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Ultrafast photoionization dynamics within a driver field cycle is shown to be the key to 

understand the multifaceted role of the Keldysh parameter γ  as the borderline between 

multiphoton and tunneling ionization, ionization adiabaticity degree, and a measure for the 

electron tunneling time. We demonstrate that, when applied to subcycle ionization dynamics, 

the γ << 1 condition automatically translates into a criterion of both adiabaticity and 

photoionization via tunneling. We also show that the ratio of the Keldysh γ to the frequency 

of the driver field indeed defines an important time scale of photoionization. However, 

instead of connecting to the electron motion beneath the potential barrier, it relates to the time 

needed for an electron to acquire a pondermotive energy equal to the ionization potential. This 

time scale is shown to manifest itself in the experimentally measurable buildup time of the 

photoelectron yield. 

 

 

Over five decades, the Keldysh theory of photoionization [1] has been pivotal to the research 

in strong-field laser science [2], providing a universal framework for a quantitative analysis of 

ionization in a remarkable diversity of light–matter interaction phenomena, including laser-

induced breakdown [3, 4], high-order harmonic [5, 6] and terahertz [7, 8] generation, as well 

as filamentation of ultrashort light pulses [9, 10]. As one of its central results, the Keldysh 

theory elegantly shows that multiphoton ionization and electron tunneling are, in fact, two 

pathways that dominate photoionization in the weak- and strong-field regimes, respectively. 

Remarkably, transition from one regime to the other is controlled by a single physical 

parameter – the Keldysh gamma parameter ( ) ( )0
21

02 eEmIωγ = , where ω and E0 are the 



frequency and the amplitude of the driver field, I0 is the ionization potential, and e and m are 

the electron charge and mass.  

Besides defining a borderline between multiphoton and tunneling ionization, the 

Keldysh parameter quantifies the nonadiabaticity degree of the photoionization process, with 

adiabaticity understood in this context as no frequency dependence in the photoionization rate 

[1]. In the multiphoton regime, i.e., for γ >> 1, the photoionization rate is strongly dependent 

on the laser frequency. In the opposite limit of small γ, photoionization occurs via electron 

tunneling, and the photoionization rate becomes frequency-independent. 

While the role of the Keldysh γ as the borderline between weak- and strong-field 

ionization regimes is easy to understand, the γ << 1 ionization adiabaticity criterion is much 

less intuitive. With the laser frequency dropping out of the photoionization rate in the γ << 1 

regime, it is tempting to relate γ to the time of electron tunneling [1]. Indeed, the Keldysh 

parameter can be represented as 04 Tbπτγ = , where ωπ20 =T  is the cycle of the driver 

field, and ( ) ( ) 1
0

21
0 2 −== eEmIvdbτ  is the time it takes for a classical particle with the 

velocity ( ) 21
02 mIv = to travel a distance ( )00 eEId =  equal to the width of the potential 

barrier (Fig. 1) formed by the Coulomb potential and a dc driver field E0.  

While γ  provides a central reference point for photoionization when understood as the 

borderline between the weak- and strong-field regimes, as well as the measure of 

nonadiabaticity of photoionization, it is this third interpretation of this parameter in its relation 

to the tunneling time that has been a subject of heated debate over decades (see, e.g., Refs. 11 

– 13 for a review), as it is clearly at odds with canonical quantum mechanics, which does not 

provide much ground for a consensus with regard to the possibility of direct tunneling time 

measurements and the uncertainty of such measurements if possible at all. The opening 

paragraph of the seminal Keldysh paper [1] introduces γ as a measure of adiabaticity by 

putting it in the context of τb [14]. However, it does not necessarily identifies γ/(2ω) with 

vdb =τ . 

In the era of modern technologies, this debate goes way beyond purely methodological, 

interpretational matters, as a clear understanding of extremely fast electron tunneling 

dynamics would help maximize the speed of semiconductor electronic devices, achieve an 

ultimate accuracy in attosecond metrology [15], and identify the fundamental limitations of 

rapidly emerging petahertz optoelectronics [16, 17]. Experimental approaches developed in 

the past few years [18 – 24] enable the detection of electron tunneling dynamics using the 



methods of ultrafast laser science [25 – 29]. Physical interpretation of these measurements, 

however, faces fundamental difficulties as the available quantum approaches do not offer a 

simple recipe of defining the time of quantum tunneling. With this big picture of unique 

experimental opportunities facing fundamental conceptual difficulties in sight, the vdb =τ  

tunneling-time intuition seems to offer an appealing, physically transparent, albeit not 

perfectly rigorous perspective on electron tunneling, leading to real-valued predictions for the 

times of electron under-barrier motion, which seem to offer valuable insights into the results 

of numerical analysis of tunneling ionization [30, 31]. The question that remains to be 

addressed, however, is whether any sort of compromise between this tunneling-time 

perspective on γ and the canonical quantum picture of tunneling is possible. 

Our main goal here is to address the questions as to why the Keldysh γ serves 

simultaneously as the adiabaticity parameter and a borderline between multiphoton and 

tunneling ionization, as well as whether the time γ/ω is in any way representative or in any 

way related to electron tunneling dynamics in general and beneath-the-barrier electron motion 

in particular. We show below in this paper that, to answer these questions, photoionization 

dynamics within a driver field cycle needs to be examined. When applied to such subcycle 

ionization dynamics, the γ << 1 condition will be shown to translate in a physically 

transparent way into a criterion of both photoionization via tunneling and frequency-

independent photoelectron yield. Moreover, it will be demonstrated that the γ/ω time indeed 

defines an important time scale of photoionization. However, instead of connecting to the 

vdb =τ  time and electron motion beneath the potential barrier (Fig. 1), it relates to the time 

needed for an electron to acquire a pondermotive energy equal to the ionization potential.  

In the Keldysh theory of photoionization [1], the field E(t) couples an electron bound 

state with a wave function ψ0(r) to a free electron state with a wave function ψp(r, t) (Fig. 1), 

inducing transitions between these states with the transition amplitude given by 

( ) ( ) ( ) ( ) rrrrp p dtVttw 0
* ,,, ψψ∫= ,         (1) 

where ( )tV ,r  is the electron–field interaction part of the Hamiltonian. For a monochromatic 

laser field ( ) ( )tt ωcos0EE = , we have ( ) ( )tetV ωcos, 0rEr = . Photoionization from the ground 

state of a hydrohenlike atom is described by setting ( ) ( ) ( )ara −= − exp213
0 πψ r , where 

( )22 mea h=  is the Bohr radius. The free-electron wave function is taken in the form of the 

Volkov-type solution, ( ) ( ) ( ) ( )[ ]{ }∫−=
t

dmitit
0

22exp, θθψ PrPrp hh , with the generalized 



momentum ( )tP  in the case of a monochromatic driver field ( ) ( )tt ωcos0EE =  given by  

( ) ( )tet ωω sin0
1EpP −+= . 

With the transition amplitude w(p, t) averaged over the field cycle and integrated over 

the momentum, the photoionization rate is expressed as a series 
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where ( ) ( ) ( ) rErsrs dariaeW ∫ −−= −− expexp2321 hπ  and integration is along a closed 

contour enclosing the [–1, 1] segment. 

Since the exponential in L(p) is rapidly oscillating, the integral in Eq. (2) is dominated 

by the saddle points, defined by the equation 

0sin
2
1 2

0 =⎟
⎠
⎞

⎜
⎝
⎛ ++ t

e
m

I ω
ω

0E
p .         (4) 

With the integral in L(p) calculated using the saddle-point approximation, Eqs. (2) and 

(3) lead to the celebrated Keldysh formula for the rate of photoionization [1], 

( ) ( ){ }ωγξωγ ,,exp,, 00 IIQwK −= ,         (5) 

where ( )ωγ ,, 0IQ  is a preexponential factor and 
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The beauty of this result is that it provides a uniform description of multiphoton and 

tunneling ionization, showing that these processes can be treated as two limiting regimes 

corresponding to photoionization with γ >> 1 and γ << 1, respectively. Indeed, with γ >> 1, 

Eqs. (5) and (6) recover the signature IN scaling of multiphoton ionization rate as a function of 

the field intensity I and the minimum number of photons N needed for photoionization. With 

γ  << 1, on the other hand, Eqs. (5) and (6) yield 

( )( ) ( ) ( ){ }101234exp 21
0

23
0

21 γ−−∝ −EeImwK h . With the small γ2 term omitted in the 

argument of the exponential, this expression recovers the canonical result for the transmission 

of an electron wave function tunneling through a triangular potential barrier formed by a 

rectangular potential step of height I0 and a dc electric field E0. 



For γ << 1, the driver frequency ω cancels out in Eq. (6), allowing γ  to be interpreted as 

the degree of photoionization adiabaticity [1]. However, while the form of the exponential in 

Eq. (6) makes it easy to understand the role of the Keldysh γ as the borderline between the 

high- and weak-field ionization regimes, it offers no equally instructive physical insight into 

the frequency cancellation in the ionization rate in the γ << 1 strong-field regime. 

Although it cannot be directly verified with Eqs. (1) – (6), the 04 Tbπτγ =  

interpretation of the gamma parameter in terms of the beneath-the-barrier passage time 

vdb =τ  seems to offer a missing clue for the ω cancellation in the γ << 1 regime [1, 14]. 

This rises expectations that the Keldysh parameter can also serve as a measure of the electron 

tunneling time, understood as the time electrons spend under the potential barrier in the 

process of tunneling. The solution of Eq. (4) for t0 is, however, purely imaginary: 
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The 04 Tbπτγ =  interpretation of γ is still in many ways useful, but only as a measure 

of the imaginary photoionization time (Fig. 1), which allows the stationary-phase points [Eq. 

(4)] dominating the integral in L(p) to be described in a compact and appealing form [32]. 

The relation of t0 to the real duration of the photoionization process is, however, anything but 

clear.  

We are going to show now that, in the quantum-mechanical picture, where 

photoionization is described in terms of the generic transition amplitude of Eq. (1), tunneling 

instantly follows the driver field, with the electron wave packet leaking through the potential 

barrier formed by the Coulomb potential and the driver field (Fig. 1) without any time lag that 

could be related to under-barrier electron dynamics. To this end, we consider the dynamics of 

photoionization within the driver field cycle without averaging the probability amplitude w(p, 

t) over the field cycle. The photoelectron yield induced by the driver field by the time t is then 

given by  
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Since w(p, t) is dominated by photoelectrons with small p [1, 32], the terms with p can 

be discarded, to give for a driver field linearly polarized along the z-axis, in the one-

dimensional case, 
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where  
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The exponential in Eq. (9) rapidly oscillates unless ( )θ,zΦ  ≈ 0. Noting that the strong-

field regime criterion γ << 1 is equivalent to ( ) ( ) 0
22

0 2 ImeE >>ω , we see that, in this 

regime, an electron acquires the pondermotive energy equal to the ionization potential I0 

within a small time interval [–τ0, τ0] around the peak of the driver field (Fig. 2) defined by the 

equation  
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Since ( ) 1sin 0
2 <<ωτ  within this interval, we can use Taylor-series expansions 

( ) ( )22sin ωθωθ ≈  and ( ) ( ) 21cos 2ωθωθ −≈  in Eq. (10), to write the solution to the ( )θ,zΦ  

= 0 equation as 
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As elegantly shown by Perelomov, Popov, and Terent’ev (PPT) [32], Eq. (4) for the 

saddle points of the integrand in Eq. (3) can be recovered from the Newtonian equations of 

motion for a classical electron that is allowed to have an imaginary momentum. The PPT 

theory also introduces a useful measure for the width of the potential barrier, dPPT, defined as 

the distance that such an electron travels from the moment it enters the beneath-the-barrier 

domain, where both the time and the momentum are allowed to be imaginary, until the 

moment of time when the driver field reaches its peak value. Since the latter condition is 

expressed as θ = 0, we find that, for γ << 1, z0 defined by Eq. (12) is equal to dPPT. 

Using Eq. (12) to estimate J(t), we derive 
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Despite its approximate character, Eq. (13) correctly reproduces the ω → 0 limit of the 

photoionization rate in the γ << 1 regime, recovering, similar to the Keldysh theory of 



photoionization [Eqs. (5), (6)], the probability of dc-field-induced tunneling, 

( )( ) ( )[ ]0
213

0234exp EemIwdc h−∝ , up to a factor of 4/3 in its argument. 

Evaluating the integral in Eq. (13), we find  

( ) ( ) ( )[ ]et
Ee

Im
tJ τerf1

2
exp

0

23
0

21

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝

h
,        (14) 

where ( ) ( ) ( )∫ −= − u
du

0

221 exp2erf ξξπ  is the error function and 

( ) ( ) ( ) ( ) 2121413
0

21
0

41 212 −−−
+= γωτ mIEee h .   

It is straightforward to see from Eq. (14) that the profile of J(t) has a shape of a step 

centered at θ = 0, where the driver field reaches its maximum. Such steps are indeed observed 

in attosecond time-resolved studies of the photoelectron yield in the strong-field regime [18] 

The buildup rate of J(t), that is, the steepness of the 1 + erf(t/τe) step in Eq. (14), is controlled 

by the τe time-scale parameter. Due to the 21
00
−∝ Eτ  scaling, stronger driver fields give rise 

to steeper steps in J(t). In the E0 → ∞ limit, J(t) tends to a Heaviside unit-step function, J(t) → 

Θ(t), whose step is locked to the peak of the field at t = 0. In this sense, electron tunneling 

instantly follows the driver field without any time lag with respect to the driver field. 

We are now in a position to address the question as to why the Keldysh gamma 

parameter serves simultaneously as the adiabaticity parameter and a borderline between weak- 

and strong-field ionization. To this end, we resort to the equation ( )θ,zΦ  = 0, which defines 

the effective thickness of the potential barrier formed by the Coulomb potential and the driver 

field. An important insight offered by this equation is that the pondermotive energy 

( ) ( )( ) ( )ωθωθ 22
0 sin21 eEmU p = , acquired by the electron in the presence of a driver field, 

modulates the potential barrier, effectively increasing its height and width.  

When the Up(θ) term dominates over the ionization potential term I0 everywhere within 

the field cycle except for a short time interval [–τ0, τ0] around θ = 0, 

( ) 0
2

2
0 sin

2
1 I

eE
m

>>⎟
⎠
⎞

⎜
⎝
⎛ ωθ

ω
, 00 τθτ <<− ,        (15) 

Eq. (12) for the effective width of the potential barrier is reduced to 

( ) ( )[ ] ( ) ( ) 2
0

11
00

221
000 21 θθγω eEmeEIeEIz −−− +=+≈ . The photoelectron yield J(t) is then 

frequency-independent, with its buildup time given by  
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Thus, the analysis of ultrafast ionization within the field cycle leads us to formulate the 

criterion of strong-field photoionization in the form of Eq. (15). When written in such a form, 

this criterion automatically implies, through Eqs. (11) – (13), that the photoionization rate is 

frequency-independent, or, for that matter, adiabatic. Notably, the term representing the 

pondermotive energy also leads to frequency cancellation in the Keldysh formula 

photoionization rate [Eqs. (2) – (6)] in the γ  << 1 limit. However, since the Keldysh formula 

involves integration in time, the pondermotive energy enters into these equations in its 

averaged form – as the ( )22
0

2 4 ωmEe  term in Eq. (2) and as the [1 + 1/(2γ2)] factor in Eq. (6). 

The relation of ω cancellation in the photoionization rate to the subcycle dynamics of 

photoionization is thus lost.  

Eqs. (8) – (15), on the other hand, clearly show that it is the photoionization occurring 

within a small fraction of the driver cycle, that is, within the time interval [–τ0, τ0], that makes 

photoionization frequency-independent. The physics behind this involves ultrafast electron 

tunneling, which is strongly confined to a very short time gate [–τ0, τ0]. Within this interval, 

the pondermotive energy term, which dominates the width and height of the potential barrier, 

grows quadratically with time (Fig. 2), ( ) ( )2ωθθ ∝pU . Its amplitude, on the other hand, 

scales as ω–2 with the driver frequency. As a consequence, the barrier width and, hence, the 

probability of photoionization become frequency-independent.    

We can now confront another central question of field-induced ionization – the question 

as to whether the time γ/ω is in any way representative of beneath-the-barrier electron 

dynamics, as the vdb =τ ( )ωγ 2=  intuition suggests. We note that Eq. (15) leads to 

( ) ( ) 0
22

0 2 ImeE >>ω , which can be rewritten in the form γ2 << 1 [see also Eq. (11)], 

equivalent to the criterion of both tunneling and adiabaticity in the Keldysh theory of 

photoionization. Then, solving Eq. (11) for τ0, we find γωτ arcsin1
0

−= . Since γ << 1, this 

reduces to ( ) ( )0
21

00 2 eEmI=≈ ωγτ . We see that the γ/ω ratio does indeed define an 

important time scale of photoionization. However, this time scale, τ0, is not related to the time 

of electron motion beneath the potential barrier, vdb =τ , but connects, via Eq. (11), to the 

time needed for an electron to acquire a pondermotive energy equal to the ionization potential 

(Fig. 2).  

This result suggests a finite time lag of ωγτ ≈0  between the moment of time when 

electrons appear in the continuum, i.e., acquire an energy higher than I0, and the instant when 



the electron wave packet is detected, in some thought experiment, right behind the potential 

barrier. Since for an electron in an excited bound state with ionization potential Ij, this time 

lag is ( ) ( )0
212 eEmI jjj =≈ ωγτ , the overall buildup time of continuous population can be 

expected to be strongly correlated with, but not necessarily equal to τ0.  Analysis of 

continuum population dynamics seems to be consistent with this intimation, showing that the 

continuum population buildup time is indeed strongly correlated with the Keldysh time [30].  

Experiment-wise, the time τ0 shows up in the photoelectron yield rise time as 

( ) ( ) 0
413

0
21

0 2 ττ −
≈ mIEee h . For a driver field intensity of 1014 W/cm2, this gives τe ≈ 0.14 fs. 

Despite its brevity, the buildup time of the photoelectron yield can be measured with a 

reasonable accuracy in experiments by attosecond time-resolved studies [18] or by analyzing 

the spectra of optical harmonics [20, 21]. From the perspective of the fundamental principles 

of quantum mechanics, the photoelectron yield J(t), whose definition [Eqs. (8) – (14)] 

involves integration over the wave functions of the initial and final states, is relevant as a 

macroscopic physical measurable. However, in real-life experiments performed in extended 

media, time-resolved photoelectron yield measurements are prone to distortions caused by the 

sensitivity of J(t) to the carrier–envelope phase of the driver field, which may be a function of 

spatial coordinates. Additional precautions should be taken when the information on J(t) is 

retrieved from the spectra of optical harmonics, e.g., using approaches developed in Refs. 21 

and 21, rather from direct time-resolved measurements on the photoelectron yield [18], since 

optical harmonics are generated through wave-mixing processes with J(t) playing the role of a 

source term, which inevitably involves propagation effects, such as phase matching. 

The Keldysh time ( ) ( ) ( ) 1
0

21
0 22 −== eEmIbτωγ  is sometimes viewed [33, 34] as a 

particular case of the Büttiker–Landauer (BL) tunneling time ( )κτ hmdBL = , defined [35] for 

an electron of mass m tunneling through a rectangular barrier with a width d, ħκ being the 

magnitude of the imaginary momentum of the electron under the barrier. This point of view is 

certainly justified in a sense that the Keldysh theory treats field-induced ionization in terms of 

a modulated potential barrier. In this regard, the Keldysh time τb can indeed be viewed, at 

least formally, as a BL time for a triangular barrier with a width d = I0/(eE0). However, this 

does not mean that laser-induced ionization can be treated as a particular case of electron 

tunneling through the BL-type oscillating barrier. Indeed the BL oscillating barrier is not 

reduced to the time-dependent potential barrier encountered in photoionization induced by an 

ultrashort laser pulse. As a consequence, the transmission probability TBL calculated for the 



BL potential barrier does not recover the Keldysh-theory photoionization rate as its particular 

case. To make matters even more complicated, the interpretation of the BL time as the 

duration of the tunneling process has been a subject of debate because this interpretation is 

largely based on the sensitivity of TBL to the electron energy [33, 34]. Since the electron 

energy in laser-induced ionization rapidly oscillates as a function of time within the field 

cycle, relating the times τ0 and τe of this paper to the beneath-the-barrier passage time in the 

spirit of the BL treatment, beyond a simple observation that Eq. (12) recovers the d = I0/(eE0) 

result at θ = 0, is anything but trivial. 

To summarize, when applied to subcycle ionization dynamics, the γ << 1 condition 

automatically translates into a criterion of both adiabaticity and photoionization via tunneling. 

We have demonstrated that the γ/ω ration can indeed be connected to a typical time scale of 

photoionization, τ0. However, this time is not related to the beneath-the-barrier passage 

time vdb =τ , which is defined as the time needed for a classical particle to cover a distance 

equal to the thickness of the potential barrier. Instead, the time τ0 has been shown to be related 

to an ultrafast buildup of the electron pondermotive energy within a small fraction of the 

driver field cycle, manifesting itself in the experimentally measurable buildup of the 

photoelectron yield. 
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Fig. 1. Tunneling of an electron through the potential of an atomic nucleus (blue dashed line) 
modified by the electric field E0 (the energy of interaction with this field is shown by the 
green dashed line). The wave function of the initial bound state of an electron is shown by the 
blue line. The wave function of a free-electron in an ac electric field is shown by the red line. 
Tunneling via beneath-the-barrier passage is shown by the dashed arrow. The dial shows the 
imaginary time related to this process.  
 

 
 

Fig. 2. The thickness z0 of the potential barrier formed by the potential of an atomic nucleus 
and a laser field with a field intensity of 500 TW/cm2 and a wavelength of 800 nm found as 
the solution of the ( )θ,zΦ  = 0 equation (red solid line) and using the approximate solution to 
this equation given by Eq. (12) (dash – dotted line). The green solid line shows the 
pondermotive energy Up of the electron as a function of time θ, measured in field cycles. Also 
shown is the time τ0 required for electron to gain the potential energy Up equal to the 
ionization potential I0 (shown by the horizontal dashed line). 


