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We consider a homogeneous, balanced gas of strongly interacting fermions in two spin states in-
teracting through a large scattering length. Finite range corrections are needed for a quantitative
description of data which experiments and numerical simulations have provided. We use a pertur-
bative field theoretical framework and a tool called the Operator Product Expansion (OPE), which
together allow for the expression of finite range corrections to the universal relations and momentum
distribution. Using the OPE, we derive the 1/k6 part of the momentum tail, which is related to the
sum of the derivative of the energy with respect to the finite range and the averaged kinetic energy
of opposite spin pairs. By comparing the 1/k4 term and the 1/k6 correction in the momentum
distribution to provided Quantum Monte Carlo (QMC) data, we show that including the 1/k6 part
offers marked improvements. Our field theoretical approach allows for a clear understanding of the
role of the scattering length and finite effective range in the universal relations and the momentum
distribution.
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I. INTRODUCTION

Strongly interacting systems of ultracold two-
component fermions have been studied using various
techniques for many years. In nuclear physics this system
is of interest due to its simplicity and similarity to a gas
of ultracold neutrons. In atomic physics, this system is
of interest because of its transition from a Bose-Einstein
condensate (BEC) at small positive scattering lengths to
a system that displays BCS superfluidity at small nega-
tive scattering lengths. Specifically, the case called the
unitary limit, in which the two-body scattering length a
is taken to infinity, received a lot of attention from ex-
perimentalists and theorists alike [1]. In this limit the
zero-range model can be used to describe systems with
large scattering length. In this model, the range of the
atom-atom interaction is taken to zero while the binding
energy is kept constant by adjustment of the coupling
strength.

Universal relations, which are independent of the struc-
ture of the particles and the state of the system, were de-
rived in the zero range limit for these systems by Shina
Tan in 2005 [2–4]. These relations contain the so-called
contact that can be defined as the asymptote of the 1/k4

large momentum tail of the momentum distribution. The
contact is a state dependent quantity and will therefore
depend on quantities such as the scattering length, tem-
perature, or density of the system.

Tan’s contact and the related universal relations can
be derived by applying the operator product expansion
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(OPE) [5–7], which is the quantum field theoretical short-
distance expansion of a nonlocal operator. In Ref. [8], it
was shown that this tool can be used to derive Tan’s uni-
versal relations and that the contact is related to the lead-
ing two-body interaction term in the OPE. The OPE has
since then been used not only to derive additional uni-
versal relations for the two-component Fermi gas, but it
has also been applied to novel systems such as the unitary
Bose gas [9–20] (for a discussion of other approaches that
have been used to derive universal relations see Ref. [21]
and the references therein).

In this manuscript, we derive improved universal rela-
tions which include the finite effective range of the two-
body interaction. Just as the contact was identified as
playing an important role in the zero-range limit, we
identify two quantities that appear in universal relations
valid beyond the zero-range limit. One of them, which
we call the derivative contact, is a measure of the sensi-
tivity of the energy of the system to the effective range.
The other measures the averaged kinetic energy of oppo-
site spin pairs at zero relative distance. Some of these
relations were already derived using a quantum mechan-
ical framework by Castin and Werner in Ref. [22]. Here
we will use the OPE framework and an effective field
theory (EFT) to derive additional finite-range universal
relations. In the EFT approach an existing separation of
scales is turned into an expansion parameter for a sys-
tematic low-energy perturbative expansion. In our case
this expansion parameter is the ratio `/a, where ` de-
notes the range of the atom-atom interaction. This ap-
proach is very powerful since it makes no assumptions
regarding the microscopic interaction responsible for the
large scattering length and is therefore completely model-
independent.

First, we review the theory that is used to describe
particles interacting through a short-range interaction in
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Sec. II. We present the renormalization of the theory
up to both Leading Order (LO) and Next-to-Leading
Order (NLO) in the EFT expansion. Renormalization
eliminates divergences which arise in the field theoretical
calculations and leaves us with physical, finite results.
After presenting the EFT model we use, we move di-
rectly to the results and leave the detailed calculations
of those results for later. Thus, Sec. III shows univer-
sal relations with effective range corrections, including a
subleading, in the OPE expansion, tail of the momentum
distribution and corrections to the energy, adiabatic, and
pressure relations and to the virial theorem. Section IV
gives a numerical comparison between the contact and
the derivative contact and shows the OPE result in com-
parison to Quantum Monte Carlo (QMC) data. Lastly,
Sec. V contains the many details of the OPE calculations
which lead to the results already presented in Sec. III.
The renormalized two-body operators in the OPE form
the contact and derivative contact operators which are in
the universal relations.

II. EFFECTIVE FIELD THEORY

For an interaction with finite range, `, the two-body
t-matrix can be written as

t(k) =
4π

m

1

k cot δ0 − ik
, (1)

where m denotes the particle mass, k is the relative mo-
mentum between the two particles, and δ0 is the scat-
tering phaseshift. At sufficiently low energies, we can
expand k cot δ0 using the effective range expansion

k cot δ0 = −1

a
+
rs
2
k2 + . . . , (2)

where a is the S-wave scattering length, and rs is the S-
wave effective range. For k`� 1, the short-range details
of the interaction are not resolved and such systems can
therefore be described with an EFT that employs only
contact interactions.

The EFT Lagrangian for particles interacting through
contact interactions can be written as

L = L0 + L1 + · · · , (3)

where L0,1 are leading order (LO) and next-to-leading
order (NLO) in rs Lagrangians and the dots denote oper-
ators with more derivatives and/or fields that contribute
to higher orders in the EFT expansion. The LO and NLO
Lagrangians are given by

L0 =
∑
σ=1,2

ψ†σ

(
i∂t +

∇2

2m

)
ψσ −

λ0

m
ψ†1ψ

†
2ψ2ψ1 (4)

L1 =
ρ0

4

(
ψ†1ψ

†
2ψ2
←→∇ 2ψ1 + h.c.

)
+ δL1 , (5)

δL1 = −δλ0

m
ψ†1ψ

†
2ψ2ψ1 . (6)

ALO= +ALO

FIG. 1: Scattering amplitude at leading order.

Note that we have set ~ = 1. When considered by itself,
Lagrangian L0 is also known as the zero-range model,
and we will show below how the bare coupling λ0 is re-
lated to the scattering length a through renormalization.
L1 consists of the effective range term, proportional to
ρ0, and δL1, which is present to subtract a divergence
which arises in the calculation of the scattering ampli-
tude with this Lagrangian. Below we will regularize all
integrals with a sharp UV cutoff. We will renormalize the
LO and NLO expressions below, calculating the coupling
constants λ0, ρ0, and counter term δλ0 of the theory, to
reproduce the t-matrix in each case.

A. LO amplitude

At LO in rs, the λ0 vertex has to be iterated to all
orders in order to reproduce the non-perturbative prop-
erties of the large scattering length limit [23, 24]. The
diagrams contributing to the two-body scattering ampli-
tude form the integral equation shown in Fig. 1, that is
equivalent to the Lippmann-Schwinger (LS) equation,

iALO(E) = −iλ0

m
− iλ0

m
I0(E,Λ) iALO(E) , (7)

where E denotes total energy of the two-body system.
On the mass shell E = k2/m. The function I0(E,Λ) in
Eq. (7) is given in Eq. (A2) in Appendix A. It is the
loop integral shown in Fig. 1 and depends on the energy
E and the ultraviolet (UV) cutoff Λ that is imposed on
the integral.

The low-energy constant λ0 is a function of the cutoff
and its form is determined by requiring that Eq. (7) re-
produces the two-body t-matrix in Eq. (1) in the limit
rs → 0. We can therefore write λ0 explicitly as a function
of the cutoff Λ and the scattering length a

λ0 =
4πa

1− 2aΛ/π
. (8)

B. NLO amplitude

In this subsection we present the renormalization of
the EFT including short-range interactions up to NLO.
The renormalization to this order using dimensional reg-
ularization with power divergence subtraction (PDS) was
already discussed in [23]. Since we are using an explicit
momentum space cutoff, we have to introduce an addi-
tional subtraction terms as we will discuss below.
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FIG. 2: Scattering amplitude up to NLO. The solid dot de-
notes a λ0 vertex, the square represents the ρ0 vertex, and
the symbol crossed circles represent the counterterm vertex,
δλ0.

The expansion of the two-body t-matrix in Eq. (1) in
rs can be written as

t(k) =
4π

m

1

− 1
a − ik

(
1−

rs
2 k

2

− 1
a − ik

)
, (9)

where the first term is LO and second term is its NLO
correction. We would like to reproduce the second term
by calculating corrections to the two-body amplitude per-
tubatively due to L1.

In Fig. 2, we show the scattering amplitude up to NLO.
The second row contains the sum of the diagrams with
exactly one insertion of the ρ0 vertex. The third row
shows the diagrams that contain exactly one insertion of
the δλ0 vertex. The factors ρ0 and δλ0 are inserted only
once because, as we will see below, they are proportional
to rs, which we only want one factor of inserted to per-
form the calculation at NLO in the effective range. In
addition to these two contributions, we have to consider
a contribution that arises from resumming the λ0 vertex
as a result of using a finite cutoff regularization scheme,
which introduces a correction on the order of 1/Λ.

The sum of these three contributions is given by

iANLO =− iA2
LO

mk2

2π2Λ
− i2ρ0

mA2
LO

λ0

(
mk2

λ0
− mΛ3

6π2

)
− i δλ0

m

(
mALO

λ0

)2

. (10)

Each term gives the contribution from each of the three
rows in Fig. 2 at NLO. In the first term, we keep only

the NLO contribution proportional to k2

Λ after summing
over all diagrams in the first row of the figure. The second
contribution is the sum of diagrams for the effective range
vertex, and it contains a Λ3 divergence. Requiring that
the third term, proportional to δλ0, subtracts the O(Λ3)
divergence and then comparing Eq. (10) to the NLO term
in Eq. (9), ρ0 and δλ0 are determined to be

ρ0 =
λ2

0

16πm

(
rs −

4

πΛ

)
, (11)

δλ0 =
(λ0Λ)3

48π3

(
rs −

4

πΛ

)
. (12)

III. UNIVERSAL RELATIONS AT
NEXT-TO-LEADING ORDER

In addition to the given field theoretical framework,
we use the OPE to calculate the momentum distribution
and find the contact, C, the derivative contact, D, and
the operator C ′ that measures the mean kinetic energy
of opposite spin pairs in terms of renormalized field the-
oretical operators. Then we express the other relations
in terms of the operators associated with these parame-
ters. However, we leave the details of this to Sec. V and
directly present the results here. We give the 1/k6 cor-
rection to the 1/k4 tail of momentum distribution and ef-
fective range corrections to the energy relation, adiabatic
relation, pressure relation, and to the virial theorem for
a harmonic potential.

By using the OPE, we find that the momentum distri-
bution of atoms in a spin state σ is given by

ρσ(k)→ C

k4
+
C ′ +D

k6
+O

(
1

k8

)
, (13)

where C is the well-known contact, which is the asymp-
tote of the scaled momentum distribution shown in Fig. 4
and a measure of the sensitivity of the system to the scat-
tering length. We call D the derivative contact because
it is associated with the second derivative of the contact
operator in L0, and it is a measure of the sensitivity of the
system to the finite effective range, rs. C

′ is associated
with the averaged pair kinetic energy in the system. In
the two-body system C ′ = CK2/2, where K is the center
of mass momentum. In the absence of a known value for
C ′, we do not include it in Fig. 4 below. However, a value
could be obtained from the 1/k6 tail of improved QMC
simulation data. Note that Eq. (13) is valid in the limit of
zero effective range and that the form remains the same
after taking the effective range correction into account
because the correction is contained in C, C ′, and D. The
derivation of Eq. (13) is given separately in Sec. V, where
we also show that the contact C and derivative contact D
are the expectation values 〈

∫
d3ROC〉 and 〈

∫
d3ROD〉,

respectively. OC is proportional to the contact term in
L0, with coupling constant λ0, in the Lagrangian, and
the operator OD is related to L1. Similarly, near p- or
d-wave resonances [25, 26], the 1/k4 term in the tail of
the momentum distribution receives contributions with
interpretations similar to C ′ and D.

Next, the energy relation rewrites the sum of kinetic
and interaction energies, each separately sensitive to UV
behavior in this field theoretical framework, in terms of
pieces which are individually finite.

〈H〉 =
C

4πma
+ rs

D

16πm
+ 〈T (sub)〉 , (14)

where 〈H〉 is the expectation value of the Hamiltonian
for a generic mixture of eigenstates, and T (sub) is the
subtracted (renormalized) kinetic energy defined here in
Eq. (15), which is calculated using Eq. (66) found at the
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end of Sec. V.

〈T (sub)〉

=
∑
σ

∫ ∞
0

dk

4π2m

[
k4ρσ(k)− C − θ(k − k0)

k2
(C ′ +D) + · · ·

]
+
C ′ +D

2π2mk0
− rs

C ′ + 3D

16πm
. (15)

To arrive at this, the kinetic energy operator T defined
in Sec. V was rewritten in terms of the renormalized op-
erator in Eq. (43). Then this was replaced by the the mo-
mentum distribution ρσ(k) using the OPE result given in
Eq. (59). The lower limit k > k0 was imposed to prevent
an IR divergence, and the second to last term was added
to remove sensitivity to the IR cutoff. The derivation of
Eq. (14) is given after the derivation of the momentum
distribution at the end of Sec. V. While the energy re-
lation holds for a generic mixture of states, the relations
that follow in the remainder of this section are for a pure
eigenstate. In the case of a generic mixture they approx-
imately hold, and only so long as the off diagonal terms
are negligible as discussed in [2–4].

The adiabatic relation [3] is defined as the change in the
energy of the system due to an adiabatic change of a so
that the energy eigenstate of the system is not disturbed.
A similar adiabatic relation for the effective range rs can
be obtained by taking the derivative with respect to rs.
Taking the derivative of the energy of the system with
respect to a gives

dE

da
=
〈dH
da

〉
=

C

4πma2
, (16)

where, for the first equality, we used the Feynman-
Hellmann theorem. Then, for the second equality we
obtain dH/da =

∫
d3ROC/(4πma2) +O(1/Λ2) by using

dλ0/da = λ2
0/(4πa

2) and dρ0/da = λ0

2πa2 ρ0. Note that
Eq. (16) remains the same as it was in the zero-range
limit, rs → 0, in Ref. [4], and the effective range correc-
tion is contained in the expectation value C.

Taking the derivative of the energy respect to rs, with
a held fixed, gives

dE

drs
=
〈dH
drs

〉
=

D

16πm
, (17)

where we again used the Feynman-Hellmann theorem
in the first equality and then obtained dH/drs =
OD/(16πm) +O(ρ0) by using dρ0/drs = λ2

0/(16πm) and
da/drs = dλ0/drs = dΛ/drs = 0. Any terms propor-
tional to ρ0 should be dropped because they are higher
order than NLO when in H. This means that D is inde-
pendent of rs at NLO in rs. In other words, dE/drs is
well behaved as rs → 0, as discussed in [22, 27, 28].

Next, we derive the effective range corrections to the
pressure relation [4] and the virial theorem [29]. For a
homogeneous gas, the energy scales linearly with the vol-
ume of the system. Thus, the energy density is a func-
tion of volume-independent variables. For example, the

Helmholtz free energy density F depends only on inten-
sive thermodynamic quantities such as temperature, T ,
chemical potential, µσ, and interaction parameters such
as a and rs. Dimensional analysis implies the following
equality[

T
∂

∂T
+ µσ

∂

∂µσ
− a

2

∂

∂a
− rs

2

∂

∂rs

]
F =

5

2
F , (18)

where the LHS is the sum of the logarithmic derivative
with respect to each individual parameter of the system
multiplied by its dimension, and it reduces to the free
energy density multiplied by its energy dimension, 5/2.
By using the definition F = E−Ts, where s is the entropy
density, and the relation F = −P + µσnσ, where µσ is
the chemical potential, for a homogeneous system and
eliminating Ts and µσnσ in favor of E and P , we obtain
the pressure relation as

P =
2

3
E +

C
12πma

+ rs
D

48πm
, (19)

where E , C, and D are E, C, and D divided by volume
of the system.

For a gas trapped in a harmonic potential, V (R), with
frequency ω, we see from dimensional analysis that the
energy obeys the relation[∑

i

ωi
∂

∂ωi
− a

2

∂

∂a
− rs

2

∂

∂rs

]
E = E . (20)

By using
∑
i ωi ∂V (R)/∂ωi = 2V (R) and Eqs. (16) and

(17) we obtain the virial theorem for a trapped atomic
gas:

E = 2V − C

8πma
− rs

D

32πm
, (21)

where V is an average of the harmonic potential for the
system.

The subleading 1/k6 tail in the OPE expansion of
the momentum distribution and its relation to energy in
Eqs. (13) and (17) were first derived in [22] by analyzing
the behavior of the many-body wave function for systems
of two-component fermions with a large two-body scat-
tering length a. We reproduce the same results by using
the OPE for two-body states.

IV. GROUND STATE RESULTS FOR A
HOMOGENEOUS GAS

In this section we extract the numerical value of the
derivative contact D from the recent QMC calculations
and compare it to the value of the contact, C, in the zero
range limit. We also plot the momentum distribution in
comparison to QMC simulation data.

Near the unitary limit, the energy density of a bal-
anced homogeneous Fermi gas in its ground state can be
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FIG. 3: (color online) Dimensionless contact density C/k4
F ,

represented by the triangles on the graph, and the derivative
contact density D/k6

F as function of 1/(kF a) at zero temper-
ature from QMC simulation in [27, 28].

expressed as

E =
(
ξ − ζ

kFa
+ S kF rs + · · ·

)
EF , (22)

where EF = 1
10π2 k

5
F /m is the Fermi energy density,

kF = (3π2n)1/3 is the Fermi momentum, and n is the
total number density. ξ is the Bertsch parameter; ζ and
S are slope constants with respect to the 1/(kFa) and
kF rs axes, respectively, in the unitary limit. Away from
unitarity they are not constant, but the energy density
still contains an effective range correction proportional
to kF rs. Also, the slope S becomes a function of kFa.

The contact density C of the Fermi gas can be obtained
in various limits using the expressions for the energy in
those limits, such as that in the unitary limit given by
Eq. (22), and using Eq. (16) to arrive at Eqs. (23), (24),
and (25).

C/k4
F →

4

9π2
(kFa)2 , a→0− (BCS limit) (23)

→ 2ζ

5π
, a→±∞ (unitary limit) (24)

→ 4

3π
(kFa)−1 , a→0+ (BEC limit) (25)

where ζ is the constant in Eq. (22) determined from ex-
periment or calculated by various theoretical methods.
The energy density in the BCS and BEC limits are given
in Ref. [21]. The dimensionless contact density C/k4

F
is parametrically suppressed by (kFa)2 in the BCS limit
and is parametrically enhanced by 1/(kFa) in the BEC
limit, and it increases as one goes through unitarity from
the BCS to the BEC limit.

The contact has been determined from many observ-
ables by various experimental groups. The contact across
the BCS-BEC crossover was first determined from photo
association [30, 31]. Precise values in the unitary limit
were obtained: ζ = 0.93(5) from a thermodynamic mea-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k/kF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(k
/
k
F
)4
n
σ
(k
/
k
F
)

FIG. 4: (color online) Scaled momentum distribution near
unitarity, (k/kF )4nσ(k/kF ), where σ indicates either of two
spin states, as a function of k/kF in comparison to QMC
result [28]. The dashed horizontal line is C/k4

F . The solid
line is C/k4

F +D/(k4
F k

2). We use the values near unitarity of
C/k4

F = 0.115 and D/k6
F = 0.061.

surement [32] and ζ = 0.91(4) from the static struc-
ture factor [33]. The temperature dependence was deter-
mined from the structure factor using Bragg spectroscopy
[33, 34] and also from RF spectroscopy [35]. Various uni-
versal relations have been verified by testing the consis-
tency of numerical values of the contact determined from
different observables and properties of the system such
as the momentum distribution, the RF line shape, pho-
toemission spectra, the adiabatic theorem, and the virial
theorem [36].

The contact has been calculated not only using QMC
[37–42], but also with other methods[43–45]. Currently,
the most accurate theoretical value is ζ = 0.901(3) given
in [46]. Near unitarity this gives a value of C/k4

F ≈ 0.115.
Additionally, the slope S in Eq. (22) has been calcu-

lated in [27, 28], and the density of the derivative contact
for the ground state is

D =
8k6
F

5π
S(kFa). (26)

Some of the asymptotic behavior of the derivative con-
tact density is given by

D/k6
F →

8S

5π
, a→±∞ (unitary limit)

→ −0.9(1) (kFa)−3 , a→0+ (BEC limit) (27)

where S = 0.12(1) was obtained in [28]. This gives a
value of D/k6 = 0.061 in the unitary limit. Equation
(27) can be derived using Eq. (22) and the relation be-
tween D and dE/drs found in Eq. (17). We calculated
the result, namely D/k6

F → −0.9(1)(kFa)−3, in the BEC
limit, 1/kFa > 0, by fitting D to the QMC data for S [28]
shown in Fig. 3 (note that this figure contains the data
rescaled with the prefactor given in Eq. (26)). The dimer
binding energy Edimer = 1/(ma2)[1 + rs/a + · · · ] gives
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the derivative contact for the dimer as Ddimer = 16π/a3,
which is consistent with the power law in the BEC limit.
A power law in the BCS limit is not known.

Figure 3 shows results for the scaled contact density
C/k4

F and derivative contact density D/k6
F as a function

of 1/(kFa). In the unitary limit C is about twice as large
as D. In the BEC limit the magnitude of D increases
faster than that of C, and this follows from the fact that
the effective range correction is more important in this
limit as the approximation of universal physics worsens.
Fig. 4 shows a scaled momentum distribution in unitary
limit. The OPE results in Eq. (13) describe the QMC
data [28] well for large k > 1.5kF . However, we note
again that we did not include the unknown C ′ contribu-
tion in this analysis.

V. OPERATOR PRODUCT EXPANSION AND
RELATED CALCULATIONS

In what follows we describe the expansion of the nonlo-
cal operator for the momentum distribution in the large
k, or short-distance, limit, that we use in the deriva-
tion of the above universal relations. With the OPE
we derive expressions for the contact and derivative con-
tact in terms of field theoretical operators. We then ex-
press the Hamiltonian in terms of those operators. The
OPE, invented independently by Ken Wilson [5], Leo
Kadanoff [6], and Alexander Polyakov [7] in 1969, is a
short-distance expansion of a nonlocal operator into a
series of local operators multiplied with short-distance
coefficients, or Wilson coefficients, that are functions of
the relative separation r:

OA
(
R− r

2

)
OB
(
R +

r

2

)
=
∑
n

Wn(r)On(R) , (28)

where Wn is the Wilson coefficient of the local operator
On. In this paper we consider the nonlocal one-body
density operator ψ†σ(R − r/2)ψσ(R + r/2), which is a
coordinate space representation of the momentum distri-
bution and gives the momentum space distribution ρσ(k)
after a Fourier transform.

The operators on the RHS in Eq. (28) can be con-
structed from the fields of the EFT and their gradients.
The field ψσ has dimension ∆ = 3/2 in our EFT expan-
sion, the Galilean invariant derivative

←→
∂i =

−→
∂i −

←−
∂i (29)

has ∆ = 1, and the time derivative ∂t has ∆ = 2. Here,
we list the relevant operators up to dimension ∆ = 6.

∆ O1,∆ O2,∆

3 ψ†σψσ

4 ψ†σ
←→
∂iψσ ψ†1ψ

†
2ψ2ψ1

5 ψ†σ
←→
∂i
←→
∂jψσ ψ†1ψ

†
2ψ2
←→
∂iψ1 + h.c.

6 ψ†σ
←→
∂i
←→
∂j
←→
∂kψσ ψ†1ψ

†
2ψ2
←→
∂i
←→
∂jψ1 + h.c.

(30)

A unit operator is omitted since the momentum dis-
tribution for the vacuum is zero while the unit operator
vacuum expectation value is nonzero, and the operator
with time derivative ∂t is excluded because we can always
eliminate it in favor of momentum-dependent operators
by using the equations of motion obtained from Eqs. (4)
and (5) [11]. In the first column of the operator list the
number in each row represents the dimension of opera-
tors in that row. The second and the third column list
the one-body and two-body operators as indicated in the
subscript of O1,∆ and O2,∆. It is known [8] that the di-

mension of ψ†1ψ
†
2ψ2ψ1 is lowered down to ∆ = 4 from

∆ = 6 by the strong interaction, and we find that this

is true for the operator ψ†1ψ
†
2ψ2
←→
∂i
←→
∂jψ1 so that it has

∆ = 6 rather than 8.
Rewriting Eq. (28) for our problem we have

ψ†σ(R− r/2)ψσ(R + r/2)

=
∑
∆

(W1,∆(r)O1,∆(R) +W2,∆(r)O2,∆(R) + · · · ) ,

(31)

where the first index n of each Wn,∆ indicates whether
the coefficient is for a one- or two-body operator, and
the second index ∆ gives the scaling dimension of that
operator. We determine the Wilson coefficients of one-
and two-body operators up to ∆ = 6.

Before we calculate the matrix elements of the oper-
ators shown above, we discuss briefly the off-shell scat-
tering amplitude, whose knowledge is required for the
derivation of our Wilson coefficients. In the renormal-
ization of the EFT in Sec. II, we considered the on-shell
amplitude depending on the relative momentum k, with
k2 = mE, but we use the off-shell amplitude during oper-
ator matching since its explicit momentum dependence
contributes to the loop integral results in our calcula-
tions. In general, the off-shell amplitude with incoming
momenta (E/2,±p) and outgoing momenta (E/2,±k)
should be a function of three variables: E, p, and k.
However it is known that the LO amplitude, ALO(E),
depends solely on the total energy and not on external
momenta. This simplifies the calculation of a loop dia-
gram involving ALO(E), such as the last graph in Fig. 1,
by factorizing it into a product of the amplitude and the
loop integral as shown in the last term of Eq. (7). How-
ever, this is not true at NLO. Expanding the off-shell
amplitude in powers of 1/Λ we obtain

ALO −A2
LO

m(mE)

2π2Λ
−A2

LO

2m2ρ0mE

λ2
0

+ALO
mρ0

λ0
(p2 + k2 − 2mE) + · · · , (32)

where the first term, the LO amplitude, is proportional
to 1/E and the next two terms are NLO in 1/Λ and
reduce to Eq. (10) in the on-shell limit. The last term,
proportional to p2/Λ2, and terms beyond this are power
suppressed. Here, we count the size of parameters as
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+++ A A A A

FIG. 5: Diagrams for the operator 〈ψ†σ(R−r/2)ψσ(R+r/2)〉
for the 2 atom scattering state. The empty dots imply loca-
tions ±r/2 where an atom is annihilated and created at an
equal time.

follows: a−1,p,k,
√
mE are of the same size and much

smaller than Λ, while λ0 ∼ 1/Λ and ρ0 ∼ 1/Λ3. The
terms of order 1/Λ2 and higher can be dropped when the
final goal is to compute the amplitude at NLO, and A
then depends only on E, becoming ANLO(E). But, in the
calculation of matrix elements, the term proportional to
p2 +k2 contributes factors of the loop momentum in the
loop diagrams involving the amplitude and can lead to
a UV divergence. Therefore, terms of O(1/Λ2) can only
be dropped at the end of the calculation.

At the end of calculations we keep terms only up to
NLO in (1/Λ) and renormalize the operators either by
multiplying by a renormalization factor or by adding dif-
ferent operators as counterterms to subtract the diver-
gences and Λ-dependence. We rewrite the full off-shell
amplitude A(E,p,k) in terms of an amplitude Aλ(E)
that contains only diagrams that contain the λ0-coupling
constant and amplitudes Aρ(E) and Aρ′(E) that con-
tain one insertion of the ρ0-coupling constant but scale
as 1/Λ and 1/Λ2, respectively. In these amplitudes, all

power suppressed terms (
√
mE/Λ)n in the loop integral

I0(E,Λ) are retained. The amplitude is given as

A(E,p,k) = A(E) + (p2 + k2 − 2mE)Aρ′(E) ,

A(E) = Aλ(E) +Aρ(E) ,

Aλ = − 1

m/λ0 + iI0(E,Λ)
,

Aρ = −2ρ0m
2

λ2
0

mEA2
λ ,

Aρ′ =
ρ0m

λ0
Aλ , (33)

where I0(E,Λ) is given in the Appendix in Eq. (A2).
Also, the amplitude Aλ still satisfies the LS equation in
Eq. (7) when ALO is replaced by Aλ.

Aλ = −λ0/m(1 + I0 iAλ) . (34)

Figure 5 shows diagrams contributing to the matrix
element for the two-atom scattering state with incoming
momenta (p0,±p), with outgoing momenta (k0,±k), and
with total energy E = 2p0 = 2k0. We generalize to a
system with non-zero center-of-mass momentum later in
this section. The matrix element of the nonlocal operator
is given by

〈ψ†σ(R− r
2 )ψσ(R + r

2 )〉

= δpke
ip·r +

[
ieip·r

p0 − p2

2m

iA(E) + (p→ k)

]
− Iρ,0A2(E)

− 2
[
(p2+k2

2 − 2mE)Iρ,0 + Iρ,2
]
AλAρ′ , (35)

where we use the shorthand notation δpk = (2π)3δ(3)(p−
k), and the one-loop integral Iρ,2n is given in the Ap-
pendix in Eq. (A10).

By inserting Iρ,0 and Iρ,2 from Eq. (A10) into Eq. (35)
and expanding in powers of r up to r3, we obtain

〈ψ†σ(R− r
2 )ψσ(R + r

2 )〉 = δpk −
[
A(E)

p0 − p2

2m

+ (p→ k)

]
+
iA2(E)m2

8π
√
mE

+ iripiδpk − iri
[
piA(E)

p0 − p2

2m

+ (p→ k)

]
− r A

2(E)m2

8π

− rirj
pipj

2
δpk +

rirj
2

[
pipjA(E)

p0 − p2

2m

+ (p→ k)

]
− ir2 A2(E)m2

√
mE

16π

− irirjrk
pipjpk

6
δpk + i

rirjrk
6

[
pipjpkA(E)

p0 − p2

2m

+ (p→ k)

]
+ r3 A2(E)m3E

48π

+O(r4) , (36)
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+++ A A A A

FIG. 6: Diagrams for one-body operator. Empty dots imply
an insertion of the one-body operator given in Eq. (30) and
A(E,p,k) represents the off-shell amplitude in Eq. (33).

where the Einstein summation convention for like indices
is assumed, and we have dropped terms O

(
1/Λ2

)
. In this

equation there are terms that have
√
mE dependence,

which we distinguish from |p| because we keep the atoms

off the mass shell in our calculations, i.e. E 6= p2

m . Each
term in Eq. (36) will be matched to the matrix elements
of the relevant local operators, and by this matching pro-
cess the Wilson coefficients of the local operators will be
determined. A2(E) is the renormalized square ampli-
tude and includes the correction due to the finite effec-
tive range. But, Eq. (36) is still valid in the zero range
limit, in which we replace A(E) by ALO. With the r3

term still present, this confirms that the 1/k6 correction
to the tail of the momentum distribution is still present
even when rs → 0.

Next, we calculate the matrix elements of local opera-
tors for the two-body scattering state. As in the calcu-
lation for the nonlocal operator, we do not drop power-
suppressed terms in the amplitude Eq. (33) during inter-
mediate steps, and we keep terms up to NLO in the EFT
expansion after the renormalization.

A. One-body local operators

In this subsection, we calculate matrix elements for the
one-body operators of various scaling dimensions O1,∆ in
Eq. (30). The Feynman diagrams in Fig. 6 show all con-
tributions for the two-atom scattering state. The first
diagram contributes even in the absence of two-body in-
teractions.

Since Fig. 6 is the same for any one-body operator, its
matrix element can be written as:

〈O1,∆〉 = v1,∆(p) δpk −
[
v1,∆(p) A(E)

p0 − p2/(2m)
+ (p→ k)

]
− I(1,∆)

0 A2(E)− 2
[
(p2+k2

2 − 2mE)I(1,∆)
0 + I(1,∆)

2

]
AλAρ′ ,
(37)

where v1,∆(p) is the vertex factor for the operator O1,∆.
The vertex factors up to dimension 6 are given in Ta-

ble III in the Appendix. The loop integrals I(1,∆)
2n are

also found in the Appendix in Eq. (A4).

The matrix element of O1,3 = ψ†σψσ for a two-body
state and ingoing momentum p and outgoing momentum

k is

〈O1,3〉 =δpk −
[

A(E)

p0 − p2/(2m)
+ (p→ k)

]

+
im2A2(E)

8π
√
mE

(
1 + irs

√
mE

)
+O(Λ−2) . (38)

Note that rsA2(E) = rsA2
λ up to NLO in rs.

Except for the term proportional to rs, Eq. (38) is
matched to the second line of Eq. (36), and the Wilson
coefficient is

W1,3 = 1 . (39)

The rs term will be subtracted later by including an ap-
propriate term in the Wilson coefficient of the 2-body
operator in Eq. (49).

Next, the matrix element of O1,4 = ψ†σ
←→
∂iψσ is given

by

〈O1,4〉 = 2ipiδpk −
[

2ipiA(E)

p0 − p2/(2m)
+ (p→ k)

]
. (40)

By comparing this to terms containing one power of pi
in Eq. (36), it is clear that the Wilson coefficient corre-
sponding to O1,4 is given by

W1,4 =
1

2
ri . (41)

The next operator is O1,5 = ψ†σ
←→
∂i
←→
∂jψσ and its matrix

element is given by

〈O1,5〉 =− 4pipj δpk +

[
4pipjA(E)

p0 − p2/(2m)
+ (p→ k)

]

− 4δij
3

[
i
d I2

dE

]
A2(E)− 4mδij

3

[
mΛ3

3π2

+
(

p2+k2

m − 2E
)
i
d I2

dE
+ 2imEI0

]
AλAρ′ .

(42)

Note that this matrix element is linearly divergent, with
Λ3Aρ′ ∼ Λ, and we will renormalize this divergence and
other explicit Λ-dependence by adding the two-body op-

erators ψ†1ψ
†
2ψ2ψ1 and ψ†1ψ

†
2ψ2
←→∇ 2ψ1 with appropriate

factors. The operator ψ†σ
←→
∂i
←→
∂jψσ with i, j contracted be-

comes the kinetic term in the Hamiltonian and the cutoff
dependence implies that the kinetic energy is sensitive
to the short-distance region of a fundamental potential
smaller than the length scale a ∼ 1/

√
mE beyond which

our effective theory loses predictive power. Through this
renormalization procedure, we find combinations of oper-
ators that are insensitive to the short-distance behavior.
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∆ O1,∆ W1,∆

3 ψ†σψσ 1

4 ψ†σ
←→
∂iψσ

1
2
ri

5 ψ†σ
←→
∂i
←→
∂jψ

(ren)
σ

1
8
rirj

6 ψ†σ
←→
∂i
←→
∂j
←→
∂kψσ

1
48
rirjrk

TABLE I: One-body operators up to scaling dimension 6 and
their Wilson coefficients W1,∆, where the 1 corresponds to
one-body and the ∆ corresponds to the dimensionality of the
operator.

By using the renormalized two-body operators found
in Subsection 2 below in Eqs. (49) and (54), we obtain
the result for the renormalized operator O1,5

〈O(ren)
1,5 〉

=

〈
O1,5 +

2δij
3π2

[
Λ
(
1 + 2z

3

)
O(ren)

2,4 +
1− 3z

4Λ
O(ren)

2,6

]〉

= −4pipjδpk +

[
4pipjA(E)

p0 − p2/(2m)
+ (p→ k)

]

− iδij
√
mE

2π
m2A2(E) +O(Λ−2) . (43)

Here z = mρ0Λ2

λ0
and the superscript (ren) indicates a

renormalized operator, which has its UV divergence con-
tent properly regularized and renormalized. By compar-
ing Eq. (43) to the O(r2) terms in Eq. (36), we find this
operator’s Wilson coefficient to be

W1,5 =
1

8
rirj . (44)

Lastly, the matrix element of O1,6 = ψ†σ
←→
∂i
←→
∂j
←→
∂kψσ is

given by

〈O1,6〉 = −i8pipjpkδpk +

[
i8pipjpkA(E)

p0 − p2/(2m)
+ (p→ k)

]
.

(45)

No renormalization is necessary for this operator.
Comparing this to the terms of O(r3) in Eq. (36), we
get its Wilson coefficient:

W1,6 =
1

48
rirjrk. (46)

B. Two-Body Local Operators

In this subsection we calculate the matrix elements
of the two-body operators O2,∆ for two-atom scatter-
ing states and determine their Wilson coefficients, W2,∆.
Figure 7 shows the relevant diagrams for the two-body
scattering state. The operators of dimensions ∆ = 4, 6

+++ A A A A

FIG. 7: Diagrams for 2-body operators (empty dot).

are those which are relevant for the momentum distribu-
tion and other universal relations.

Since Fig. 7 is the same for any 2-body operators, its
matrix element can be written generally as

〈O2,∆〉 = (1 + iI0A(E))
[
v2,∆(p, k) + 2iI(2,∆)

0 A(E)
]

+ iAρ′
{

2I(2,∆)
2 (1 + iI0Aλ)

+ I2

[
v2,∆(p, k) + 2iI(2,∆)

0 Aλ
]

+ (p2 + k2 − 4mE)(1 + 2iI0Aλ)I(2,∆)
0

+
[
v2,∆(p)(k2 − 2mE) + v2,∆(k)(p2 − 2mE)

]
I0

}
,

(47)

where v2,∆(p, k) = v2,∆(p) + v2,∆(k) is the vertex fac-
tor for the operator O2,∆, and up to scaling dimension 6
these factors are given in Table IV in the Appendix. For
convenience, the vertex factors are broken up into terms
depending on a vertex’s ingoing and outgoing momenta.
Thus, the factors can depend either on the external mo-
mentum or the loop momentum of the particles. Loop
momentum-dependent terms are included in the integrals
defined by Eq. (A7) in the Appendix. The integrals I0

and I2 are defined in the Appendix by Eq. (A1). One im-
portant note is thatO2,4 has the momentum-independent
vertex factor v2,4(p, k) = 1. This is broken up into
v2,4(p) = 1/2 and v2,4(k) = 1/2 simply to follow the
prescription given by Eq. (47). Also, one is not allowed
to directly use the LS equation to simplify (1 + iI0A) in
the above equation because A(E) = Aλ +Aρ here. The
LS equation only includes Aλ. Additionally, any factors
of A(E) multiplying Aρ′ are Aλ, rather than Aλ + Aρ,
since we only want terms up to NLO in ρ0, or rs.

The leading two-body operator O2,4 = ψ†1ψ
†
2ψ2ψ1 has

been already calculated in the zero-range model [8] and
the field theoretical two-channel model for a narrow Fes-
hbach resonance [21]. Its matrix element is given by

〈O2,4〉 = (1 + iI0A(E))2

+ iAρ′(1 + iI0Aλ)
[
2I2 + (p2 + k2 − 4mE)I0

]
. (48)

With a multiplicative factor λ2
0 we obtain a renormalized

operator λ2
0ψ
†
1ψ
†
2ψ2ψ1 at LO in [8, 21]. Similarly at NLO,

it is renormalized by a multiplicative factor as

〈O(ren)
2,4 〉 =

〈
λ2

0

(
1 +

mρ0Λ3

3π2

)
O2,4

〉
= m2A2(E) + 2mλ0Aρ − i(p2 + k2 − 2mE)m2ρ0I0A2

λ

= m2A2(E) +O(Λ−2) , (49)
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where we used the LS equation in Eq. (34) to eliminate
1+I0 iAλ in favor of −mAλ/λ0. As shown in the last ex-
pression, we drop terms ∼ 1/Λ2. Note that the operator

O(ren)
2,4 is OC , the contact density operator.

This can be compared to the third term proportional
to r in Eq. (36), and this operator’s Wilson coefficient is
given by

W2,4 = − r

8π
+
rs
8π

, (50)

where we need the term proportional to rs here to can-
cel the term proportional to rs in the one-body result
in Eq. (38), as discussed before. Note that for O1,3 we

did not write O(ren)
1,3 = O1,3 + rs

8πλ
2
0O2,4. This is be-

cause the matrix element 〈O1,3〉 is finite with no explicit
Λ-dependence, so renormalization is not the proper pro-
cedure to eliminate the extra term. On the other hand,
the extra term needs to be canceled, so we use the Wilson
coefficient of O2,4 to accomplish this by adding the term
proportional to rs in Eq. (50).

The matrix element of O2,5 = ψ†1ψ
†
2ψ2
←→
∂iψ1 + h.c. is

simple because I(2,5)
2n = 0.

〈O2,5〉 = 2i(pi + ki)[1 + iI0A(E)]

− 2Aρ′
{

(pi + ki)I2 + [pi(k
2 − 2mE) + ki(p

2 − 2mE)]I0

}
.

(51)

This operator is renormalized by a multiplicative factor
as

〈O(ren)
2,5 〉 = 〈λ0

(
1 +

mρ0Λ3

6π2

)
O2,5〉 ,

= −2i(pi + ki)mA(E) +O(Λ−2) . (52)

But, this matrix element is not matched to any term in
Eq. (36) and its Wilson coefficient is thus W2,5 = 0.

For the operator ψ†1ψ
†
2ψ2
←→
∂i
←→
∂jψ1 + h.c., we define

O2,6 as this operator contracted with δij because then
it matches to the terms in the matrix element of the
nonlocal operator in Eq. (36).

〈O2,6〉 = −4(1 + iI0A(E))(p2 + k2 + 2iI2A(E))

− 4iAρ′
{

2(1 + iI0Aλ)I4 + (p2 + k2 + 2iI2Aλ)I2

+ (p2 + k2 − 4mE)(1 + 2iI0Aλ)I2

+ [p2(k2 − 2mE) + k2(p2 − 2mE)]I0

}
. (53)

To renormalize O2,6, we use momentum-dependent
operators only, and work in the on-shell limit, where
p2 = k2 = mE, which allows us to avoid energy de-

∆ O2,∆ W2,∆

4 ψ†1ψ
†
2ψ2ψ

(ren)
1 − r−rs

8π

5 ψ†1ψ
†
2ψ2
←→
∂iψ

(ren)
1 + h.c. 0

6 ψ†1ψ
†
2ψ2
←→
∇ 2ψ

(ren)
1 + h.c. − r3

384π

TABLE II: Two-body operators O2,∆ up to scaling dimension
6 and their Wilson coefficients.

pendent operators.

〈O(ren)
2,6 〉 =

〈
λ2

0

(
1 + 3

2x
)
O2,6

−
[

4λ3
0Λ3

3π2
(1 + 2x) +

12λ2
0Λ2x

5

]
O2,4

〉
(54)

= −8mEm2A2(E) +O(Λ−2) , (55)

where x = ρ0mΛ3

3π2 . The operators for the contact C and
derivative contact D in Eq. (13) are related to the renor-
malized operators as

O(ren)
2,4 = OC , (56)

O(ren)
2,6 = −4OD . (57)

This equality is seen when we drop the factors of ρ0 in
Eq. (54) and compare to Eq. (65), as there is already a
factor of ρ0 in the Hamiltonian and we are only treating
the problem to NLO in rs. Then, Eq. (54) is matched
to the last r3 term in Eq. (36) with the following Wilson
coefficient:

W2,6 = − r3

384π
. (58)

The Wilson coefficients for the two-body operators are
compiled in Table II.

Now we generalize our results by considering a two-
body system with a finite center-of-mass momentum K.
The relative momentum of each particle remains ±p.
The single particle momentum, expressed in terms of
center-of-mass and relative momenta, is K/2 ± p. In
addition to this momentum shift by K/2, the total
energy E is replaced by the Galilean invariant energy
E −K2/4m. The boost results in the multiplicative fac-
tor eiK·r/2 in Eq. (35) and can be reproduced in the OPE
by appropriate operators. The one-body results in Table

I can be written in the compressed form ψ†σ e
r·
←→
∂/2 ψσ to

reproduce this factor. In the two-body sector, we can ac-
count for a finite center-of-mass momentum in the OPE
by including the operator ψ†1ψ

†
2ψ2e

r·
←→
∂ ′/2ψ1 in place of

O2,4, where
←→
∂′i =

−→
∂i +

←−
∂i. We can expand the exponen-

tial in small r and define two new operators up to scaling
dimension 6:

O′2,5 = 2i ψ†1ψ
†
2ψ2
←→
∂′iψ

(ren)
1 ,

O′2,6 = − 1
2ψ
†
1ψ
†
2ψ2
←→
∂′i
←→
∂′jψ

(ren)
1 .
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Note that the Wilson coefficients are trivial in the sense
that, after including the appropriate factors from the def-
initions of O′2,5 and O′2,6, we simply use the coefficient
W2,4.

C. The Momentum Distribution and the
Hamiltonian

Collecting all the one- and two-body matching results
and Fourier transforming to momentum space, we obtain

ρσ(k) =

∫
R

∫
r

eik·r〈ψ†σ(R− r/2)ψσ(R + r/2)〉

=

∫
R

{
δk 〈O1,3(R)〉 − i∇kiδk

2
〈O1,4(R)〉 − ∇ki∇kjδk

8
〈O(ren)

1,5 (R)〉+ i
∇ki∇ki∇kkδk

48
〈O1,6(R)〉

+

(
1

k4
+ rs

δk
8π

)
〈OC(R)〉+

1

k6
〈OD(R)〉

+

(
k̂i
k5
− rs
∇kiδk
32π

)
〈O′2,5(R)〉+

(
6k̂ik̂j − δij

k6
+ rs
∇ki∇kjδk

32π

)
〈O′2,6(R)〉

}
, (59)

where
∫
R

=
∫
d3R,

∫
r

=
∫
d3r, δk = (2π)3δ(3)(k), and

the unit vector k̂i = ki/k. The third line in Eq. (59)
corresponds to the contact C and derivative contact D
in Eq. (13). On the last line the term with the 1/k6 tail
corresponds to the term C ′ ≡

∫
R
δij〈O′2,6(R)〉 in Eq. (13)

after an angular average over k, while the term with 1/k5

tail vanishes.

For the derivation of the energy relation in Eq. (14)
we first write the Hamiltonian in the absence of an ex-
ternal potential, using the terms from the Lagrangian in
Eqs. (4) and (5) as H = H0 +H1, where

H0 =

∫
R

[
T (R) +

λ0

m
O2,4(R)

]
,

H1 =

∫
R

[−ρ0

4
O2,6(R) +

δλ0

m
O2,4(R)

]
. (60)

Then we rewrite the operators in the Hamiltonian in
terms of the operators that appear in Eq. (13):

H0 =

∫
R

[
T +

OC
4πma

−
(

Λ

2π2m
+

ρ0Λ3

3π2λ0

)
OC
]
, (61)

H1 =

∫
R

ρ0

λ2
0

OD =

∫
R

1

16πm

(
rs −

4

πΛ

)
OD . (62)

The operators T , OC , and OD are

T (R) ≡ 1

2m

∑
σ

∇ψ†σ · ∇ψσ , (63)

OC(R) ≡ O(ren)
2,4 = λ2

0

(
1 +

mρ0Λ3

3π2

)
O2,4 , (64)

OD(R) ≡ −
O(ren)

2,6

4
= −λ

2
0

4

[
O2,6 −

4λ0Λ3

3π2
O2,4

]
+O(ρ0) ,

(65)

where λ0 and ρ0 are the bare couplings related to the
scattering length a and effective range rs as shown in
Eqs. (8) and (11). Note that in Eq. (65) we were able
to drop all terms proportional to ρ0 that appear in the

definition of O(ren)
2,6 because there is already a factor of

ρ0 multiplying OD in the finite range part of the Hamil-
tonian given by Eq. (62), and terms proportional to ρ2

0

should be dropped since we are working only up to NLO
in the range. We use Eq. (11) to rewrite H1 into a term
proportional to rsOD and a term proportional to 1

ΛOD.
The last term in square brackets in Eq. (65) is a counter

term which subtracts the divergent part of the matrix el-
ement 〈OD〉. This performs the same task as the term
proportional to δλ0 in the Lagrangian described in Sec.
II. Furthermore, we see that in this case ρ0

λ2
0
OD and

−ρ0
4λ2

0
O(ren)

2,6 , using Eq. (54), give the same result in the

Hamiltonian.
The subtracted kinetic term T (sub) in Eq. (14) is de-

fined by absorbing the explicit cutoff dependence from
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H0 and H1 into the kinetic term as

〈T (sub)〉 =

∫
R

〈
T − 1

2π2m

[
Λ
(

1 + 2mρ0Λ2

3λ0

)
OC +

OD
2Λ

]〉
.

(66)

T (sub) contains the terms proportional to ΛOC ,Λ3OC
to subtract the divergent pieces of

∫
R

〈
T
〉

and the term

proportional to 1
ΛOD, as mentioned above, to remove the

remaining Λ-dependence.

VI. CONCLUSION

In this paper we carried out the operator product
expansion for the momentum distribution of a two-
component Fermi gas including all terms that are first
order in the effective range. Using the result for the mo-
mentum distribution of a two-particle scattering state,
we matched all operators up to scaling dimension 6 and
obtained the corresponding Wilson coefficients. We used
a sharp cutoff in our calculations and used an EFT frame-
work to include corrections due to a finite effective range.

The main results of this work are extended universal
relations that contain the previously known contact C
and the two quantities C ′ and D. Specifically, their sum
appears as the asymptote of the subleading (C ′ +D)/k6

tail in the momentum distribution. The derivative con-
tact D alone also appears in universal relations for the
total energy, its derivative with respect to the effective
range rs, the pressure relation, and the virial theorem as
an effective range correction of the form rsD. Werner
and Castin [22] first found the subleading tail and its re-
lation to energy D = 16πmdE/drs, which we reproduced
using the OPE.

While effective range corrections to observables are
generally suppressed by a factor of rs/a, the size of
derivative contact itself is not suppressed in this way in
comparison to the size of contact. For instance, the QMC
simulation in Ref. [28] obtained, in the unitary limit,
the density of the derivative contact D/k6

F ≈ 0.06, while
the contact density is C/k4

F ≈ 0.11. In the BEC limit
(a → 0+), the derivative contact becomes more impor-
tant because it scales like D/k6

F ∝ 1/(kFa)3, while the
contact scales like C/k4

F ∝ 1/(kFa). Our result for the
tail of the momentum distribution, in the absence of a
known value for C′, already improves the description of
the numerical many-body calculation for the same quan-
tity for k > 1.5kF as shown in Fig. 4. The subleading
D/k6 in the tail gives a correction as large as 20% near
1.5kF in unitary limit.

Our results are the first step towards range-corrected
universal relations for other observables such as the
single-particle dispersion relation, structure factors, and
RF spectroscopy. In our calculation we have not consid-
ered the 3-body operator that would lead to the Efimov
effect and a 1/k5 tail for the large imbalanced mass ra-
tio m1/m2 > 13.6 [47] or in a system of three identical

bosons [14]. This would be an interesting extension of
the work presented here.
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∆ 3 4 5 6

v1,∆(p) 1 2ipi −4pipj −8ipipjpk

TABLE III: Vertex Factors for 1-body operators of ∆ = 3..6.

Appendix A: Vertex Factors and Loop Integrals

In the calculation of the scattering amplitude we en-
counter the loop diagrams shown in Fig. 2 which lead to
the integrals I2n(E):

I2n(E,Λ) =

∫
q

iq2n

q0 − q2

2m + iε

i

E − q0 − q2

2m + iε

= − imΛ2n+1

2(2n+ 1)π2
+mE I2n−2(E,Λ) , (A1)

I0(E,Λ) = − im
2π2

(
Λ +

√
mE

2

[
iπ + ln

(
Λ−
√
mE

Λ+
√
mE

)])

≈ − im
2π2

(
Λ +

iπ

2

√
mE − mE

Λ
+ · · ·

)
, (A2)

I2(E,Λ) ≈ − im
2π2

(Λ3

3
+mEΛ +

iπ

2
(mE)3/2

− (mE)2

Λ
+ · · ·

)
, (A3)

where the integral symbol is defined as
∫
q

=
∫

d4q
(2π)4 . We

assume E > 0 because we carry out the matching for
the two-atom scattering state above the threshold. The
result which is valid above and below the threshold is
given in [48]. The even powers of q in the numerator
of I2n(E,Λ), indicated by the index 2n, come from the
attachment of the part of the off shell amplitude with
explicit momentum dependence to a loop diagram.

Next, we examine the integrals which arise in the one-
body operator loop diagrams. Depending upon the par-
ticular operator under consideration, the vertex factor
in the loop integrals changes, and Table III below shows
the one-body vertex factors. These factors, as well as the
various v2,∆(q, l), can be derived by inserting the defini-
tion of the nonrelativistic fermion field into the operators
listed in Eq. (30) and taking the given spatial derivatives.

The loop integral I(1,∆)
2n , for which Table III applies, is

from the last Feynman diagram of Fig. 6 and is given by

I(1,∆)
2n (E) =

∫
q

i2q2n v1,∆(q)

[E − q0 − q2

2m + iε]2

i

q0 − q2

2m + iε

= −i d
dE

[∫
q

iq2n v1,∆(q)

E − q0 − q2

2m + iε

i

q0 − q2

2m + iε

]
. (A4)

The subscript 2n in I(1,∆)
2n (E) indicates the number of

powers of q in the numerator of the integral due to the
attachment of the off shell amplitude, and the superscript
(1,∆) specifies that this integral corresponds to the in-
sertion of a one-body operator of dimension ∆ into a loop

∆ 4 5 6

v2,∆(p) 1/2 2ipi −4δijpipj

TABLE IV: Partial vertex factors for two-body operators of
dimensions ∆ = 4..6. For the total vertex factor, one must use
v2,∆(q, l) = v2,∆(q) + v2,∆(l), where q and l are the vertex’s
ingoing and outgoing momentum, respectively. The δij comes
from the use of ∇2 rather than ∂i∂j in O2,6.

diagram. Inserting the factors v1,∆(q) given in Table III
into Eq. (A4) gives

I(1,3)
2n (E) = −id I2n(E)

dE
, (A5)

I(1,5)
2n (E) = i

4δij
3

d I2n+2(E)

dE
, (A6)

where I(1,∆)
2n (E) = 0 for even ∆ = 4, 6 because their

integrand is an odd function of q. By using I2n given in

Eq. (A1), we obtain explicit expressions for I(1,∆)
2n .

For two-body operators, the integrals I(2,∆)
2n represent

loop integrals useful in the diagrammatic calculations of
Fig. 7.

I(2,∆)
2n (E) =

∫
q

iq2n v2,∆(q)

q0 − q2

2m + iε

i

E − q0 − q2

2m + iε
. (A7)

Inserting the vertex factors v2,∆ from Table IV into
Eq. (A7) gives

I(2,4)
2n (E) =

I2n(E)

2
, (A8)

I(2,6)
2n (E) = −4δij

3
I2n+2(E) , (A9)

while I(2,5)
2n (E) = 0. The even powers of loop momentum

in the integrals again come from the attachment of the
momentum-dependent part of the off shell amplitude to
loop diagrams. Additional powers of momentum may be
added to the numerator in Eq. (A7) by the vertex factors
given in Table IV.

The following integrals are for the nonlocal operator
diagrams for the LHS of the momentum distribution.

Iρ,2n(E) =

∫
q

i2q2neiq·r

[q0 − q2

2m + iε]2

i

E − q0 − q2

2m + iε
, (A10)

Iρ,0(E) = − im2

8π
√
mE

ei
√
mE r +O(1/Λ3) ,

Iρ,2(E) = − im
2[
√
mE − 2i/r]

8π
ei
√
mE r +O(1/Λ) .
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