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Abstract

We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization

of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick’s law

and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless

Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise

when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona.

We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find

that the observed spin relaxation rate in the high temperature limit [Sommer et al., Nature 472,

201 (2011)] is consistent with the diffusion constant predicted by kinetic theory.
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I. INTRODUCTION

Diffusion plays an important role in many areas of physics, and the problem of finding

numerical and analytical solutions to the diffusion equation is well understood [1]. However,

many interesting applications of the diffusion equation involve problems in which the mean

free path varies significantly, so that the diffusion approximation breaks down in the dilute,

weakly collisional, regime. In this case a naive treatment of the diffusion equation will lead to

unphysical results. In a dilute gas the diffusion coefficient scales inversely with the density,

and the diffusion current can become unphysically large. This problem can be dealt with in

a phenomenological way by using flux limiters or boundary conditions. However, given that

the dilute regime is physically well understood, it should be possible to derive quantitatively

accurate schemes that interpolate between diffusion and ballistic motion.

In this work we propose a generalization of the diffusion equations that correctly extrap-

olates to the ballistic limit. The method is based on moments of the Boltzmann equation,

and bears some resemblance to moment methods employed for radiation hydrodynamics in

astrophysics [2, 3]. The method was inspired by recent work on anisotropic fluid dynamics,

which has been used to implement the correct ballistic limit of the Navier-Stokes equation

in relativistic and non-relativistic fluid dynamics [4–7] (see [8] for a different approach to

this problem, based on the lattice Boltzmann method).

The work was motivated by attempts to extract the spin diffusion constant of ultracold

atomic gases from experiments with optically trapped atoms [9–11], see also [12–15]. A

particularly interesting system is the two-component unitary Fermi gas. In this case the

two-body scattering length is infinite, and the diffusion constant is expected to enter the

quantum regime D ∼ h̄/m, where m is the mass of the particles [16]. The determination of

the spin diffusion constant from experiment is in principle straightforward. The experiment

involves preparing a 50-50 mixture of spin up and down particles. The two spin components

are spatially separated and then released. The early time dynamics is typically complicated,

but at late times exponential relaxation to a locally balanced mixture is observed. The

diffusion constant depends on the local density n and temperature T , but this dependence

can be unfolded by performing experiments at different temperatures, and for different

numbers of particles. In the unitary Fermi gas the situation is further simplified by scale

invariance, which implies that D = h̄
m
f(mTn−2/3) where f(x) is a function of a single
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variable.

The tool for extracting the diffusion constant is the diffusion equation. We have to con-

struct solutions of the diffusion equation in a given trap geometry and adjust the diffusion

constant in order to achieve agreement with the observed spin relaxation times. The diffi-

culty, as pointed out in the present context by Bruun and Pethick [17], is that the diffusion

approximation breaks down in the dilute part of the cloud. If this issue is ignored, observed

spin relaxation times disagree with theoretical expectations by more than an order of mag-

nitude. Bruun and Pethick proposed to address this issue by imposing a transverse cutoff

on the diffusion equation in an elongated trap. The cutoff radius is determined by a simple

mean free path estimate, or fitted to experiment. A similar procedure for estimating shear

viscosity was used in [18].

In the present work we propose to improve on this procedure by deriving a generalization

of the diffusion equation which we call “spin hydrodynamics”. Spin hydrodynamics describes

the transition from diffusive to ballistic behavior dynamically, based on a relaxation time

equation. The paper is structured as follows. In Sect. II we review the derivation of Fick’s

law from kinetic theory, and in Sect. III we discuss the behavior of variational and numeric

solutions of the diffusion equation in a harmonically trapped gas. The equations of spin

fluid dynamics are derived in Sect. IV, and the diffusive and ballistic limits are studied in

Sect. V. A numerical method for implementing spin hydrodynamics is described in Sect. VI.

Numerical tests are presented in Sect. VII, and numerical results in a trap geometry are

given in Sect. VIII. We provide an outlook in Sect. IX.

II. KINETIC THEORY AND THE DIFFUSION EQUATION

In this section we review the derivation of the spin diffusion equation from kinetic theory

in a two-component Fermi gas. Consider the Boltzmann equation

(
∂0 + ~v · ~∇x + ~F · ~∇p

)
fpσ(x, t) = C[fpσ] , (1)

where fpσ(x, t) is the phase space density of particles with spin σ =↑↓, ~v is the velocity of

the particles, ~F is a force, and C[fpσ] is the collision term. For quasi-particles with energy

Ep we have

~v = ~∇pEp , ~F = −~∇xEp . (2)
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We will focus on the case Ep = εp + V (x), where εp is solely a function of momentum,

and V (x) is an external spin-independent potential. We are interested in the spin current

~M = ~↑ − ~↓ generated in response to a magnetization gradient ~∇M , where M = n↑ − n↓.

Here, the spin densities and currents are given by

nσ(x, t) =
∫
dΓ fpσ(x, t) , ~σ(x, t) =

∫
dΓ~v fpσ(x, t) , (3)

where dΓ = d3p/(2π)3. If the collision term conserves spin then the Boltzmann equation

implies

∂0M + ~∇ · ~M = 0 . (4)

We will focus on near-equilibrium distributions of the form

fpσ(x, t) = f 0
pσ(x, t)

(
1 +

χpσ(x, t)

T

)
, (5)

f 0
pσ(x, t) = exp

(
− 1

T (x, t)
[εp + V (x)− µσ(x, t)]

)
. (6)

For simplicity we make the relaxation time (Bhatnagar-Gross-Krook, BGK) approximation

to the collision term

C[fpσ] = −
f 0
pσχpσ

Tτ
, (7)

where τ is a collision time. It is straightforward to solve the Boltzmann equation at leading

order in τ and in gradients of the thermodynamic variables. We find

χσp = −τ~v · ~∇µσ (8)

and

~M = −Dµ
~∇δµ , Dµ =

τ

3T

∫
dΓ v2f 0

p , (9)

where δµ = µ↑ − µ↓. For εp = p2/(2m) we get Dµ = (τn)/(2m). Finally, we obtain the

standard form of Fick’s law by changing variables from δµ to M ,

~M = −D
[
~∇M − kn~∇n

]
, D = χ−1

M Dµ , (10)

where χM = (∂M)/(∂δµ) and kn = χn/χM with χn = (∂n)/(∂δµ). For a non-interacting gas

χM = n/(2T ), kn = M/n and D = (τT )/m. Note that D has units h̄/m, and the quantum

limit corresponds to τ = h̄/T . In the following we will set h̄ = kB = 1. For a given collision

term we can express the collision time τ in terms of the scattering parameters. In the dilute
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Fermi gas at unitarity we have σ = 4π/k2 where k is the relative momentum of the spin

up and down particles. Solving the Boltzmann equation at leading order in gradients gives

[9, 16]

D =
9π3/2

32
√

2m

(
T

TF

)3/2

, (11)

where TF = k2
F/(2m) is the Fermi temperature, and kF = (3π2n)1/3 is the Fermi momentum.

The result in equ. (11) was obtained at leading order in an expansion of χσp in Laguerre

polynomials. The next order correction has not been computed, but the corresponding

approximation is known to be accurate to better than 2% for other transport coefficients,

such as the shear viscosity. The most important feature of equ. (11) is that D ∼ 1/n, which

is a general result that follows from kinetic theory in the dilute limit. More detailed studies

of spin diffusion were performed by Enss and collaborators [19–22].

III. DIFFUSION IN THE HIGH AND LOW TEMPERATURE LIMITS

Solutions to the diffusion equation is a trapped atomic system were studied by Bruun

and Pethick [17]. Here we will briefly review their study, and generalize the result to low

temperature gases. We consider the diffusion equation, equ. (4) and (10). We will assume

kn = M/n, so that the diffusion equation takes a simple form when written in terms of the

polarization P = M/n. We find

∂0P −
1

n
~∇
[
nD ~∇P

]
= 0 . (12)

We are interested in solutions of the form P (x, t) = e−ΓitPi(x). In the asymptotic limit the

solution is dominated by the lowest mode Γ ≡ Γ0. This equation further simplifies in the

high temperature limit where nD = const . In that case the diffusion equation is

∂0P −
n(0)D(0)

n
∇2P = 0 , (13)

where n(0) and D(0) are the density and diffusion constant at the trap center. Bruun and

Pethick observed that this equation can be solved using variational methods, in analogy to

the Schrödinger equation. The variational bound on Γ is

Γ ≤ n(0)D(0)

∫
d3x [~∇Pv(x)]2∫
d3xn(x)Pv(x)2

, (14)
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where Pv(x) is a variational function. Consider a dilute Fermi gas in a harmonic trapping

potential V (x) = 1
2
mω2

i x
2
i . In that case n(x) = n(0) exp(−V (x)/T ). We will focus on axially

symmetric potentials ωx = ωy ≡ ω⊥ and ωz = λω⊥. On dimensional grounds we have

Γ =
D(0)

l2z
Γred(λ) , (15)

where l2z = 2T/(mω2
z) is the square of the oscillator length in the z-direction, and Γred is

a dimensionless damping constant. A variational ansatz with the correct symmetry and

asymptotic behavior is

Pv(x) =
z

1 + R̃3
, R̃ =

(
x2 + y2

d2
ρ

+
z2

d2
z

)1/2

, (16)

where dρ and dz are variational parameters. Using this ansatz we find Γred(λ= 0) = 12.1,

Γred(λ= 0.4) = 29.2 and Γred(λ → 0) = λ−2/ log(0.13λ−2). The limit λ → 0 can be derived

rigorously using a WKB approximation.

The experimental work reports the spin drag coefficient Γsd = ω2
z/Γ in units of the Fermi

Energy EF (0). Note that EF (0) refers to the local Fermi energy at the trap center. The

result is based on the observed decay rate of the spin dipole moment. In the high temperature

limit Sommer et al. find Γsd = 0.16EF (0)(TF/T )1/2 [9]. The experimental paper does not

provide the value of λ, but states that in the regime that was investigated the spin drag

Γsd/EF (0) is independent of λ. Using equ. (11) and equ. (15) we obtain the theoretical

prediction

Γsd =
1.81EF (0)

Γ̄(λ)

(
TF
T

)1/2

. (17)

For a strongly deformed cloud Γred ∼> Γred(0.1) ' 200, which differs from the experimental

result Γred ' 11.3 by more than an order of magnitude. Bruun and Pethick argued that

the discrepancy is related to the treatment of the dilute part of the cloud, and suggested

imposing a transverse cutoff r0 in equ. (14). The result is very sensitive to the precise value

of r0, but the experimental result can be understood for a reasonable value r0 = 2.1l⊥, where

l⊥ is the transverse oscillator length.

For comparison we have studied diffusion in a low temperature gas. Here, we assume

that the low temperature limit corresponds to D = D(0), which means that the diffusion

constant is only a function of temperature and not of density. This is a slight idealization,

because in a degenerate Fermi gas the diffusion constant is expected to exhibit the Landau
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Fermi liquid behavior mD ∼ (TF/T )2 [16]. Combined with equ. (11) this result implies

that mD has a minimum as a function of T/TF , and that near the minimum there is a

regime in which the diffusion constant is approximately density independent. In this limit

the diffusion equation is

∂0P −
D(0)

n
~∇
[
n~∇P

]
= 0 . (18)

The variational principle gives

Γ ≤ D(0)

∫
d3xn(x)[~∇Pv(x)]2∫
d3xn(x)Pv(x)2

. (19)

This equation is minimized by Γred = 2 and Pv(x) ∼ z, independent of λ. The result that

Γred is approximately λ-independent is consistent with experiment, but the value of Γred is

not. Whereas the value Γred in the dilute limit is too large, the value in the dense limit is

too small. This suggest that the correct spin current profile must be intermediate between

the structure in the high and low temperature limits.

In order to verify the variational estimates we have numerically solved the diffusion

equation in the high and low temperature limits. In the high temperature limit we assume

that D = D(0)n(0)/n. The diffusion equation in cylindrical coordinates is

∂t̄P − e−V̄
[

1

ρ̄
∂ρ̄ (ρ̄∂ρ̄P ) + ∂2

z̄P

]
= 0 , (20)

where ρ̄ = (x2 + y2)1/2/lz and z̄ = z/lz are dimensionless variables and V̄ = λ−2ρ̄2 + z̄2.

The dimensionless time variable is t̄ = mω2
zD(0)t/(2T ), so that Γ is automatically given in

units of D(0)/l2z . A solution of the diffusion equation for λ = 0.4 is shown in Fig. 2. The

decay constant of the spin current is Γred ' 29 which agrees with the variational estimate

Γred = 29.2. It is important to note that the spin current is not quasi one-dimensional, even

in a deformed trap.

Using cylindrical coordinates the diffusion equation in the dense limit is given by

∂t̄P −
[
∂2
ρ̄ +

1

ρ̄
∂ρ̄ + ∂2

z̄ − 2
(
z̄∂z̄ +

ρ̄

λ2
∂ρ̄

)]
P = 0 . (21)

A solution of the diffusion equation is shown in the right panel of Fig. 2. We observe that

the distribution of spin current is very different from the dilute limit. In particular, we find

that diffusion is approximately one-dimensional. The decay constant is Γred ' 2, in very

good agreement with the variational estimate. This result implies that the decay of the
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FIG. 1: Solutions of the spin diffusion equation for a gas confined in a harmonic potential with

deformation λ = 0.4. The contours show the polarization P as a function of the dimensionless

variables ρ̄ and z̄, and the vector field shows the spin current ~. The contour plots have 15 equally

spaced contour lines between the maximum and minimum polarization at the center of the trap.

The left panel shows a solution in the high temperature limit D = D(0)n(0)/n, and the right panel

corresponds to the low temperature limit D = D(0).

magnetization is much slower (by almost a factor 15) as compared to the dilute limit. This

result is easy to understand: In the dilute regime spin polarization decays by generating a

large spin current in the dilute corona. In the dense limit the polarization has to decay by

producing much smaller currents in the dense part of the cloud.

IV. SPIN HYDRODYNAMICS AND KINETIC THEORY

In order to improve the accuracy of the diffusion equation in the dilute limit we revisit

the derivation of the diffusion equation in kinetic theory. Consider the Boltzmann transport

equation, equ. (1), with a two-body collision term

C[fp1σ1 ] =
∑

σ2σ3σ4

∫
dΓ234 (fp1σ1fp2σ2 − fp3σ3fp4σ4)w(p1σ1, p2σ2; p3σ3, p4σ4) , (22)
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where w is the transition amplitude. We assume that w is of the form

w(p1σ1, p2σ2; p3σ3, p4σ4) = (2π)4δ(
∑
i

Ei)δ(
∑
i

pi)δσ1+σ2,σ3+σ4|Aσ1σ2(P, q)|2 (23)

where 2P = p1 + p2 and 2q = p1 − p2. In this case moments of the collision operator with

respect to particle number, momentum, and energy vanish

∑
σ

∫
dΓRi(p)C[fpσ] = 0 , (24)

where Ri = {1, ~p, εp}. Similarly, conservation of spin implies

∑
σ

∫
dΓ σ̄C[fpσ] = 0 , (25)

where σ̄ = ± for σ =↑, ↓. This relation does not generalize to other moments such as σ̄~p and

σ̄εp. The Boltzmann equation and equ. (24) imply conservation laws for particle number,

momentum, and energy

∂0n+ ~∇ · ~n = 0 , (26)

∂0π
i +∇jΠ

ij = 0 , (27)

∂0E + ~∇ · ~ε = 0 . (28)

Here, n = n↑ + n↓, ~n = ~↑ + ~↓ and ~π = m~n. We also have

Πij =
∑
σ

∫
dΓ fσp pivj , (29)

E =
∑
σ

∫
dΓ fσp εp , (30)

~ε =
∑
σ

∫
dΓ fσp ~v εp . (31)

Equ. (25) implies the spin conservation equation (4). In order to derive the diffusion equation

we need a constitutive equation for the spin current ~M . As shown in Sect. II Fick’s law

~M = −D~∇M can be derived by assuming that fpσ is close to the equilibrium distribution,

see equ. (5). In this section we will follow a different strategy. We derive an equation of

motion for ~σ from the ~p moment of the Boltzmann equation for each σ. We find

∂0(miσ) +∇jΠ
ij
σ − F inσ =

∫
dΓ piC[fpσ] . (32)

In order for the equations of motion to close we need a constitutive equation for the spin

stress Πij
σ , and an explicit expression for the collision term. We will make a generalized
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ansatz for the distribution function

fpσ(x, t) = exp

(
1

T (x, t)

[
µσ(x, t)− 1

2m

(
pi −muiσ(x, t)

)2
])

, (33)

where ~uσ is a spin velocity. Note that this distribution functions includes the Chapman-

Enskog ansatz in equ. (5) and (8) as a special case. If ~w = 1
2
(~u↑−~u↓) is small we can expand

equ. (33) and obtain

fpσ(x, t) ' f 0
pσ(x, t)

(
1± m

T
~v · ~w

)
, (34)

where the ± sign corresponds to σ =↑↓. We observe that equ. (8) is recovered for m~w =

− τ
2
~∇δµ. However, if ~w is large then fpσ is not close to equilibrium. We will show below

that equ. (33) solves the Boltzmann equation in the ballistic limit, and in this way provides

a smooth connection between the diffusive and ballistic limits.

We can now derive equations of motion by taking moments of the Boltzmann equation

with respect to particle number and momentum for fixed spin. Moments with respect to

particle number give the continuity equations

∂0nσ + ~∇ · (nσ~uσ) = 0 . (35)

Moments with ~p give equations of motion for nσ~uσ. We get

∂0

(
mnσu

i
σ

)
+∇jΠ

ij
σ + nσF

i = Sσ , (36)

where F i is an external force and we have defined the spin stresses

Πij
σ = mnσu

i
σu

j
σ + nσTδ

ij . (37)

The source term Sσ depends on the collision term. In the BGK approximation

C[fpσ] = −
fpσ − f 0

pσ

τ
, (38)

where f 0
pσ is given in equ. (6) we obtain Sσ = ∓(mnσw

i)/τ . This result exhibits some

unphysical features, related to shortcomings of the BGK approximation. In particular, Sσ

does not conserve the total momentum of spin up and down particles, even though the

microscopic collision term in equ. (22) conserves momentum. We address this problem by

replacing nσ → ng, where ng = n↑n↓/(n↑ + n↓) is the geometric mean of the up and down

densities. This gives

Sσ = ∓mngw
i

τ
. (39)

10



Like the BGK collision term, this is a model for collisional relaxation in a two component

gas. It does, however, have two advantages compared to the BGK model: i) It conserves

total momentum; ii) The collision rate goes to zero if either one of the two densities goes to

zero, as predicted by the full collision term. We note that the collision term is characterized

by a single parameter τ , which may depend on n and T . In the following section we will

show that in order to reproduce the diffusion equation with diffusion constant D(n, T ) the

relaxation time should be chosen as

τ(T, n) =
mD(n, T )

T
. (40)

In a weakly polarized gas (n↑ ' n↓) this is the same relation we obtained from the BGK

model in Sect. II.

Equ. (35-37) are the defining equations of spin hydrodynamics. We note that the equa-

tions indeed close. There are eight variables n↑, n↓, ~u↑ and ~u↓ and eight equations of motion.

This is the case as long as we consider the temperature of the cloud to be fixed. If the

evolution of T is needed then we can add an equation for the total energy density E , see

equ. (28). We also note that if ~u ≡ ~u↑ = ~u↓ summing equ. (35-37) gives the usual Euler

equation. If viscous effects are important, then we can either extend equ. (33) to include

an anisotropic temperature as in [6], or include a spin-independent term in Πij
σ which is

proportional to the viscous stresses.

V. DIFFUSIVE AND BALLISTIC LIMITS

In this section we will check that spin hydrodynamics does indeed correctly reproduce

the diffusive and ballistic limits. First consider the diffusive case. The difference of the

continuity equations gives

∂0M + ~∇ · (M~u+ n~w) = 0 . (41)

The first term in the spin current is the advection term ~M ∼ M~u. The second term,

~M ∼ n~w can be computed using the difference of the spin stress equations. In the diffusive

limit these equations can be solved order by order in the small parameter τT . At leading

order, and ignoring external forces, we find ~w = − τT
mn
~∇M + ~wa. Here, ~wa is an O(τ)

correction to the advection term M~u. Neglecting this term, we get

∂0M − ~∇ ·
(
D~∇M − ~uM

)
= 0 , (42)
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with D = τT/m, in agreement with the result in Sect. II. We can also study the effect of

an external force. In hydrostatic equilibrium we neglect the time derivatives and velocity

terms. We get
T ~∇nσ
nσ

= −~∇Vext , (43)

which implies nσ(x) ∼ exp(−Vext(x)/T ). We can use this relation to express Vext in terms

of the density when solving for the spin current ~w. We get

n~w = −τT
m

(
~∇M − M

n
~∇n
)
, (44)

in agreement with equ. (10).

In the opposite limit, that of infinite collision time, we expect the spin hydrodynamic

equations to agree with solutions of the ballistic Boltzmann equation. In a trap these

solutions correspond to simple spin-sloshing modes. Consider

fpσ(x, t) = n0(x⊥, p⊥) exp

(
−mω

2
z

2T
[z − σ̄z0 cos(ωt)]2

)

× exp
(
− 1

2mT
[pz − σ̄p0 sin(ωt)]2

)
(45)

with σ̄ = ± for σ =↑↓ and

n0(x⊥, p⊥) = exp

(
−mω

2
⊥x

2
⊥

2T
− p2

⊥
2mT

)
. (46)

This distribution solves the ballistic Boltzmann equation in a trap if ω = ωz and p0 = z0mωz.

We can compute the spin densities

nσ = n0 exp

(
−mω

2
z

2T
[z − σz0 cos(ωt)]2

)
(47)

and the spin velocity ~uσ = ±~w with wz = p0/m = ωzz0. The spin stresses are given by

Πij
σ = mnσw

iwj + nσTδ
ij . (48)

It is now straightforward to check that equ. (47-48) satisfies the spin continuity equations

(35) and the spin Euler equation

∂0

(
mnσu

i
σ

)
+∇jΠ

ij
σ = −mnσF i . (49)

It is then reasonable to assume that spin hydrodynamics can describe the transition between

diffusion and spin oscillations in a trap.
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VI. SIMULATING SPIN HYDRODYNAMICS

We have implemented spin hydrodynamics in close analogy with our implementation

of viscous fluid dynamics [23] and anisotropic fluid dynamics [6] for cold atomic Fermi

gases. The numerical code is based on the PPM (piecewise parabolic method, Lagrangian

remap) method of Colella and Woodward [24], as implemented in the VH1 code developed

by Blondin and Lufkin [25]. We solve the conservation laws using Lagrangian coordinates.

The momentum equations can be written as

Dσu
i
σ = − 1

ρσ
∇iPσ ∓

ρg
ρστ

wi , (50)

where Dσ = ∂0 + ~uσ · ~∇ is the comoving derivative, ρσ = mnσ is the mass density, and

Pσ = nσT is the partial pressure of the spin state σ. After a Lagrangian time step the

hydrodynamic quantities are remapped onto an Eulerian grid. The spin current ~M =

M~u + n~w can be compared to the expectation from Fick’s law, ~M = M~u −D~∇M , where

D = τT/m.

We consider diffusion in an axially symmetric trapping potential V (x) = 1
2
mω2

i x
2
i with

ωx = ωy = ω⊥ and ωz = λω⊥. We introduce dimensionless variables for distance, time and

velocity based on the following system of units [23]

x0 = (3Nλ)1/6
(

2

3mω⊥

)1/2

, t0 = ω−1
⊥ , u0 = x0ω⊥ , (51)

where N = N↑ + N↓ is the total number of particles. The unit of density is n0 = x−3
0 , and

the unit of temperature is T0 = mω2
⊥x

2
0. Finally, the unit of the diffusion constant in

D0 = ω⊥x
2
0 . (52)

We will use an overbar to denote dimensionless quantities, for example x̄ = x/x0, T̄ = T/T0,

and D̄ = D/D0.

In the high temperature limit the initial density is a Gaussian. The density is

n(x) = n(0) exp
(
−EF
E0

[
x̄2 + ȳ2 + λ2z̄2

])
, (53)

where x̄ = x/x0 is the dimensionless position, EF = (3Nλ)1/3ω⊥ is the Fermi energy in the

trap, and E0 is the total energy per particle of the trapped gas. For an ideal gas E0 = 3NT ,

and the dimensionless temperature is T̄ = 1
2
(E0/EF ). The central density is given by

n(0) = n0
Nλ

π3/2

(
EF
E0

)3/2

. (54)
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It is convenient to normalize the central density to one [32], so that n̄ = n/n(0) and M̄ =

M/n(0).

A simple parameterization of the diffusion constant can be given in terms of a density

independent part, reflecting the low temperature (quantum) behavior, and a part that scales

inversely with density, corresponding to the high temperature (kinetic) limit. We write

D =
β

m
+
βT
m

(mT )3/2

n
, (55)

where β and βT are constants. The kinetic theory result given in equ. (11) corresponds to

βT = 3/(16
√
π). In dimensionless units this formula becomes

D̄ = β̄ + β̄T
T̄ 3/2

n̄
(56)

where D̄ = D/D0 and

β̄ =
3

2

β

(3λN)1/3
, β̄T =

4π3/2

3

βT
(3λN)1/3

(
E0

EF

)3/2

. (57)

Using these parameters we can provide some simple estimates for the time scales involved in

simulations of diffusion in a trapped atomic gas. We saw that empirically the spin decay rate

scales as Γ = ω2
z/(γEF ) · (T/TF )1/2, see the discussion preceding equ. (17). The experiment

of Sommer et al. gives γ ' 0.16. Based on the units described above the dimensionless decay

time is

Γ̄−1 = 2.87γ
(λN)1/3

λ

(
EF
E0

)2

. (58)

where Γ̄ = Γ/ω⊥. Sommer et al. do not provide the precise values of λ and N in their

experiment, but typical values used in the viscosity measurements reported in [26, 27] are

N = 2 · 105 and λ = 0.045. These parameters lead to long decay times Γ̄−1 ' 212(EF/E0)2.

This estimate should be compared to the typical time step in a spin hydrodynamic sim-

ulation. In ordinary fluid dynamics the time step is controlled by the speed of sound and

the resolution, ∆t = C∆x/cs, where the Courant number C is typically chosen to be 1/2.

Using dimensionless units and the speed of sound of an ideal gas we find

∆t̄ = C

√
6

5

(
EF
E0

)1/2

∆x̄ . (59)

The units are chosen such that the cloud size is of order 1. Then ∆t̄ ∼< ∆x ∼< 0.1 is a typical

time step for the hydrodynamic evolution. In spin fluid dynamics we also have to ensure

14



that the time step is small compared to the relaxation time. The dimensionless relaxation

time is

τ̄ =
β̄

T̄
+
β̄T T̄

1/2

n̄
. (60)

Using the estimate βT = 3/(16
√
π) together with equ. (57), as well as the values of N and λ

given above, we get τ̄(0) = 0.02(E0/EF )2. This suggests that for small λ and typical values

of E0/EF there is a significant disparity of scales between the diffusive scale equ. (58) and the

relaxation scale equ. (60). As a result, in the limit that the cloud is very deformed (λ→ 0)

and the diffusion constant is very small (β̄ → 0), spin hydrodynamics is potentially an

inefficient method for simulating the diffusion equation. This is not necessarily a problem.

First, if the diffusion constant is small diffusive behavior sets in quickly and the decay

constant can be accurately determined even if the simulation time is less that Γ−1. Second,

a similar disparity of scales appears in the anisotropic hydrodynamics method as the shear

viscosity becomes small. Anisotropic hydrodynamics is indeed an inefficient method for

solving the Euler equation, but a powerful tool to extract the shear viscosity for realistic

geometries [7].

VII. NUMERICAL RESULTS: BOX

In order to test spin hydrodynamics we have solved the equations of motion in a three-

dimensional box. The simulation is carried out on a three dimensional cartesian grid with

503 points and a grid spacing ∆x̄ = 0.2. We consider a constant background density n̄↑ =

n̄↓ = 1/2 with a Gaussian perturbation δn̄↑↓ = ±0.05 exp(−x̄2
i ). The left panel in Fig. 3

shows the evolution of the mean square magnetization radius

〈r2〉 =
1

Mtot

∫
d3x̄ x̄2

iM(x̄, t̄) (61)

as a function of time. Here, Mtot is the integrated magnetization. The plot shows the result

for a range of values of β̄, corresponding to a range of relaxation times. We note that in a

box, in which the background density is constant, there is no difference between the scaling

with β̄ and β̄T . In the limit of large β̄ the squared radius grows quadratically with time,

corresponding to a constant spin velocity ~w and ballistic expansion. For small values of β̄

the squared radius grows linear with time, as expected from the solution of the diffusion
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FIG. 2: The left panel shows the mean square size 〈r2〉 of the magnetization M = n↑ − n↓ as

a function of time for the evolution of a Gaussian initial state. The different curves correspond

to different values of the diffusion parameter, from top to bottom β̄ = (1000, 1, 0.5, 0.2, 0.1). We

observe the transition from free expansion, 〈r2〉 ∼ t̄2, to diffusion, 〈r2〉 ∼ t̄. The right panel shows

the diffusion constant extracted from the growth of 〈r2〉. The dashed curve shows the theoretical

expectation in the small β̄ limit.

equation. The diffusion equation predicts

M(x̄, t̄) =
M0

(1 + 4D̄t̄)3/2
exp

(
− x̄2

1 + 4D̄t̄

)
. (62)

In the right panel of Fig. 2 we show the diffusion constant extracted from the slope of 〈r2〉

together with the theoretical expectation D̄ = β̄. The agreement for small β̄ is quite good.

In this regime there is a systematic shift between β̄ and the extracted value of D, which

indicates some amount of numerical diffusion.

In Fig. 3 we show the evolution of the magnetization in more detail. The left panel of

Fig. 3 demonstrates that for large β̄ (large relaxation time) the evolution is not diffusive.

There is a magnetization front which propagates at approximately constant speed. For small

β̄ (small relaxation time), on the other hand, the evolution is consistent with diffusion.

This is seen more clearly in the right panel of Fig. 3, in which we compare the time and

spatial dependence of the magnetization in spin hydrodynamics with the prediction from

the diffusion law in equ. (62).

In Fig. 4 we compare the spin current M in spin hydrodynamics with the expectation from

Fick’s law, ~M = −D~∇M . Note that in the present case there is no convective contribution

M~u. Fick’s law predicts that the spin current turns on instantaneously, and then decays
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FIG. 3: The left panel shows the time evolution of the dimensionless magnetization M̄(x̄, t̄) for two

different values of β̄ = 1000 (green diamonds) and β̄ = 0.1 (blue circles). The curves at t̄ = 0 (top)

are identical, and only the β̄ = 0.1 graph is visible. The time step between successive curves is

∆t̄ = 1.25. The right panel shows the time evolution of M(x̄, t̄) for a small value of β̄ = 0.05. The

dots show the result of spin hydrodynamics at different time steps separated by ∆t̄ = 0.5 (time

increasing from top to bottom), and the lines are the expectations from the diffusion equation (62).

slowly as the cloud expands. Spin hydrodynamics, on the other hand, predicts that the

spin current vanishes at t̄ = 0 and then approaches Fick’s law on a time scale set by the

relaxation time. At late time the spin hydrodynamics current tracks Fick’s law.

VIII. NUMERICAL RESULTS: TRAPPED GAS

In this section we will consider a harmonically trapped gas. We assume axial symmetry,

and the simulations are carried out in cylindrical coordinates on a grid with dimensions 502

and grid spacing ∆z̄ = 0.2 and ∆ρ̄ = 0.2. The main observable is the spin dipole moment

dz =
2

Ntot

∫
d3x̄ z̄ M(x̄, t̄) , (63)

which is the same quantity that was studied in the experimental work of Sommer et al. [9].

We first consider a density independent relaxation time, governed by the parameter β̄. The

initial spin density is given by two shifted Gaussians

n̄σ =
1

2
exp

(
−EF
E0

[
λ2(z̄ ± z̄0)2 + ρ̄2

])
. (64)
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FIG. 4: Spin current ~M = n~w + M~u in spin hydrodynamics (dots) compared to the expectation

from Fick’s law, ~M = −D~∇M (lines). We show the z-component of the dimensionless current as a

function of z̄ (with x̄ = ȳ = 0) for β̄ = 0.05 and several values of t̄ = (0, 0.05, 0.10, 0.15, 0.20). Note

that the prediction from Fick’s law starts maximal and then decays (very slowly, on the time scale

shown in this figure), whereas the current in spin hydrodynamics starts at zero and the approaches

Fick’s law.

We use E0/EF = 1, λ = 0.4 and z̄0 = 2. For β̄ → ∞ we expect the system to show

undamped spin oscillations with frequency ω̄ = λ, as described in Sect. V. This can be seen

in Fig. 5. For finite but large β̄ the gas exhibits damped oscillations, and for small β the

motion is overdamped.

More details are shown in Fig. 6. The left and right panels shows the evolution of

the magnetization for β̄ = 1000 and β̄ = 1, respectively. We observe that for β̄ = 1000

the magnetization oscillates, and for β̄ = 1 it is strictly decaying. The decay is not pre-

cisely exponential, because the decay of the magnetization is superimposed on an undamped

quadrupole oscillation of the total density. Physically, this mode is damped by shear viscos-

ity, but we have not included viscosity in our study. Another possibility is to consider initial

conditions that correspond to the late time dynamics of the trapped gas, and for which the

total density is equilibrated. We choose

n̄σ =
1

2

(
1± A z̄

1 + λ2z̄2 + ρ̄2

)
exp

(
−EF
E0

[
λ2z̄2 + ρ̄2

])
, (65)

which is motivated by the variational results derived in Sect. III.
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FIG. 5: Evolution of the spin dipole moment in a trapped gas a function of time. The initial

condition is given by two shifted Gaussians, see equ. (64). The solid line shows an undamped spin

oscillation with frequency ω̄ = 0.4. The points show the results of a spin hydrodynamics simulation

with β̄ = (1000, 5, 2, 1, 0.5), going from oscillatory to overdamped behavior.

The evolution of the spin dipole moment is shown in Fig. 7. The left panel demonstrates

that the decay of the dipole moment is indeed exponential. The right panel shows the

dependence of the decay constant on β̄. For small β̄ we observe a linear relationship. This

behavior can be compared with the solution of the diffusion equation obtained in Sect. III.

We obtained Γ = D0

l2z
Γred with Γred = 2. In dimensionless units this can be written as

Γ̄ =
1

2T̄
β̄λ2 Γred . (66)

This relation is shown as the dashed line in the right panel of Fig. 7. We observe that

Γred = 2 indeed provides a very good description of the data for β̄ ∼< 0.5. We conclude that

spin hydrodynamics indeed converges to the expected solution of the diffusion equation in

a trapped geometry.

We are now in a position to study the problem that motivated this study. Consider a

diffusion constant which is inversely proportional to density, governed by the parameter β̄T in

equ. (55,56). We study the evolution in a deformed trap, beginning from the initial condition

given in equ. (65). As explained in Sect. III the diffusion equation predicts that for fixed

diffusion constant D0 at the trap center the decay of the spin polarization is much faster.

This effect is caused by a large spin current in the dilute regime. In spin hydrodynamics,

on the other hand, the relaxation time in the dilute regime is large, and we do not expect a
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FIG. 6: Magnetization as a function of position for a trapped Fermi gas. The left panel shows the

magnetization for different times in the ballistic (spin oscillation) limit β̄ = 1000. The curves are

separated by ∆t̄ = 1.25, starting with t̄ = 0 (blue circles). The right panel shows the magnetization

at different times for β̄ = 1, closer to the diffusive limit.

large spin current to develop.

The time evolution of the spin dipole moment for different values of β̄T is shown in the

left panel of Fig. 8. We observe that for βT ∼< 0.2 the decay of the spin polarization is

exponential. The extracted spin decay constant is shown in the right panel of Fig. 8. As

before, we can compare the result to solutions of the diffusion equation. In dimensionless

units we get

Γ̄ =
1

2T̄
β̄λ2T̄ 3/2 Γred . (67)

We found that the diffusion equation predicts Γred(0.4) = 22.9, whereas the experiment of

Sommer et al. [9] indicates that Γred = 11.3. Note that this result assumes the validity of

kinetic theory, in particular the relation D(0) = 0.106(mT )3/2/(mn(0)), see equ. (11). In

spin hydrodynamics we can extract Γred from the slope of the β̄T − Γ̄ relation. The dashed

line in the right panel of Fig. 8 corresponds to Γred = 11, and the error band indicates that

the uncertainty in this analysis is about 10%. We can therefore deduce that

D(0) = (0.1± 0.01)× (mT )3/2

mn(0)
. (68)

As a consistency check we have studied the dependence on the trap deformation λ. We have

repeated the analysis shown in Fig. 8 for a smaller value λ = 0.25. We find smaller decay

constants Γ̄, and a slightly delayed onset of the linear behavior in the Γ̄− β̄T plot, but the
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FIG. 7: The left panel shows the time evolution of the spin dipole moment in a trapped gas with

a density independent diffusion constant. The initial condition is given by equ. (65). The points

show the results of a spin hydrodynamics simulation with β̄ = (0.5, 0.2, 0.1, 0.05), and the dashed

lines are exponential fits. The right panel shows the extracted spin decay constant Γ̄ as a function

of β̄. The dashed line corresponds to Γred = 2 in equ. (66).

reduced decay constant Γred = 11±1 is unchanged. This is consistent with the experimental

finding that the reduced decay constant does not depend on the trap deformation.

We note that the linear scaling with β̄T implies that the damping constant is proportional

to T̄ 3/2E
3/2
0 ∼ T 3. The first factor arises from the temperature dependence of the diffusion

constant, and the second factor is due to the relation TF (0) ∼ T−1 at fixed N and ω⊥, ωz.

The overall scaling of the damping constant contains an extra factor l−2
z ∼ T−1, so that

Γ ∼ T 2. This is indeed the behavior observed in [9].

IX. CONCLUSIONS AND OUTLOOK

In this work we have derived the equations of spin hydrodynamics from an underlying

kinetic theory. Spin hydrodynamics reduces to the diffusion equation in the dense limit,

and to ballistic motion in the dilute limit. We have validated a numerical implementation

of spin hydrodynamics using a number of test cases. The diffusive limit was studied using

the expansion of a Gaussian magnetization in a gas at constant density, and by following

the decay of the spin dipole mode in a harmonic trap with density independent diffusion

constant. The ballistic limit was studied using the spin slosh mode in a harmonic trap.
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FIG. 8: The left panel shows the time evolution of the spin dipole moment in a trapped gas with

D ∼ 1/n. The initial condition is given by equ. (65). The points show the results of a spin

hydrodynamics simulation with β̄T = (0.2, 0.1, 0.05, 0.02), and the dashed lines are exponential

fits. The right panel shows the extracted spin decay constant Γ̄ as a function of β̄. The dashed

line corresponds to Γred = 11 in equ. (67). The band shows a ±10% uncertainty in Γred .

We applied spin hydrodynamics to the decay of the spin dipole mode in a dilute Fermi

gas at unitarity. In the high temperature limit kinetic theory predicts that D ∼ T 3/2/n. We

verified that the experiment of Sommer at al. [9] is consistent with this prediction, and that

the coefficient of proportionality agrees with kinetic theory. This conclusion was previously

reached in the beautiful work of Bruun and Pethick [17], but these authors were forced to

introduce an unknown parameter, the radial cutoff in the diffusion equation. Our method

has no free parameters other than the diffusion constant. Sommer et al. concluded that

agreement with kinetic theory can be achieved if the diffusion constant is corrected for the

finite size of the trap.

A more detailed comparison to earlier work is shown in Fig. 9. The figure displays the

profile of the spin current M and the spin velocity w in the transverse plane. We consider

a diffusion constant of the form D ∼ T 3/2/n, and we choose β̄T = 0.05. The left panel

shows the spin current (dots) compared to the expectation from Fick’s law (solid line) and

the variational estimate discussed in Sect. III. We observe that the variational estimate is

indeed close to Fick’s law, but that the full spin current is significantly smaller than the

variational result for x̄ ∼> 2. This is consistent with the conclusion of Bruun and Pethick

that in order to match experimental data one has to impose a cutoff r0 ' 2.1lx. The right
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FIG. 9: Longitudinal spin current M (left panel) and spin velocity w (right panel) in the transverse

plane. We show the z-component of the current and the velocity at z̄ = 0 as a function of the

transverse position x̄ for β̄T = 0.05. The dots in the left panel show the spin current at t̄ = 0.25.

The solid line is the expectation from Fick’s law, and the dashed line is the variational estimate of

the current profile obtained in Sect. III (scaled to fit Fick’s law). The right panel shows the spin

current at different times t̄ = 0.25, 0.50, 0.75 (top to bottom). The dashed line is the variational

estimate of the drift velocity from [9], scaled to fit the data.

panel shows the spin velocity at different times t̄ = 0.25, 0.50, 0.75. For comparison, we

show the variational ansatz for the the drift velocity wz ' w0
z(x/x0)2 proposed by Sommer

et al. [9], matched to fit the data. We observe that the agreement is very good in the regime

x ∼> lx, and that the data match the variational estimate out to larger distances as time

progresses.

Our work can be extended in a number of ways. First, it is important to further test

spin hydrodynamics using detailed comparisons with numerical simulations based on the

Boltzmann equation in the weakly collisional limit. A similar study for anisotropic fluid

dynamics is described in [7, 28]. Second, we would like to perform precision determinations

of the spin diffusion constant not only in the high temperature limit, but also in the vicinity

of the critical temperature for superfluidity. This will require implementing a more general

functional form of the diffusion constant, and performing detailed fits of the temperature

dependence of the decay rate of the spin dipole mode. The ultimate goal of this effort

is to provide determinations of both the shear viscosity and the diffusion constant in the

“perfect fluid” regime a → ∞ and T ∼ Tc, and to compare the results with expectations

from quasi-particle theories as well as holographic models [29–31].
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[6] M. Bluhm and T. Schäfer, “Dissipative fluid dynamics for the dilute Fermi gas at unitarity:

Anisotropic fluid dynamics,” Phys. Rev. A 92, no. 4, 043602 (2015) [arXiv:1505.00846 [cond-

mat.quant-gas]].
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