselection
angle Θ. The variable Θ is a generalized postselection angle;
for the single postselection case, Θ = φ/2 (red circles), but for
the concatenated postselection case it is the product of both
postselection angles Θ = θφ/2 (green squares). The label
PS refers to postselection. The theory (dotted blue line) is
labeled as δxs = 4kσ2/Θ as in the mean beam shift of Eq. (3)
with generalized postselection angle Θ. Fit: SPS (solid teal
line) is the fit of the single postselection data, and Fit: CPS
(solid purple line) is the fit to the concatenated postselection
data as in Eqs. (5) and (9), respectively. We present here the
concatenated data set from row three in Table I.

26] and limits the benefit over technical noise [17, 18].

B. Complementary Behavior Between
Postselections

We note the complementary behavior of the two de-
grees of freedom used for postselection, which-path and
polarization. For example, if one postselects the spatial
interference to resolve maximum amplification of the sin-
gle postselection (the peak of Single PS in Fig. 2), then
there cannot be any polarization improvement because
we observe a extinction contrast close to 10:1 for polar-
ization. To understand this limitation we first note that if
the first postselection output power is Pφ/2, the contrast
ratio is Pφ/2:Pin and our case of maximum amplification
in the Single PS gives Pφ/2:Pin ≈ 500:1. Then we ob-
serve the second postselection to have a contrast at best
of about 10:1 for a total effective contrast of 5000:1. The
effective contrast of both postselections cannot exceed
the contrast of either the spatial or polarization extinc-
tion contrast. In this particular scenario, we are not in
the small angle (because of 10:1 in polarization extinction
contrast) regime so the configuration is suboptimal. We
note with a maximum polarization extinction contrast
of 10:1 we can expect the location of the peak slightly
close to θ ≈ 0.5 rad ≈ 29◦. This angle will not provide
an enhanced beam shift of δxc, as the angle is outside
the small angle approximation and will not follow the
optimal theory of Eq. (7). For our experiment, the spa-
tial interference contrast is 1400:1 and the polarization
contrast is 5000:1. Therefore, we present the following
results of the optimized case in the next section.

C. Concatenated Postselection

When the single postselected beam’s shift is compared
to the concatenated case, we see from Eq. (7) that the
beam shift is amplified by cot(θ) at the cost of a fraction
cos2(θ) of less measurements.

We point out that the theory of Eq. (7) does not as-
sume any limitations to the contrast for either spatial
or polarization interference. In the case of infinite con-
trast there is no benefit in adding a second postselec-
tion. Since this is an idealization, therefore we explore
the case of having one degree of freedom with a higher
contrast than the other. In this experiment, the spatial
interference contrast is 1400:1 and polarization contrast
is 5000:1, thus there exists an optimal configuration for
the complementary amplification.

Now we focus on the concatenated postselection data
(green squares) in Fig. 2. We plot the absolute value of
the mean beam shift, | 〈x〉 |, from Eq. (7) as a function
of the generalized postselection angle Θ, which takes the
form Θ = θφ/2 for the concatenated postselection. The
product of postselection angles is a valid approximation
for the small angle regime. The plot shows the benefit
of introducing the polarization degree of freedom to the
experiment which allows us to achieve smaller effective
postselection angles Θ and larger shifts 〈x〉. From Fit:
CPS (solid purple line) from Eq. (9), the optimal postse-
lection angle for the concatenated postselection is about
1.6◦. From the fits shown in Fig. 2 the improved beam
shift with the concatenated postselection has increased
by a factor of approximately 50.64/35.425 ∼ 1.4 over the
single postselection beam shift. The fit of the concate-
nated weak-value case gives a background interference
parameter β = 0.968(1) [27].

Now we compare the spatial interference background
parameter β of the single and concatenated cases. The
fitting of Eq. (5) and Eq. (9) to the data reveals β ≈
0.9543(8) and β ≈ 0.968(1), respectively. The error is
from the fit of the data with 95% confidence. By intro-
ducing the second postselection the parameter β is in-
creased, showing the advantage of the concatenation for
interference improvement. We note that such an increase
is present even after the introduction of a non-ideal op-
tical element (Pol 2 in Fig. 1) which could in principle
reduce the spatial interference.

V. FISHER INFORMATION

In this section, we theoretically compare the efficiency
of the concatenated weak-value technique in the ideal
noiseless case. We use the Fisher information formalism
of the parameter of interest k given by

I(k) =

∫
dxP (x; k)

[
∂

∂k
lnP (x; k)

]2
, (10)
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TABLE I. Results of concatenated postselection for weak-
value amplification. The results of the last three columns
come from numerically fitting the data where the nonlinear
fit is with a 95% confidence and a goodness measure r2 > 0.86.
The first column is the contrast of the first postselection. The
second column is the first postselection angle, φ/2. Θopt. from
the third column is the product θφ/2 with highest signal from
the fit. The fourth column is the relative transmission am-
plitude parameter β from the fit. The quantity Ic(k)frac of
column five is the fraction of Fisher information with respect
to the total Fisher information considering both bright and
dark ports of the first postselection. For column five, we con-
sider Eq. (13b) for rows two through five. The first row in
column five has Is(k)frac ≈ 1 that corresponds to the frac-
tion Fisher information of one postselection as in Eq. (13a).
The proximity to one means that there is no loss of Fisher
information when monitoring the dark port. This is not to be
confused with shot-noise limited measurements because this
is fractional Fisher information.

Pbright,1:Pφ/2 φ/2 Θopt. β Is,c(k)frac

– – 2.66◦ 0.9543(8) ≈ 1.0

177 : 1 4.33◦ 2.0◦ 0.962(1) 0.79

106 : 1 5.56◦ 1.6◦ 0.968(1) 0.91

53.2 : 1 7.88◦ 1.6◦ 0.965(1) 0.94

26.6 : 1 11.2◦ 2.0◦ 0.964(1) 0.93

where P (x; k) is the probability distribution of the pho-
tons arriving on the detector.

We consider the probability function of the optimized
concatenated weak-value technique

Pc(x; k) =

Nc∏
i=1

1√
2πσ2

exp

[
− (xi − δxc)2

2σ2

]
, (11)

where δxc = 2kσ2 cot2(φ/2) cot2 θ as in Eq. (7) is the
complementary amplification of the concatenated posts-
election. The probability function of the concatenated
case has Nc independent measurements which is less
than the total number of possible measurements that are
thrown away by the bright port.

We also study the amount of Fisher information that is
collected out of the dark port of each technique. We note
the total available Fisher information is the sum of the
Fisher information from the dark port (D) and the bright
port (B) of the single postselection case, Is,D + Is,B =
4Nσ2. The Fisher information from the dark port of the
single postselection and the concatenated postselection is
written as

Is,D(k) = 4Nσ2 cos2(φ/2), (12a)

and

Ic,D(k) = 4Nσ2 cos2(φ/2) cos2(θ), (12b)

respectively. The subscripts s and c refer to the single
and concatenated cases respectively. The total number
of possible measurements is N , however the single and

concatenated techniques are limited to N sin2(φ/2) and
N sin2(φ/2) sin2 θ measurements respectively. The frac-
tional Fisher information for the single postselection and
concatenated case is given by

Is(k)frac =
Is,D

Is,D + Is,B
= cos2(φ/2), (13a)

and

Ic(k)frac =
Ic,D

Is,D + Is,B
= cos2(φ/2) cos2(θ), (13b)

respectively.

A. Results of the Comparison

In Table I, we present the data from the single and the
concatenated postselections. The first column is the out-
put power of the spatial interference contrast. The first
row is the single postselected case where all postselected
values are measured. The single postselected case has no
first or second column because it only uses spatial inter-
ference, where Θ = φ/2. The concatenated results are
in the bottom four rows. The second column is the first
postselection angle, φ/2. The third column is the gen-
eralized postselection angle, Θopt., of the largest beam
shift, δxc, from the fits. The fourth column is the spatial
interference background parameter β from the fits. The
fifth column is the fractional Fisher information, I(k)frac
with respect to the total Fisher information of the sys-
tem. For the first row of column five we consider the
Fisher information as in Eq. (13a) and for the bottom
four rows of column five we consider Eq. (13b).

From Table I, the complementary amplification of the
concatenated postselection is presented. We plot in Fig. 2
the optimized experimental run, given in row three of Ta-
ble I. This optimized case shows not only the greatest
amplification for the smallest postselection angle but also
the lowest amount of spatial interference background,
given by large β in column four.

The first row of Table I has fractional Fisher infor-
mation given by Eq. (13a). The proximity to 1 of the
fractional Fisher information in the first row means there
is no loss in Fisher information due to only monitoring
the dark port. This is not to be confused with a shot-
noise limited measurement because this is a fractional
description of the Fisher information meant to describe
efficiency of the postselected events.

Looking at the third and fourth rows of Table I, the
largest beam shift is found with a postselection angle of
Θopt = 1.6◦. The single postselected angle Θopt = 2.66◦

has therefore improved with the optimized concatenated
case (rows 3 and 4). We note that there exists an op-
timized case because the polarization degree of freedom
has a greater extinction efficiency than the spatial degree
of freedom in this experiment. The concatenated post-
selection could not be optimized any further because of
limitations on our polarization extinction ratio of 5000:1.
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An example of a non-optimized case for the second
postselection is row 2 in Table I, where the angle for the
first postselection φ/2 is small (4.33◦). Such a selection
for φ forces a large selection of θ ∼ 25.8◦ which does
not allow for greater peak amplification and decreases
the idealized Fisher information by 21%. The loss of the
available Fisher information is less than 9% (5% loss in
sensitivity) for the optimized region. The optimized case
can only exist when one interference contrast is higher
than the other. Polarization is an example of a large
extinction efficiency where polarizers can have extinction
ratios of 106:1. The introduction of a non-ideal optical el-
ement (second polarizer in Fig. 1) reduces the maximum
amount of photons reaching the detector. For a maxi-
mum transmission of (typical) 85% in the polarizer the
shot-noise is increased by 8.5% with respect to the single
postselection scenario. This disadvantage is overshad-
owed by the amplification of 40% obtained in the shift
due to the second postselection in our technical-limited
setup.

In this experiment, we postselect with spatial interfer-
ence to produce two opposite weak-values (see App. B)
each of which carries half of the available Fisher informa-
tion. Then we use the higher extinction contrast degree of
freedom of polarization to postselect a second time to ex-
plore the complementary amplification between the two
postselections. We find an optimized region of parame-
ter space such that the complementary amplification is
realized, and provides some benefit with a smaller effec-
tive postselection angle Θ and a decrease of the spatial
interference imperfection (increase of parameter β).

It is worth pointing out the optics used in our ex-
periment limited the polarization extinction contrast to
5000:1. This is consistent with our measurements of the
concatenated postselection in Table I. We note that with
higher performing optics we will amplify the signal and
circumvent spatial interference background. We also note
this work is not to be confused with Ref. [28], where they
propose an entangled ancillary system to improve the
precision of a measurement. In our experiment, the best
precision possible is bounded by the shot-noise limit.

VI. CONCLUSION

In this paper, we have explored a complementary am-
plification of the concatenated post-selection for weak-

values amplification to measure a beam deflection. We
used a Sagnac interferometer with spatial interference
to measure a transverse beam deflection and then in-
troduced a second postselection to the system with po-
larization. The concatenated postselection angle, θ, and
the first spatial interference postselection angle, φ/2, are
complementary bounded by the highest interference con-
trast. Only when one of the two interference contrasts is
larger than the other can there be an optimized regime
in parameter space to observer the complementary am-
plification.

In general, it is better to do one postselection, but in
the case of low contrast spatial interference we can in-
corporate a higher contrast degree of freedom such as
polarization for improvement. Thus from the optimized
case the complementary amplification of concatenating
postselections can lead to a more idealized interferom-
eter according to a greater value of beta. With higher
quality optics we could have greater discrepancy between
spatial and polarization extinction ratios and further in-
crease postselection contrast in an optimized case. This
condition would lead to greater reduction in technical
noise [17, 18] which would help reach the shot-noise limit
with greater ease. It is worth noting that a concatenated
postselection for weak-values is beneficial only when the
additional degree of freedom has a higher interference
contrast than the first interference.

A new weak-values technique without postselection has
recently been developed where the undesirable decay of
signal for small angles of Fig. 2 is not observed [29–31].
This new technique produces an amplification to the sig-
nal of interest without the cost of reduced photon counts.
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Appendix A: Quarter-Half-Quarter: Pancharatnam-Berry phase

Inside the Sagnac interferometer the polarization dependent phase is controlled by the wave plate combination of
quarter, half, and quarter wave plates. The quarter wave plates are set to ±45◦ denoted as the Q̂ matrices and the
half wave plate is denoted by the Ĥ matrix. We denote the product of the three wave plate combination as the Ĉ
matrix. We will represent the wave plate matrices in the Jones matrix formalism in the polarization basis of H and
V .
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Ĉ|�〉,|	〉

(
±φ

4

)
= Q̂ (45◦) Ĥ

(
±φ

4

)
Q̂ (−45◦)

=
1

2

(
1 −i
−i 1

)(
cos(φ/2) ± sin(φ/2)

± sin(φ/2) − cos(φ/2)

)(
1 i

i 1

)

=

(
0 −e∓iφ/2

e±iφ/2 0

) (A1)

We note that this configuration of wave plates gives a geometric phase that depends on the polarization of the beam.
We note the symmetry in Ĉ(±φ/4) is broken by the beam propagation direction either clockwise (|�〉) with +φ/4

or counter clockwise (|	〉) with −φ/4 as the half-wave plate angle. The wave plate combination Ĉ(±φ/4) changes

the state as follows: Ĉ(φ/4) |�〉 ⊗ |H〉 = eiφ/2 |�〉 ⊗ |V 〉, Ĉ(−φ/4) |	〉 ⊗ |H〉 = e−iφ/2 |	〉 ⊗ |V 〉, Ĉ(φ/4) |�〉 ⊗ |V 〉 =

−e−iφ/2 |�〉 ⊗ |H〉 and Ĉ(−φ/4) |	〉 ⊗ |V 〉 = −eiφ/2 |	〉 ⊗ |H〉.

Appendix B: Weak-value Quantum Description

The preparation of state for this experiment deals with joint space between the which-path and polarization degree
of freedom. The input state is first linearly polarized to the anti-diagonal state 1√

2
(|H〉 − |V 〉). Then the state enters

the beam splitter of the Sagnac interferometer. We define the state after the beam splitter as

|ξ〉 =
1

2
(|�〉+ i |	〉)⊗ (|H〉 − |V 〉)). (B1)

To write the input state before the interaction we include the polarization dependent phase φ/2 described in Ap-
pendix A.

|ϕ〉1 = Ĉ (±φ/4) |ξ〉

=
1

2

(
(|�〉 eiφ/2 + i |	〉 e−iφ/2)⊗ |V 〉+ (|�〉 e−iφ/2 + i |	〉 eiφ/2)⊗ |H〉

)
.

(B2)

The interferometer has an interaction given by Û = exp(ikÂx̂) such that the transverse momentum k is coupled

by the ancillary operator Â to the meter x̂. The ancillary system operator Â is given in the which-path basis by
Â = |�〉 〈�| − |	〉 〈	|. The parameter of interest is the transverse momentum kick k that the beam of light receives
on the reflected port of the beam splitter. Then the first postselection is conducted with spatial interference. The
postselection is nearly orthogonal to the input state and is given by

|ϕ〉2 =
1√
2

(|�〉 − i |	〉). (B3)

We assume the interaction is weak such that we can expand to O(k1) and can define a weak-value for both horizontal
and vertical polarizations. The postselection is only for the spatial degree of freedom so we have two weak-values
given by

AHwv =
〈H| 〈ϕ2|Â|ϕ1〉
〈H| 〈ϕ2|ϕ1〉

= i cot(φ/2), (B4a)

and

AVwv =
〈V | 〈ϕ2|Â|ϕ1〉
〈V | 〈ϕ2|ϕ1〉

= −i cot(φ/2). (B4b)

We have two weak-values of opposite signs, thus the separation between the two polarization components becomes
2|δxs| = 4|kσ2 cot(φ/2)| and the signal on the detector is null. Then we introduce a second postselection in the
polarization basis.
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The second postselection is through polarization interference, and the postselected state is given by

|ϕ〉3 =
1√
2

[(sin θ − cos θ) |H〉 − (sin θ + cos θ) |V 〉] . (B5)

The angle θ is a small angle that determines the orthogonality between the pre- and postselections in the polarization
basis. With the concatenated postselection we have a total effective weak-value given by

ACwv =
〈ϕ3| 〈ϕ2|Â|ϕ1〉
〈ϕ3| 〈ϕ2|ϕ1〉

= i cot(φ/2) cot(θ). (B6)

With this concatenated configuration we amplify the visibility of the weak-value and improve the contrast of the
spatial interference by adding the polarization degree of freedom.


