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Atomtronics has the potential for engineering new types of functional devices, such as Josephson junctions

(JJs). Previous studies have mainly focused on JJs whose ground states have 0 or π superconducting phase

difference across the junctions, while arbitrary tunable phase JJs may have important applications in supercon-

ducting electronics and quantum computation. Here we show that a phase tunable JJ can be implemented in a

spin-orbit coupled cold atomic gas with the magnetic tunneling barrier generated by a spin-dependent focused

laser beam. We consider the JJ confined in either a linear harmonic trap or a circular ring trap. In the ring

trap, the magnetic barrier induces a spontaneous mass current for the ground state of the JJ, demonstrating the

magnetoelectric effects of cold atoms.
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Atomtronics is a new exciting interdisciplinary field [1–

4] aiming to mimic electronic circuits and build new func-

tional devices, utilizing the high controllability and purity of

cold atomic gases. Recently, atomic Josephson junctions (JJs)

have been realized [5–7] in toroidal Bose-Einstein Conden-

sates (BECs) [8–11], analogous to the well-known supercon-

ducting quantum interference devices (SQUID). In solid-state

devices, besides the common zero phase, the ground state of a

JJ may possess a π phase of the superconducting order param-

eter across the junction [12], which can be generated by insert-

ing a layer of insulator with magnetic impurities [13] or a layer

of ferromagnetic material [14] or an unconventional supercon-

ductor [15, 16] between two regular s-wave superconductors.

Such π phase JJs resemble the Larkin–Ovchinnikov (LO) state

in a spin imbalanced superconductor [17] and have also been

studied in cold atomic gases [18, 19]. More generally, the

phase of the JJ ground state could be arbitrary (not 0 or π),

which may have important applications such as phase batter-

ies and rectifiers [20, 21], phase-based quantum bits [22], etc.

Recently, such arbitrary phase JJs have been experimentally

realized using nanowire quantum dots [23]. However, arbi-

trary phase JJs have not been explored in atomtronics.

In cold atomic gases, synthetic gauge fields and spin-orbit

coupling have paved a way for neutral atoms to interact with

external synthetic electric and magnetic fields [24–32]. In

particular, the 1D equal-Rashba-Dresselhaus spin-orbital cou-

pling has been realized experimentally for fermions using a

two-photon Raman process [30–32]. Interestingly, in the pres-

ence of the Raman detuning which acts as an in-plane Zee-

man field, the inversion symmetry of the Fermi surface is bro-

ken, leading to the Fulde-Ferrell (FF) superfluid [33] with a

spatially modulating phase of the order parameter [34–41].

Therefore a nature question is whether such spatially modu-

lating phase of the FF state could be used to engineer JJs with

arbitrary and tunable phases.

In this article, we address this issue by studying a JJ gener-

ated by a magnetic barrier in a 1D spin-orbit coupled Fermi

superfluid. We consider two types of traps: a linear har-

monic trap and a circular ring trap. For the former, the

spin-momentum coupling has been experimentally realized

for Fermi gases [30–32], and for the latter, the corresponding

spin-orbital-angular-momentum (SOAM) coupling was pro-

posed [42–47] to be realized using Laguerre-Gaussian (LG)

laser beams [48–51] (see Fig. 1). The magnetic barrier for the

JJ can be generated by a spin-dependent focused laser beam.

In both types of traps, the phase across the JJ can be continu-

ously tuned by changing the parameters of the magnetic bar-

rier. Interestingly, we find that the magnetic barrier induces

a spontaneous finite mass current for the ground state of the

JJ in a ring trap, which realizes the magnetoelectric effects in

atomtronics.

Model: For simplicity of the numerical calculation, here-

after we consider 1D Fermi gases, but the results apply to

2D and 3D due to the same mechanism for generating the FF

phase junction. We first consider a spin-momentum coupled

Fermi gas confined in a 1D harmonic trap. Within the mean-

field approximation, the dynamics of the system is governed

by the mean-field many-body Hamiltonian

H =

ˆ

dx
{

Ψ̂+HSΨ̂−
[

∆(x)ψ̂+
↑ ψ̂

+
↓ + h.c.

]}

, (1)
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FIG. 1. (Color online) Illustration of the proposed experimental

setup. Two copropagating LG beams (LG1 and LG2) with differ-

ent orbital angular momenta couple two atomic hyperfine states in

the ring structure to induce SOAM coupling through the Raman pro-

cess. An additional spin-dependent focused laser beam provides a

local magnetic barrier (the green spot).
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where Ψ̂ = (ψ̂↑(x), ψ̂↓(x))
T and ψ̂σ(x) with σ =↑, ↓ are

fermionic annihilation operators for the spin σ state. The

single-particle Hamiltonian HS = H0 +HSOC +HZ . H0 =

[− ~
2∂2

2m∂x2 − µ+ mω2x2

2 ] with the Planck constant ~, the mass

of atoms m, the chemical potential µ, and the harmonic trap

frequency ω. The spin-momentum coupling term HSOC =
−iλσz∂x with Pauli matrices σi=x,y,z and coupling strength

λ = ~
2kR/m, where kR is the recoil momentum of the Ra-

man laser. The Zeeman field term HZ = −ΩRσx + VZ(x)σz
with ΩR and VZ(x) being the out-of-plane and in-plane Zee-

man field strengths. ΩR is determined by the Raman laser

intensities and VZ(x) is induced by the local magnetic bar-

rier. The order parameter ∆(x) ≡ −g1D〈ψ̂↓(x)ψ̂↑(x)〉. The

constant g1D is the 1D two-body s-wave interaction strength,

which can be characterized by a scaleless parameter γ ≡
−mg1D/(~2n0) that represents the ratio between the inter-

action and kinetic energy. Here n0 = (2/π)
√

Nmω/~ with

N being the total number of atoms.

In terms of the Nambu spinor Φ̂(x) =

[ψ̂↑(x), ψ̂↓(x), ψ̂
+
↑ (x), ψ̂+

↓ (x)]
T , the mean-field Hamil-

tonian H = 1
2

´

dx Φ̂+(x)HBdGΦ̂(x) can be numerically

solved using the hybrid self-consistent Bogoliubov-de Gennes

(BdG) method [52–54]. The BdG quasi-particles are obtained

by diagonalizing

HBdG ϕη(x) = Eη ϕη(x) , (2)

with energies Eη and wavefunctions ϕη(x) =
[u↑η(x), u↓η(x), v↑η(x), v↓η(x)]

T indexed by subscript

η = 1, 2, 3 . . . The wavefunctions are normalized such that
∑

σ=↑,↓

´

dx(|uση(x)|2 + |vση(x)|2) = 1.

We use a “hybrid” method of Ref. [52, 53] to solve the

eigenvalue problem of Eq. (2). We get all eigenenergy pairs of

HBdG with energy |E| 6 Ec, whereEc is a cut-off energy that

is chosen to be large compared to the Fermi energy but small

compared to the width of the discretized HBdG spectral. Typ-

ically we take Ec = 8EF with the non-interacting Fermi en-

ergyEF = ~ωN/2 in a harmonic trap. The Fermi wave num-

ber kF is obtained from EF = ~
2k2F /2m, and the Thomas-

Fermi radius xTF =
√

N~/(mω). For this eigenstate prob-

lem, we use the discrete variable representation (DVR) of the

plane wave basis [55]. The order parameter is

∆(x) = −g1D
2

∑

η

[u↑ηv
∗
↓ηf(Eη) + u↓ηv

∗
↑ηf(−Eη)] , (3)

where f(E) is Fermi-Dirac distribution function f(E) =
1/[eE/kBT + 1] and T is the temperature. Here we present

results for T = 0. For states above the energy cut-off Ec,

we employ a semi-classical method based on the local den-

sity approximation. The new order parameter is calculated by

combining the contributions from the DVR and semi-classical

solutions and is put back to the mean-field Hamiltonian. The

procedure is repeated until the order parameter converges.

In the ring trap, the corresponding SOAM coupling is re-

alized by two LG Raman lasers with opposite OAM (L1 =
−L2 = L) [44–47] (Fig. 1). The Hamiltonian is similar ex-

cept there is no harmonic trap and x is changed to Rθ, where
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FIG. 2. Tunable phase Josephson junctions in a 1D harmonic trap.

The magnetic barrier is located at the center of the harmonic trap. (a)

Atomic density profiles. (b) The real and imaginary parts of the order

parameter. (c) The absolute value and phase of the order parameter.

umag = 0.05EF xTF , aimp = 0.1xTF ,γ = 2.2, λ = 1.5EF /kF ,

ΩR = 0.8EF , µ = 0.285EF , N = 60.

R is the radius of the ring. The azimuth angle θ is in the range

θ ∈ [−π, π]. The SOAM coupling strength is λ = ~
2L/mR.

Phase tunable Josephson junction: We first consider a mag-

netic barrier for the JJ located at center of the harmonic trap

and generated by a spin-dependent focused laser beam with

VZ(x) = umage
−( x

amag
)2
/amag

√
π, where umag > 0 and

amag are barrier strength and width respectively. In the ab-

sence of the magnetic barrier, the system is population bal-

anced and the density exhibits a parabolic profile which can be

described by Thomas-Fermi approximation. In the presence

of a local magnetic barrier, the density exhibits a dip for spin

↑ atoms (solid black line) and a bump for spin ↓ ones (dashed

red line) at the center of the trap [as shown in Fig. 2(a)] be-

cause of opposite potentials for two spins.

The magnetic barrier acts as a local in-plane Zeeman field

and induces the local FF type of order parameter, as shown

in Fig. 2(b) where both real (solid black line) and imaginary

(dashed red line) parts of the order parameter are non-zero.

In Fig. 2(c), we plot the absolute value of the order parameter

(solid black line), showing a small dip inside the barrier due to

the suppression of Cooper pairing by the local Zeeman field.

The order parameter also exhibits two maxima near the edge

of the Fermi cloud, which is an unique feature in the 1D case

[52]. Remarkably, the phase of the order parameter (dashed

blue line) changes linearly (the property of the FF type of or-

der parameter) inside the barrier and remains constant outside

as shown Fig. 2(c). The constant values of the phases are dif-

ferent on the left and right sides of the barrier and can be any

value, demonstrating a JJ with tunable phase. In a 2D system

separated by a magnetic barrier chain, such phase junction still

exists.

Such tunable phase across the magnetic barrier also exists

inside a ring trap. However, the phase outside the barrier is not

constant anymore due to the periodic confinement. To clearly

distinguish the phase change in the barrier from the bulk re-

gion, we consider a rectangular-shaped barrier located at θ =
0, described by VZ(θ) = −umag[Θ(θ+amag)−Θ(θ−amag)]
with the step function Θ(x). We have studied realistic Gaus-

sian potentials and the results are qualitatively the same with

a small quantitative deviation from the rectangular one. In

Fig. 3, we present our self-consistent BdG results. Similar as
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FIG. 3. (Color online) Phase tunable JJ in a ring. (a) The real part (

solid black), imaginary part (dashed red), and absolute value of the

order parameter (dotted blue). Inset: Density profiles for | ↑> state

(solid black) and | ↓> state (dashed red). (b) The phase of the order

parameter. In numerical calculation, we take the radius R = 1, ~ =

1. The non-interacting Fermi momentum is defined as kF = πn0/2
and the Fermi energy EF = ~

2k2

F /2m with n0 = N/2πR being

the average density. The parameters are λ = 2.3EF /kF , γ = 2.4,

ΩR = 0.8EF , δ = 0.25EF , umag = 1.5EF , amag = 0.1, µ =

−0.41EF and N = 60.

the harmonic trap case, in Fig. 3(a), there is a local imbal-

anced region inside the barrier (the inset figure) where both

real and imaginary parts of the order parameter are nonzero

and have different structures. More interestingly, as shown in

Fig. 3(b), the phase of the order parameter outside the barrier

changes almost linearly, instead of constant, due to the peri-

odic boundary condition.

The phase difference across the JJ can be continuously

tuned. In Fig. 4(a), we present three different phase struc-

tures for three different barrier strengths umag. To quantita-

tively characterize the phase change, we introduce two types

of phase differences: ϕdif = φL − φR between two edges of

the barrier and the phase change ϕJJ outside the barrier. To

avoid the complication from the periodicity of the phase an-

gle, we treat the order parameter phase in its principal value of

[0, 2π). With increasing barrier strength, ϕdif increases from

less than π to larger than π but smaller than 2π, and finally

to even larger than 2π. Obviously, for small barrier strengths,

ϕJJ = ϕdif > 0; for moderate ones, ϕJJ = ϕdif − 2π < 0;

for strong ones, ϕJJ = ϕdif − 2π > 0. In Fig. 4(b), we plot

ϕJJ as a function of the magnetic barrier strength. ϕJJ has a

discontinuous point near ϕJJ = 1.2π. In fact, when ϕdif is

around π, there are two steady states corresponding to positive

and negative ϕJJ , respectively. When ϕdif > 1.2π, the state

with negative ϕJJ has lower energy and becomes the ground

state. We note that the phase difference of the JJ can also be

tuned by changing other parameters such as the barrier width

and the atom-atom interaction strength.

Spontaneous mass current: The linear phase gradient out-

side the barrier of the JJ induces a spontaneous mass current

in the ring trap, which is defined as

J(θ) =
~

mR

∑

σ=↑,↓

Re〈ψ†
σ(θ)(−i∂θ + Lσ)ψσ(θ)〉. (4)

Here L↑ = −L↓ = L and the second term originates from

the SOAM coupling. The mass current is zero for the linear
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FIG. 4. (Color online) (a) The phase structure of the order parameter

in the real space with different barrier strengths. (b). Tunable phase

of the JJ vs. barrier strength. The three colored squares correspond to

the three cases in (a) respectively. Inset: Spontaneous mass current as

the function of the phase of the JJ. Mass current in unit JF = n0vF
where vF is the Fermi velocity vF = ~kF /m.

1D system in the harmonic trap, where there is no phase gra-

dient outside the barrier. The inset of Fig. 4(b) shows that the

ground state of JJ with finite ϕJJ exhibits a finite mass cur-

rent, which is linearly proportional to ϕJJ . Such magnetic

barrier induced mass current demonstrates the magnetoelec-

tric effect for cold-atoms, which may have important applica-

tions in atomtronics.

The tunable phase across the barrier and the spontaneous

mass current along the ring could be understood from the FF

order parameter of the superfluid in the presence of SOAM

coupling and in-plane Zeeman field. Here we illustrate this

mechanism by considering a uniform in-plane Zeeman field

along the whole ring (i.e., VZ(θ) = δ). We find the ground

state of the system possesses finite angular momenta Cooper

pairs ∆(θ) = ∆0 exp(il0θ) with ∆0 being constant and l0
being an integer due to the periodic boundary condition. To

obtain the order parameter numerically, we start from random

initial order parameters and then self-consistently solve the

BdG equation in the real space until it converges. We find

that each converged final state always corresponds to a state

with certain l, suggesting that these states are steady states.

To see this more clearly, we choose ∆(θ) = ∆0 exp(ilθ) and

compute the thermodynamic potential for each l with fixed

chemical potential as a function of |∆(θ)|. In the mean-

field theory, the thermodynamic potential Ω is defined as

Ω = 〈H〉 −
´

Rdθ |∆(θ)|2/g1D, which can be expanded in

the angular momentum space (similar to the momentum space

in a traditional homogeneous 1D system). In Fig. 5(a), we plot

the thermodynamic potential with respect to |∆(θ)| for differ-

ent l, showing that there always exists a local minimum of

the thermodynamic potential for each l, and we find that the

converged state obtained by the self-consistent calculation in

the real space exactly corresponds to the local minimum for

each l. The ground state is the one with the lowest thermo-

dynamic potential and l0 = 3 for the particular parameters

shown in Fig. 5(a). For the local magnetic barrier, the FF

phase exp(il0θ) changes across the barrier, leading to the tun-

able phase junction.

For the FF states in an infinite 1D homogeneous system,
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FIG. 5. (Color online) Ring structure with uniform two-photon de-

tuning. (a) The thermodynamic potential as a function of |∆|, with

different angular momentum of the phase. The arrow shows the

ground state. The parameters are umag = 0, µ = −0.435EF , the

other parameters are the same as Fig. 3. (b) Spontaneous mass cur-

rent for different l.

the mass current J ∝ ∂Ω(Q)/∂Q|Q=Q0
with Ω(Q) being the

thermodynamic potential for ∆(x) = ∆0e
iQx and Q0 being

the center-of-mass momenta of Cooper pairs of the ground

states. This current equals to zero because ∂Ω/∂Q|Q=Q0
= 0

is satisfied for the ground states [33, 36]. However, in the

ring-shaped system, instead of taking continuous values, the

center-of-mass momenta Q can only take discrete values Q
= l/R due to the periodic boundary condition (note that the

superposition of different l states is not energetically pre-

ferred). The value of the ground state momenta Q0 for the

infinite system may not equal to any Q in such a discrete set

because Q0 are determined by many parameters (pairing in-

teraction, SOAM coupling strength, in-plane Zeeman field,

etc.). Therefore ∂Ω(Q)/∂Q|Q=l/R can be nonzero for a fi-

nite ring-shaped system (i.e., 1/R 6= 0), leading to finite mass

current for the ground states. The direction of the current is

also dictated by the sign of ∂Ω(Q)/∂Q|Q=l/R. In Fig. 5(b),

we plot the mass currents for three steady states correspond-

ing to different values of l. They are all nonzero. The cur-

rent of the ground state l0 = 3 is smaller than other states

with different l because of smaller ∂Ω(Q)/∂Q|Q=l0/R. The

magnitude of the mass current depends on the difference be-

tween the ground state momenta Q = l0/R in the ring and

Q0 in the infinite system, which does not explicitly depend

on l0. Smaller difference yields smaller mass current. When

Q = Q0 accidentally, the mass current is zero as in the infinite

case.

Experimental realization and observation: In experiments,

we consider 40K atoms and utilize LG laser beams to generate

a ring trap as well as the SOAM coupling between two hyper-

fine states [44–47]. The magnetic barrier can be generated by

a tightly focused laser beam [56]. When the wavelength of the

focused laser lies between D1 and D2 transition lines, atoms at

different hyperfine states experience different potentials, lead-

ing to spin-dependent potential. To measure the current, one

can sample one slice of the Fermi ring and measure its mo-

mentum distribution [57]. In this slice, the momentum differ-

ence of the atom cloud between the tangential direction of the

ring and the opposite direction determines the local current. In

addition, one can consider the Doppler induced interference

of the phonon modes, which has been utilized to measure the

current in toroidal BECs [58]. Finally, because the mechanism

for generating FF order parameters in the magnetic barrier are

the same for 1D, 2D and 3D [34, 38], the proposed phase tun-

able JJ should also applies to a 2D spin-orbit coupled Fermi

gas with a magnetic barrier line or 3D with a magnetic barrier

plane. In a ring trap, this means the radial confinement need

not be very strong, corresponding to a 3D toroidal trap.

Summary: In summary, we propose that the ground state

of a Josephson junction with arbitrary and tunable phase can

be realized in spin-momentum coupled Fermi superfluids in

a harmonic trap or SOAM coupled Fermi superfluids in a

toroidal-shaped trap. When a different phase from the ground

state value is applied externally, it is known that a finite

Josephson current is generated. We find that a spontaneous

mass current exists in a finite ring-shaped system due to the

periodic boundary condition, demonstrating the magnetoelec-

tric effects in cold atoms. The experimental realization of such

tunable phase JJ may open novel possibilities for many appli-

cations in atomtronics, such as superfluid phase battery add

rectifiers, phase-based quantum bits, and the observation of

topological superfluids and the associated Majorana fermions.
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