
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Lifetimes and wave functions of ozone metastable
vibrational states near the dissociation limit in a full-

symmetry approach
David Lapierre, Alexander Alijah, Roman Kochanov, Viatcheslav Kokoouline, and Vladimir

Tyuterev
Phys. Rev. A 94, 042514 — Published 21 October 2016

DOI: 10.1103/PhysRevA.94.042514

http://dx.doi.org/10.1103/PhysRevA.94.042514


Lifetimes and wave functions of ozone metastable vibrational

states near the dissociation limit in full symmetry approach

David Lapierre1, Alexander Alijah1, Roman Kochanov2,3,

Viatcheslav Kokoouline4, and Vladimir Tyuterev1
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Abstract

Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of 16O3

were determined using a previously-developed efficient approach, which combines hyperspherical

coordinates and a complex absorbing potential. The calculations are based on a recently-computed

potential energy surface of ozone determined with a spectroscopic accuracy [J. Chem. Phys. 139,

134307 (2013)]. The effect of permutational symmetry on rovibrational dynamics and the den-

sity of resonance states in O3 is discussed in detail. Correspondence between quantum numbers

appropriate for short- and long-range parts of wave functions of the rovibrational continuum is

established. It is shown, by symmetry arguments, that the allowed purely vibrational (J = 0)

levels of 16O3 and 18O3, both made of bosons with zero nuclear spin, cannot dissociate on the

ground state potential energy surface. Energies and wave functions of bound states of the ozone

isotopologue 16O3 with rotational angular momentum J = 0 and 1 up to the dissociation thresh-

old were also computed. For bound levels, good agreement with experimental energies is found:

The RMS deviation between observed and calculated vibrational energies is 1 cm−1. Rotational

constants were determined and used for a simple identification of vibrational modes of calculated

levels.
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I. INTRODUCTION

Knowledge of quantum rovibrational states near the dissociation threshold is mandatory

for the understanding of the molecular dynamics of formation and depletion processes. In

this respect the ozone molecule is a particular interesting subject for both fundamental

molecular physics [1–10] and various applications owing to the well-known role that this

molecule plays in atmospheric physics and climate processes [11, 12]. Despite of the sig-

nificant progress made over past decades in the study of ozone spectroscopy [8, 13–18] and

dynamics [1–6, 10, 19–30] many aspects of this molecule as well as of the O2 + O complex

in high energy states are not yet fully understood. One of the major motivations for recent

investigations of excited ozone has been the discovery of the mass-independent fractionation

reported by Mauersberger et al. [31–33], Thiemens et al. [34], and Hippler et al. [35] in

laboratory and atmospheric experiments: for most molecules, the isotope enrichment scales

according to relative mass differences, but the case of ozone shows an extremely marked

deviation from this rule. This has been considered as a “milestone in the study of isotope

effects” [2] and a “fascinating and surprising aspect . . . of selective enrichment of heavy

ozone isotopomers” [30]. On the theoretical side, many efforts have been devoted to the

interpretation of these findings, in the research groups of Gao and Marcus [20, 21], Troe et

al. [35, 36], Grebenshchikov and Schinke [29, 37], Babikov et al. [28, 38], Dawes et al. [30] and

in many other studies, see [1–6, 22–27, 39–42] and references therein. Several fundamental

issues raised by the ozone studies could have an impact on the understanding of important

phenomena in quantum molecular physics and of the complex energy transfer dynamics near

the dissociation threshold.

It has been recognized that a non-trivial account of the symmetry properties [6, 39],

efficient variational methods for the nuclear motion calculations and an accurate determi-

nation of the full-dimensional ozone potential energy surfaces (PES) are prerequisites for

an adequate description of related quantum states and processes in the high energy range.

The ozone molecule exhibits a complex electronic structure and represents a challenge for

accurate ab initio calculations [7, 9, 43–48]. Earlier 1D PES studies predicted an “activation

barrier” at the transition state (TS) along the minimum energy path (MEP) [49–51]. Later

on more advanced electronic structure calculations have suggested that the MEP shape

could have a “reef”-like structure [52–54] with a submerged barrier below the dissociation
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limit. Following preliminary estimations of Fleurat-Lessard et al. [54], this “reef” feature was

incorporated into a so-called “hybrid PES” by Babikov et al. [38] by introducing a 1D semi-

empirical correction to the three-dimensional Siebert-Schinke-Bittererova (SSB) [44, 45] PES

with empirical adjustments to match the experimental dissociation energy. This modified

mSSB surface containing a shallow van der Waals (vdW) minimum along the dissociation

reaction coordinate around r1 ∼ 4.5−5.0 a0 has been used to study the metastable states [38]

and also suggested the existence of van der Waals bound states [55–58]. A detailed review

of ozone investigations up to this stage has been presented in the “Status report of the

dynamical studies of the ozone isotope effect” by Schinke et al. [1] who concluded that the

calculated rate constants were about 3-5 times smaller than the measured ones and had a

wrong temperature dependence. Recently Dawes et al. [30, 59] have argued that an accurate

account of several interacting electronic states in the TS region should result in a ground

state potential function without the “reef” feature found in previous ab initio calculations.

Since this work, and based on scattering studies [5, 60, 61], the “reef structure” was con-

sidered a “deficiency” [62] of the SSB PES [44, 45] and its modified mSSB versions [38, 63],

and was thought a plausible reason for the disagreement in rate constant calculations [1, 30].

Ndengue et al. [62] have reported energies of J = 0 and J = 1 bound rovibrational ozone

states below D0 using the Dawes et al. [59] PES. Variational calculations of the 100 lowest

bound vibrational states using that PES resulted in a root-mean-square (RMS) obs-calc

error [62] of ∼ 20 cm−1 with respect to the experimentally observed band centers of (16O)3.

In 2013 Tyuterev et al. [64] have proposed a new analytical representation for the ozone

PES accounting for its complicated shape on the way towards the dissociation limit. They

constructed two PES versions based on extended ab initio calculations. Both PESs were

computed at a high level of electronic structure theory with the largest basis sets ever used

for ozone, MRCI(+Q)/AV XZ with X = 5, 6 and extrapolation to the complete basis set

limit. The first PES, referred to as R PES (“reef PES” ) has been obtained including a sin-

gle electronic state in the orbital optimization. It possesses the “reef” TS feature, as most

published potentials do. The second one accounts for Dawes et al.’s correction [30] which

considers interaction with excited states. This latter potential is referred to as NR PES

(“no reef PES”). Both PESs have very similar equilibrium configurations in the bottom of

the main C2v potential well and give the same dissociation threshold, very close to recent

experimental value of Ruscic D0=8563 cm−1 [65, 66] (as cited in [47]). Vibrational calcu-
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lations, using the NR PES by Tyuterev et al. [64], of all (16O)3 band centers observed in

rotationally resolved spectroscopy experiments have resulted in an (RMS) obs-calc error of

only ∼ 1 cm−1 without any empirical adjustment.

Metastable ozone states above the dissociation threshold are expected to play a key

role in the two-step Linderman mechanism [38] of ozone formation at low pressures. They

have been studied by Babikov et al. [38] and by Grebenschikov and Schinke [29, 37] in-

volving also lifetime calculations. Both investigations are based on SSB or mSSB potential

surfaces [38] exhibiting the “reef”-structure features. Assignment of recent very sensitive

cavity-ring-down laser experiments in the TS energy range (from 70% to 93% of D0) have

been possible [8, 67–73] due to ro-vibrational predictions using the NR PES of Ref. [64]

that changed the shape of the bottleneck range along the MEP and transformed the reef

into a kind of smooth shoulder. The predictions of bound states with this latter PES in the

TS energy range (from 70% to 93% of D0) exhibit average errors of only 1− 2 cm−1 for six

ozone isotopologues, 666, 668, 686, 868, 886 and 888 [74]. This clearly demonstrated [8] that

the NR PES by Tyuterev et al. [64] is much more accurate than other available surfaces for

the description of all experimental spectroscopic data, at least up to 8000 cm−1, that is, for

bound states up to at least 93% of the dissociation threshold. In the original publication of

Ref. [64], bound states have been computed in the C2v symmetry of the main potential well.

To our knowledge no systematic studies of metastable ozone states with this NR PES [64]

have been published so far.

In the present work we report the first calculations of resonance state energies, corre-

sponding wave functions and lifetimes using this PES. Furthermore, bound states near the

dissociation threshold are investigated in full D3h symmetry, accounting for possible permu-

tation of identical nuclei over the three potential wells.

II. SYMMETRY CONSIDERATIONS: STATIONARY APPROACH

In the electronic ground state, the ozone molecule has C2v symmetry at equilibrium such

that the global potential energy surface has three relatively deep minima, corresponding to

three possible arrangements of the oxygen atoms known as “open configurations”. As the

barriers between two wells are very high, low-lying rovibrational states of the homonuclear

ozone isotopologues, such as (16O)3, which we study in the present article, may be character-
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ized by irreducible representations (irreps) of the molecular symmetry group C2v(M), which

is isomorphic with the C2v point group. In the terminology of Longuet-Higgins [75, 76],

transformations between the three possible arrangements of three oxygen atoms in ozone

are not feasible at low energies.

For weakly bound rovibrational states, however, for which tunneling of the barrier be-

comes noticeable, and for continuum states of ozone above the barrier, the transformation

between arrangements becomes feasible: The description of the dynamics of such states can-

not be restricted to one potential well. In this situation, the complete molecular symmetry

group must be employed to classify nuclear motion. This group is the three-particle permu-

tation inversion group, S3 × I. It is isomorphic with the point group D3h and hence may

also be designated D3h(M), where M stands for molecular symmetry group [76]. Dissocia-

tion of the ozone molecule on the electronic ground state surface leads to an oxygen atom

and a dioxygen molecule, both in their electronic ground states, i.e. O(3P ) + O2(X3Σ−g ).

The symmetry group of the oxygen atom is just the inversion group I, while that of the

oxygen molecule is the two-particle permutation inversion group S2 × I. The latter may

be designated D∞h(M) in order to retain the D∞h nomenclature for the irreducible repre-

sentations [77]. In the asymptotic channel, exchange of identical nuclei between the atom

and the diatomic molecule becomes unfeasible as their distance goes to infinity. It is clear

from this discussion that the molecular symmetry groups C2v(M) and D∞h(M) are equiv-

alent and just provide different sets of labels for the four irreducible representations. They

are two manifestations of the S2 × I group. To make this paper self-contained we give the

characters and symmetry labels in Table I. Of the symmetry elements of the point group

D∞h only those are retained for the molecular symmetry group D∞h(M) that correspond to

a permutation inversion operation. This excludes symmetry elements such as 2C(φ) which

leave all nuclei on their place. The molecule is placed in the xz plane, which is the con-

vention normally used in ozone spectroscopy [78]. The correspondence of the axes is thus

(x→ b, y → c, z → a). The transformation properties of the p orbitals, which are needed in

the discussion of the asymptotic states, are indicated in the last column of the table.

Classification of states in S2×I is convenient for rovibrational states situated deep in the

wells, and for the dissociating resonances. We now wish to relate them with the symmetry

species of the complete permutation inversion group S3 × I, or D3h(M). These correlations

are shown in Table II. In addition to the symmetry elements of S2×I, which are the identity,
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TABLE I. Character table of the point groups C2v, D∞h (excerpts) and the permutation inversion

group S2× I using the nomenclatures of C2v(M) and D∞h(M) for the irreducible representations.

C2v E C2b σab σbc

D∞h E ∞C ′2 ∞σv i

S2 × I E (12) E∗ (12)∗

C2v(M) D∞h(M)

A1 Σ+
g 1 1 1 1 pb (px)

B1 Σ+
u 1 -1 1 -1 pa (pz)

A2 Σ−u 1 1 -1 -1

B2 Σ−g 1 -1 -1 1 pc (py)

TABLE II. Character table of the group S3×I and the relation with the irreducible representations

of the group S2 × I using the nomenclatures C2v(M) and D∞h(M).

S3 × I E {(123), (132)} {(12), (23), (13)} E∗ {(123)∗, (132)∗} {(12)∗, (23)∗, (13)∗} S2 × I

D3h(M) C2v(M) D∞h(M)

A′1 1 1 1 1 1 1 A1 Σ+
g

A′2 1 1 -1 1 1 -1 B1 Σ+
u

E′ 2 -1 0 2 -1 0 A1 +B1 Σ+
g + Σ+

u

A′′1 1 1 1 -1 -1 -1 A2 Σ−u

A′′2 1 1 -1 -1 -1 1 B2 Σ−g

E′′ 2 -1 0 -2 1 0 A2 +B2 Σ−u + Σ−g

E, the pair permutation, (12), the inversion of the spatial coordinate system, E∗, and the

combination (12)∗ = (12) × E∗ = E∗ × (12), a new class appears, the cyclic permutations,

{(123), (132)}, as well as the class built up by its combination with the inversion of the

coordinate system, {(123)∗, (132)∗}. These new operations describe the exchange between

the three localized structures. The correlation presented in Table II is obtained by matching

the characters of the common operators, i.e. the identity operation, pair permutations and

the inversion of the coordinate system.

The rovibrational states of ozone may now be classified in the D3h(M) group, allowing

for tunneling between the three wells. They can be considered superpositions of the three
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states localized in their wells, which give rise to a one-dimensional representation and a

two-dimensional representation, just as in the case of triplet H+
3 which has been discussed

before [79]. The energy difference between the one and the two-dimensional representations

is called tunneling splitting. Purely vibrational states have positive parity, i.e. belong to

either A′1, A′2 or E ′, while both prime and double prime states exist for rotationally excited

states. The localized vibrational states to be superimposed may be classified in C2v(M)

by the approximate normal mode quantum numbers |v1 v2 v3〉 of the symmetric stretching

vibration, v1, the bending vibration, v2, and the antisymmetric stretching vibration, v3.

Since these transform as A1, A1 and B1, respectively, the symmetry of |v1 v2 v3〉 is A1 for

v3 even and B1 for v3 odd. In D3h(M), they give rise to the pairs (A′1, E
′), (A′1, E

′) and

(A′2, E
′), referring to the one and two-dimensional representations.

Only those vibrational states that have A′1 symmetry are allowed for the isotopologue

(16O)3 as can be seen from the following analysis: The 16O isotope is a boson, with zero

nuclear spin, i.e. the total wave function of (16O)3 must be symmetric under exchange of any

two 16O nuclei and transform as A′1 or A′′1 in D3h(M). The nuclear spin function transforms

as A′1. Likewise, the electronic wave function of the ground state, X 1A1 in spectroscopic

notation, since the open structure minima have C2v symmetry, is totally symmetric with

respect to all nuclear permutations. It means that the rovibrational part of (16O)3 should

also be symmetric under an exchange of any two oxygen nuclei, i.e. should transform as the

A′1 or the A′′1 irreducible representation. Purely vibrational states have positive parity and

thus symmetry A′1, the other symmetry species are not allowed. We note in particular that

the degenerate tunneling component has zero statistical weight, giving rise to “missing levels”

in spectroscopic language. As a consequence, tunneling splitting of the purely vibrational

states cannot be observed.

The calculations of the present article were performed in hyperspherical coordinates, as

they permit straightforward implementation of the full permutation inversion symmetry.

The rovibrational wave function ΨJm
v of tunneling ozone can be written as an expansion

over products of rotational RJkm(Ω) and vibrational factors ψJkv (Q)

ΨJm
v (Ω,Q) =

∑
k

RJkm(Ω)ψJkv (Q) , (1)

where RJkm(Ω) are symmetric top rotational wave functions proportional to the Wigner
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TABLE III. Allowed combinations of irreducible representations of the rotational and vibrational

factors in the expansion of Eq. (1). a

J 0 1 1 2 2 2 3 3 3 3

k 0 0 ±1 0 ±1 ±2 0 ±1 ±2 ±3∗

Γr A′1 A′2 E′′ A′1 E′′ E′ A′2 E′′ E′ A′′1, A′′2

Γv A′1 A′2 E′ A′1 E′′ E′ A′2 E′ E′ A′1, A′2

Γr × Γv A′1 A′1 A′′1 A′1 A′1 A′1 A′1 A′′1 A′1 A′′1, A′′1

a The symmetrized combinations of functions with k = ±3 transform as the A′′
1 and A′′

2 representations in

D3h(M). The direct products, Γr × Γv, of two E representations yield A1 +A2 + E and contain the A1

representation. Only the latter is listed in the last line of the table. The parity is given by the usual rule

′×′ =′, ′′×′′ =′, ′×′′ =′′, ′′×′ =′′.

functions DJ
mk

RJkm(Ω) =

√
2J + 1

8π2

[
DJ
mk(Ω)

]∗
, (2)

and depending on the three Euler angles Ω. The vibrational part of the wave function

depends on the internal projection k of the angular momentum onto the axis perpendicular

to the molecular plane, denoted the y-axis in Table I. Note that no decomposition is made

here in terms of the C2v(M) normal modes, which would be an approximation.

Each product in expansion (1) should have the same symmetry in theD3h(M) group as the

total rovibrational wave function, i.e. A′1 or A′′1. The symmetry Γr of the rotational functions

RJkm(Ω) in D3h(M) is well known (see, for example, [76, 80]). It imposes restrictions on the

possible irreducible representations of the vibrational factors ψJkv (Q): The rotational and

vibrational wave functions should be of the same species, both A1, or both A2, or both E.

Parities of the wave functions are not restricted. The parity of the vibrational functions is

always positive, the parity of the rotational function is positive for even k and negative for

odd k. Examples of the irreducible representations of rotational and vibrational functions

are given in Table III for J ≤ 3.

Let us now turn to the symmetry classification of the wave functions of the decaying reso-

nance states. The lowest dissociation limit of ozone produces the oxygen atom, O (3P ), and

the oxygen molecule, O2 (X3Σ−g ), in their electronic ground states. The orbital degeneracy
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of the atomic P state is three. One orbital is oriented perpendicular to the plane spanned

by the three nuclei, denoted as pc in Table I. According to Table II, it transforms as A′′2 in

D3h(M). The two in-plane orbitals transform as E ′. On the other hand, the electronic sym-

metry of the di-oxygen molecule is Σ−g in D∞h(M), or A′′2 in D3h(M). At large distances, the

electronic ground state, X 1A1, of ozone correlates with the perpendicular (pc) component

of the atomic P state plus the diatomic Σ−g state, which have both A′′2 symmetry in D3h(M)

such that their product is indeed A′1.

The electronic ground state of O2 is antisymmetric with respect to an exchange of the

two nuclei. Since the vibrational states of O2 are totally symmetric, this implies that the

rotational functions must be antisymmetric to yield a symmetric nuclear wave function. The

rotational functions of O2 transform as Σ+
g for even values of j and as Σ−g for odd values.

Rotational states of 16O2 must therefore have odd rotational angular momentum, j, and the

lowest rovibrational state is (v = 0, j = 1).

Let us now analyze the asymptotic wave function in the exit channel κ with κ = 1, 2, 3.

It can be expanded as

ΨJm
κvdjl

(~rκ, ~Rκ) ≈
1

rκRκ

ϕela ϕ
el
d χvdj(rκ)YJmjl (r̂κ, R̂κ)e

i(kRκ−lπ/2) , (3)

where exp(i(kRκ − lπ/2)) is the scattering function of the outgoing wave and χvdj(rκ) the

vibrational wave function of the O2 molecule; rκ and Rκ are the true, not mass-scaled,

distances in the Jacobi coordinate system κ. Functions ϕela and ϕeld represent electronic

states of the O (P ) atom and the O2 (X3Σ+
g ) molecule. Angular momenta of the atom-

diatom relative motion, l, and of the rotation of the oxygen molecule, j, must be coupled

to yield the total angular momentum, J , which is taken care of by the bipolar harmonics,

YJmjl . They are defined as

YJmjl (r̂κ, R̂κ) =
∑
ml,mj

CJm
jmj lml

Yjmj(r̂κ)Ylml(R̂κ) , (4)

where the Y are spherical harmonics and C are Clebsch-Gordan coefficients. The scattering

function in Eq. (3) is not symmetric with respect to permutation of three bosonic nuclei and,

therefore, cannot be correlated in this form with the short-distance form of Eq. (1), which

does have correct symmetry behavior (for the combinations of quantum numbers given

in Table III). To bring the function of Eq. (3) to the form satisfying the permutational

symmetry of three bosons, in the language of group theory, one has to apply projectors of
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the D3h(M) group of the two allowed irreducible representations, A′1 or A′′1. An efficient way

to perform it is to use a general approach of Ref. [81] applicable to a three-body system with

arbitrary total nuclear spin. Equations (19) of that reference do not take into account the

electronic part of the total wave function. The electronic wave function of the dioxygen ϕeld

changes sign under permutation of the two atoms and under the inversion operation, and

the atomic ϕela changes sign under the inversion only. Therefore, Eqs. (19) of Ref. [81] take

the following form for the present case

(12)ΨJm
κvdjl

(~rκ, ~Rκ) = (−1)j+1ΨJm
κvdjl

(~rκ, ~Rκ)

E∗ΨJm
κvdjl

(~rκ, ~Rκ) = (−1)l+jΨJm
κvdjl

(~rκ, ~Rκ) (5)

With these properties, the projectors PΓ take the form (see Eqs. (20) of Ref. [81])

PΓΨJm
κvdjl

(~rκ, ~Rκ) =(
1 + χΓ

23(23) + χΓ
31(31)

) (
1 + (−1)j+1χΓ

12

) (
1 + (−1)l+jχΓ

E∗

)
ΨJm
κvdjl

(~rκ, ~Rκ) , (6)

for any of the D3h(M) representations. Here, χΓ are characters of the representation Γ

given in Table II. From the expression in the second parentheses on the right side of the

equation above, it is clear that for the allowed representations A′1 and A′′1, if j is even, the

projectors are identically zero, PA′1 = 0, PA′′1 = 0. It is simply means that a free molecule

16O2 (X3Σ+
g ) can only have odd rotational angular momentum j. The expression in the third

parentheses means that if the quantum numbers l and j have different parity, the projectors

again give identically zero for A′1 (but not for A′′1). In particular, it implies that dissociative

states of 16O3 with rotational angular momentum J = 0 do not exist within the adiabatic

approximation.

III. NUCLEAR DYNAMICS

The present, stationary theoretical approach to describe nuclear dynamics was developed

previously by Kokoouline et al. [79, 82–84]. It is based on the two-step procedure of solving

the stationary Schrödinger equation in hyperspherical coordinates [85–87]. Although the

method was previously applied to several three-body problems, it has never been applied

to a system with large masses of the three particles and so many bound states: In Ref. [83]

the method was developed and tested on a benchmark system of a three-boson nucleus with
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a very shallow potential supporting only one bound state and one resonance. In [84], the

method was employed to calculate resonances in three-body collisions of hydrogen atoms.

The lowest H3 potential energy surface has two coupled sheets without any bound state but

with many resonances. The method was also routinely used to represent the vibrational con-

tinuum in studies of dissociate recombination of isotopologues of H+
3 [88, 89]. An important

difference of the present study with the previous ones is that the number of bound states is

large, which requires a significantly larger basis to represent the vibrational dynamics near

and above the dissociation.

We briefly summarize the main elements of the approach. To solve the Schrödinger

equation

[T (ρ, θ, φ) + V (ρ, θ, φ)] Φv(ρ, θ, φ) = EvΦv(ρ, θ, φ) (7)

for three particles interacting through the potential V (ρ, θ, φ) in the hyperspherical coor-

dinates ρ, θ, and φ, first, the adiabatic hyperspherical curves Ua(ρ) and the corresponding

hyperangular eigenstates ϕa(ρi; θ, φ) (hyperspherical adiabatic states – HSA) are obtained

by solving the equation in the two-dimensional space of the hyperangles θ and φ for several

fixed values of the hyper-radius ρj (j = 1, 2, · · · ), i.e. the following equation is solved[
~2 Λ2 + 15

4

2µρ2
j

+ V (ρi; θ, φ)

]
ϕa(ρj; θ, φ) = Ua(ρi)ϕa(ρj; θ, φ). (8)

In the above equation, Λ2 is the grand angular momentum squared [87, 90] and µ is the three-

particle reduced mass: For identical oxygen atoms with mass mO, one has µ = mO/
√

3. The

equation is solved using the approach described in [91]. Solution of Eq. (8) yields adiabatic

curves Ua(ρ) and eigenfunctions ϕa(ρ; θ, φ), defining a set of HSA channels a. The HSA

states are then used to expand the wave function Φv in Eq. (7)

Φv(Q) =
∑
a

ψa(ρj)ϕa(ρj; θ, φ) . (9)

The expansion coefficients ψa(ρi) depend on hyper-radius ρ. Following the original idea of

Ref. [92] the hyper-radial wave functions ψa(ρi) are then expanded in the discrete variable

representation (DVR) basis πj(ρ)

ψa(ρ) =
∑
j

cj,aπj(ρ). (10)

Inserting the two above expansions into the initial Schrödinger equation (7), one obtains∑
j′,a′

[
〈πj′ | −

~2

2µ

d2

dρ2
|πj〉Oj′a′,ja + Ua(ρj)δj′,jδa′a

]
cj′a′ = E

∑
a′

Oja′,jacja′ (11)
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with

Oj′a′,ja = 〈ϕa′(ρj′ ; θ, φ)|ϕa(ρj; θ, φ)〉. (12)

In the above equation, the matrix elements of the second-oder derivative with respect to ρ

is calculated analytically (see, for example, [93, 94] and references therein).

The described approach of solving the Schrödinger equation using the adiabatic (HSA)

basis replaces the usual form of non-adiabatic couplings in terms of derivatives with respect

to ρ with overlaps between adiabatic states ϕa(ρ, θ, φ) evaluated at different values of ρ.

The approach is particularly advantageous here, since the adiabaticity of the hyper-radial

motion, when separated from hyperangular motion, is not satisfactory, so that multiple

avoided crossings between HSA energies Ua(ρ) occur. This is the usual situation in three-

body dynamics. Representing non-adiabatic couplings by derivatives 〈ϕa′ |∂/∂ρ|ϕa〉 and

〈ϕa′|∂2/∂ρ2|ϕa〉 near the avoided crossings would require a very small grid step in ρ. The

use of overlaps between HSA states reduces significantly the number of grid points along ρ

required for accurate representation of vibrational dynamics.

In Ref. [64], the main features of the PES were demonstrated in internal coordinates. In

the present study, the NR PES of Ref. [64], which had been originally defined in the C2v wells,

was symmetrized according to the nuclear permutations and converted in the hyperspherical

coordinates [85–87]. Fig. 1 shows the PES as a function of the two hyper-angles for several

values of the hyper-radius. As evident from the plot at ρ = 5.4 bohrs the potential barrier

between the wells is situated at energies 9000 cm−1, i.e. very close to the dissociation

threshold. The passage between the wells occurs at geometries beyond the “shoulder” of

the ozone potential. Therefore, one expects weakly bound low-energy resonances delocalized

between the three potential wells. To represent nuclear dynamics of such near-dissociation

levels, one needs to take into account the three potential wells simultaneously. The energy

D0 of dissociation to the 16O (3P ) and 16O2 (X 3Σ
−
g [vd = 0, j = 0]) products, computed on

the PES of Ref.[64], is 8555 cm−1 above the ground rovibrational level of 16O3.

A convenient way of analyzing nuclear dynamics of three atoms is given by HSA curves,

which could be viewed in a way similar to Born-Oppenheimer curves for diatomic molecules,

except that the adiabatic and dissociation coordinate in the HSA curves is the hyper-radius,

not the inter-atomic distance. In contrast to the case of Born-Oppenheimer separation

between electronic and vibrational motion for diatomic molecules, non-adiabatic coupling

between HSA states is almost always strong and cannot be neglected. Nevertheless, many
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FIG. 1. Ozone potential energy surface, NR PES of Ref. [64], as a function of the two hyperangles

for several values of the hyper-radius. In the plots, the hyperangles are represented in a polar

coordinate system (see Fig. 6 of Ref. [80]): θ increases from the center of each plot to its edge;

φ is a cyclic variable (polar angle) changing from 0 to 2π. The minimum of PES, situated near

ρ = 4.2 a0, is chosen as origin. The electronic energy of dissociation to the atom and the diatomic

molecule at equilibrium is at 9150 cm−1.

key features of the dynamics can easily be identified and qualitatively studied. The HSA

curves obtained for A1 vibrational symmetry and J = 0 are shown in Fig. 2. At small values

of hyper-radius, near ρ = 4.2, the lowest HSA curves have a minimum, which corresponds

to the O3 equilibrium. Each of the lowest HSA curves near the minimum represents ap-

proximately a particular combination of v2 and v3 vibrational modes of O3. The v1 mode

near the O3 equilibrium is represented by the continuous variable ρ, which is at this first

step not quantized in the space of HSA coordinates. Therefore, the lowest HSA curve Ua(ρ)

13
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FIG. 2. Hyperspherical adiabatic curves Ua(ρ) of the A1 irreducible representation and J = 0

as a function of hyper-radius obtained for 16O3. In this figure, the energy origin is chosen at the

ground vibrational level of 16O3, situated 1443.524 cm−1 above the PES minimum. The vd = 0, 1, 2

labels indicate energies of the O + O2 (vd) asymptotic vibrational channels. Multiple HSA curves

between the vibrational channels correspond to various rotational channels j of the dissociating

oxygen molecule. For the A1 vibrational states, only even j are allowed. Because J = 0, the partial

wave in each asymptotic channel (vd, j, l) is determined simply as l = j.

(a = 1) near ρ = 4.2 is an adiabatic representation of the set (ρ, 0, 0) of vibrational modes of

O3 corresponding to the normal mode quantum numbers v2 = v3 = 0, the second and third

HSA curves are (v2 = 1, v3 = 0) and (v2 = 2, v3 = 0), the fourth one is (v2 = 0, v3 = 2), etc.

Odd v3 are not present in A1 vibrational symmetry.

At energies near and higher than 6000 cm−1 above the (0, 0, 0) level, the normal modes

are significantly mixed and the mode assignment becomes more difficult. However, the

HSA curves at large energies, above the energy of dissociation, and at large ρ, provide a

convenient description of dissociation dynamics. At large ρ, each adiabatic curve converges

to a particular asymptotic channel represented by a rovibrational level (vd, j) of O2 and the

partial wave of relative motion of O2 and O. As one can see, there are multiple very sharp
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avoided crossings, especially in the zone of transition from short to large ρ.

IV. BOUND STATES NEAR D0 AND PREDISSOCIATED RESONANCES
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FIG. 3. The largest of the three rotational constants for A1 vibrational states in the D3h group.

Almost linear dependence of the rotational constant Av on the energy of the vibrational states

permits an assignment of normal modes for low energy levels. Normal mode quantum numbers

are specified for a few levels. Note than at high energy the normal mode assignment becomes

“nominative” and is to be taken with caution because of strong anharmonic basis state mixing.

A series of calculations with different parameters of the numerical approach were per-

formed to assess the uncertainty of the obtained energies with respect to the numerical

procedure. The final results for A1 and A2 vibrational levels were obtained with 60 HSA

states. The number of B-splines used for each of the hyperspherical angles θ and φ was 120.

Similar to previous work by Alijah and Kokoouline on the H+
3 molecule [79], the interval

of variation of ϕ was from π/6 to π/2 in calculations of A1 and A2 levels. The variation
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FIG. 4. Comparison of the energies of band centers obtained in this study with the previous

calculation [64] and experimental data [8, 15–18, 67–72] for two vibrational symmetries (A1 and

A2 in the D3h group employed here, A1 and B1 in the C2v group employed in Ref. [64]). The

difference between the present results and the previous calculation and experimental data is labeled

as D3h − C2v and exp−D3h respectively.

interval of ρ was from 2.9 to 16, a variable step width [82, 84, 94] along the ρ grid was used

with 192 grid points. The estimated uncertainty due to the employed numerical method is

better than 0.001 cm−1 for low vibrational levels and about 0.01 cm−1 for levels at around

7500 cm−1 above the ground vibrational level. This convergence error is significantly lower
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than the uncertainties of the ozone PES. Figure 4 compares the energies of 16O3 band centers

up to 8000 cm−1 obtained in this study with the previous calculation [64] and experimen-

tal data [8, 15–18, 67–72]. The RMS deviation between the calculation of Ref. [64] in C2v

symmetry and the present D3h calculations is of 0.03 cm−1 only up to this energy cut-off.

This confirms a good nuclear basis set convergence of both methods. The RMS (obs.-calc.)

deviation for all vibrational band centers directly observed in high-resolution spectroscopy

experiments is 1 cm−1. This is by one order of magnitude better than the accuracy of vi-

brational calculations using other ozone PESs available in the literature. The uncertainty

in the determination of resonance energies depends on their widths and is roughly 10% of

the respective width. The uncertainty in calculated widths is better than 20% for most of

the resonances.

The assignment of vibrational bands is simplified by using the vibrational dependence of

rotational constants predicted from the PES and derived from ro-vibrational spectra analyses

as described in Refs. [16, 67–71, 73]. The largest rotational constant, Av, corresponding to

the “linearization” z-axis, is given by the following expression in hyper-spherical coordinates

[95]

Av = 〈Ψ00
v |

1

µρ2(1− sin θ)
|Ψ00

v 〉 . (13)

At low vibrational excitations, the rotational constant Av has nearly linear behavior with

respect to the normal mode quantum numbers, v1, v2, or v3, with proportionality coefficients

different for each mode. This can be seen in Fig. 3. For example, when v1 = v3 = 0,

the levels (0, v2, 0) form almost a straight line in the Av(Ev) plot. The same is true for

other series, (v1, 0, 0), (0, 0, v3), (1, v2, 0), etc. Near the dissociation limits, the normal mode

approximation is not valid any more and the series become mixed, although, the (v1, 0, 0)

and (0, v2, 0) series survive even above the dissociation. Such states cannot dissociate into

O2 + O unless mixed with the antisymmetric vibrational mode.

Figures 5, 6 and the upper panel of Fig. 7 show wave functions of five bound vibrational

levels of A1 vibrational symmetry in terms of Jacobi coordinates R, r, and γ, where r is the

distance between two oxygen nuclei of a chosen pair, R is the distance from the center of

mass of this pair to the third nucleus, and γ is the angle between the vectors along r and

R. The left panels of the figures demonstrate the dependence of the wave functions on R

and γ. The interval of variation of γ is from 0◦ to 180◦, such that it covers two of the three
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FIG. 5. Wave functions of the (7, 0, 0) (upper panels) and the (0, 11, 0) (lower panels) levels as

functions of the Jacobi coordinates R, r, and γ. Only the vibrational (without the rotational) part

of the wave functions is given. On the left panels, the dependence on R and γ is shown for a fixed

value of r = 2.28 a0, which is the equilibrium nuclear distance in the O2 molecule. The right panels

show the R, r-dependence for fixed γ = 40◦.

possible equivalent arrangements (permutations) of the three nuclei, i.e. it represents two

of the three potential wells of the ozone potential. As evident, the obtained wave functions

are symmetric with respect to an exchange between the two wells. Since the calculations

were performed in hyper-spherical coordinates, the wave functions are also symmetric with

respect to the exchange involving the third well, but the Jacobi coordinates cannot easily

represent such a symmetry.

To demonstrate the nature of wave functions of different normal modes, the functions

chosen in Figs. 5, 6, and 7 represent “pure” vibrational modes: (7, 0, 0), (0, 11, 0), (0, 12, 0),

(0, 0, 4), and (0, 0, 6). It is easy to identify the pure v1 (symmetric stretching) and v2

(bending) modes by counting nodes in the Jacobi coordinates, but the behavior of the

antisymmetric stretching mode v3 is more complicated in Jacobi coordinates.
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FIG. 6. As Fig. 5, but for the pure antisymmetric stretching modes (0, 0, 4) (upper panel) and

(0, 0, 6) (lower panel).

For the calculation of states above the dissociation threshold D0, a complex absorbing

potential (CAP) and variable grid step along ρ adapted to the local de Broglie wave length

were used as described in Ref. [83]. The parameters of the CAP were chosen to absorb

the outgoing dissociation flux for the interval of energies approximately between 100 and

4000 cm−1. When the method of CAP is used, the spectrum of the Hamiltonian matrix for

energies above the dissociation limit contains not only the relatively long living resonance

states but also non-physical “box states”. Real and imaginary parts of box state eigenvalues

depend on the CAP and grid parameters. A manual separation of resonances and box states

is difficult for this case because of a large number of resonances. Several calculations with

variable parameters, such as CAP, the number of grid pints along ρ, the number of the HSA

states, the number of B-splines in the HSA calculations, were performed. Spectra obtained

with different sets of parameters were compared, allowing us to separate the box-states from

the resonances, as the latter no not depend on the numerical parameters in a converged

calculation.
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FIG. 7. As Fig. 5, but for the (0, 12, 0) bound (upper panel) and (0, 13, 0) resonance (lower panel)

vibrational states. The interval or variation of R in the left panel plots is larger than in Figs. 5 and

6 in order to demonstrate the long-range tail of the wave functions. Note that the state shown in

the lower figure exists only if rotation is excited. Thus, the wave functions are just the vibrational

parts of the total rovibrational functions.

The lower panel of Fig. 7 gives an example of a resonance wave function of A1 vibrational

symmetry. As discussed above, such J = 0 levels are not allowed for 16O3, at least, in the

isolated ground electronic PES approximation, but we will consider them because the same

analysis can be applied to other isotopologues of O3, and also because a similar behavior can

be exhibited by A1 vibrational factors of rotationally excited A2 states which are allowed for

16O3. At short distances, the resonance is mainly described by the (0, 13, 0) normal mode

contribution. Its wave function looks very similar to that of the (0, 12, 0) state. It is still

bound but has one more node along the v2 coordinate. The outgoing dissociative flux is

clearly visible in the R, γ plot. The contrast in the R, r plot is not quite sufficient to see

the flux clearly. The vibrational resonance (0, 13, 0) corresponds to large-amplitude bending

motion of ozone. The energy of such bending oscillations is above dissociation, but the
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system does not dissociate fast, because the O2 + O dissociation implies that two of the

three internuclear distances should become very large and the third distance should stay

small, whereas when the molecule oscillates in the v2 or the v1 modes, all three internuclear

distances increase simultaneously.
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FIG. 8. The Av rotational constants for A2(D3h) vibrational states. Normal mode quantum

numbers are specified for a few levels. Above the dissociation threshold (vertical dotted red line),

the vibrational levels are predissociated.

Figure 8 shows the vibrational dependence of the rotational constants Av obtained for

A2 vibrational symmetry in the D3h(M) group. The energy origin of the figure is the same

as in Fig. 3, i.e. the energy of the ground rovibrational level of ozone (0, 0, 0), J = 0. The

same three families of vibrational levels corresponding to the three normal modes, are easily

identified. The figure also includes some of the low-energy predissociated resonances above

the dissociation limit. Figure 9 shows widths of the A2 vibrational levels situated above

the dissociation threshold. Most of the resonances shown in the figure have widths between

2 and 70 cm−1 (lifetimes between 0.08 and 2 ps) with a few outliers having significantly
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smaller widths. These outliers are the levels highly-excited in the v1 mode, as demonstrated

in Figs. 11 and Figs. 12.
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FIG. 9. Widths, Γ, of resonances of the A2(D3h) vibrational levels. Vertical dotted lines indi-

cate threshold energies for dissociation channels with different excitation of the oxygen molecule

vd = 0, 1, and 2. Numerically, lifetimes τ in ps are related to the widths in cm−1 as τ [ps] =

(2πcΓ[cm−1])−1, where c is the speed of light in units of cm/ps, c = 0.0299792458 cm/ps. Wave

functions of the encircled levels are shown in Figs. 11 and 12.

Figures 10, 11, 12 shows some of the bound and resonance vibrational levels of A2 vibra-

tional symmetry of the D3h group. The vibrational levels (v1, v2, v3) with odd v3 have overall

A2 symmetry. As mentioned above, continuum states (including dissociative states) of ozone

16O3 can only be of A2 vibrational symmetry. Figure 11 demonstrates two resonance wave

functions from the (v1, 0, 1) series. Although excitation of the v1 mode differs for these two

levels only by one quantum, their lifetimes are very different, 330 ps for the (8, 0, 1) and

3.1 ps for the (9, 0, 1) level. Figure 12 shows two examples of wave functions for levels where

all three modes are excited and mixed.

Figure 13 shows the energies of symmetry-allowed levels for the two lowest values of the
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FIG. 10. Same as Fig. 5, but for the (7, 0, 1) and (0, 10, 1) wave functions, of A2(D3h) overall

vibrational symmetry.

angular momentum, J = 0 and 1. The standard notation notation {JKaKc} for rotational

states of an asymmetric top molecule is used for bound states within the well. The irreducible

representation in the S3 permutation group of vibrational part of the total wave function is

also specified. Only states of A2(D3h) vibrational irrep can dissociate and, therefore, only

resonances of this symmetry are shown in the figure.

V. CONCLUSION

In this study, energies, widths, and wave functions of 16O3 vibrational resonances were

determined for levels up to about 3000 cm−1 above the dissociation threshold. The pre-

dissociated resonances have lifetimes between 0.08 and 2 ps with a few long-living levels.

These outliers are levels with the highly-excited v1 and v2 modes. An example of a long

living state is (9,0,0) J=1 level with the lifetime of 330 ps. Energies of bound states of the

ozone isotopologue 16O3 up to the dissociation threshold were also computed. The total
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FIG. 11. Vibrational part of the wave functions of the (8, 0, 1) (upper panels) and (9, 0, 1) (lower

panels) levels of A2(D3h) vibrational symmetry. The calculated widths are Γ = 0.016 cm−1 for the

(8, 0, 1) level and and 1.7 cm−1 for (9, 0, 1).

permutation inversion symmetry S3 × I of the three oxygen atoms was taken into account

using hyper-spherical coordinates. The effect of the symmetry is negligible for the levels

deep in the ozone potential, but vibrational levels near the dissociation threshold cannot

be represented correctly within one potential well and, therefore, the complete permutation

symmetry group should be used.

Symmetry properties of allowed rovibrational levels of ozone (applicable to 16O3 and

18O3) as well as correlation diagrams between the bound-state and dissociation regions were

derived and discussed. The correlation diagrams are not trivial because ozone dissociates to

(or is formed from) a P -state oxygen atom and an O2 molecule of symmetry 3Σ−g .

Within the employed model including only the lowest PES of ozone, the purely vibrational

states, i.e. J = 0 states, of ozone 16O3 (and 18O3) cannot dissociate to the fragments allowed

by symmetry of the electronic ground state of the O2 molecule. Note that excited rotational

states with J > 0 satisfying Eq. (3) do exist. Examples of such resonances are shown in
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FIG. 12. Vibrational part of the wave functions of two highly-excited levels of the A2(D3h) symme-

tries. They are vibrationally assigned as (8, 1, 1) and (8, 2, 1) via the normal mode decomposition

using the contact transformation method of Ref [96]. The calculated widths are Γ = 0.36 cm−1 for

the function shown in the upper panels and 0.8 cm−1 for the function shown in the lower panels.

Figs. 11 and 12. We would like to stress here, that the single electronic PES model neglects

the coupling of the angular momentum of the molecular frame, R, with the electronic

angular momentum, L, which is not zero. In general, the total (but without nuclear spin, I)

angular momentum J can be written as J = R+L+S + Π, where S is the electronic spin

and Π the vibrational angular momentum. From this we obtain the approximate quantum

number of the rotation of the molecular frame as R = J − L − S − Π. Neglecting the

effect of L and S in the rovibrational problem, R ≈ J is a “good” quantum number. Our

rovibrational energies have been calculated within this approximation, as have been those

obtained by other workers in the field. However, the importance of the electronic angular

momentum is evident from asymptotic behavior of Eq. (3): At large distances between O

and O2, the electronic angular momentum is clearly not zero. In a more accurate model,

the electronic momentum should be accounted for and coupled to the angular momentum
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FIG. 13. Energies of vibrational levels for J = 0 and J = 1. In addition to the symbol {JKaKc} of

the rotational states of an asymmetric top molecule, irreducible representations of the vibrational

part (Γv, below the graph) and rotation part (Γr, above the graph) of the wave function are

specified. The corresponding resonances are shown in blue color.

of the nuclear frame, due to the cross-terms generated by R2, conserving the total angular

momentum, J . In such a more accurate model, the continuum vibrational spectrum for

J ≈ R = 0 is allowed (since R is not “conserved” any more). The corresponding vibrational

resonances should have relatively long lifetimes because they can only decay due to non-

Born-Oppenheimer and Coriolis couplings involving the three PES’s converging to the same

dissociation limit, with the oxygen atom being in the triply-degenerate electronic state. Such

long-living states above the dissociation threshold, for example, (9, 0, 0) and (10, 0, 0) have

indeed been observed in experiments. Therefore, an accurate theoretical determination of

lifetimes of J = 0 resonance levels would involve three potential energies surfaces.

A three-state treatment has also been suggested by Garcia-Fernandez et al. [9], since

there is a conical intersection line at equilateral triangular configurations between the first

and second excited singlet states, and an avoided crossing between the ground state and
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the first excited singlet state. The three C2v minima can be seen as due to Jahn-Teller

stabilization through vibronic distortion of the equilateral configurations. The Jahn-Teller

stabilization energy, i.e. the energy difference between the minimum of the conical inter-

section and the C2v minima, is very big, ≈ 77600 cm−1, which means that the minimum

of the intersection is located high in the continuum of the electronic ground state. Never-

theless, the intersection gives rise to a topological geometrical phase whose inclusion affects

the statistical weights of the computed vibrational states, as we have demonstrated for the

case of triplet H+
3 [79], where the Jahn-Teller stabilization energy is about 18000 cm−1 and

the minimum of the conical intersection about 15000 cm−1 above dissociation. However, the

role of the geometrical phase in ozone is more complicated, as there is evidence for further

conical intersections [97, 98], which add to the phase factor of the equilateral intersection

discussed by Garcia-Fernandez et al. and might cancel it. Investigation of the phase factors

in ozone will be subject of future work.

The above discussion did not take into account spin-orbit coupling. For even more realistic

description of the nuclear motion states in the continuum, one has to consider the effect of

coupling of the electronic singlet state with electronic triplet states, of symmetry B1 and A2

in C2v(M), or A′′2 and A′′1 in D3h(M), or A′′ in Cs(M), that approach the same asymptotic

dissociation limit, O(3P ) and O2(X3Σ−g ), as the electronic ground state. Rosmus, Palmieri

and Schinke [99] have determined the spin-orbit coupling elements with all relevant triplet

states in the asymptotic channel. The matrix elements are of the order of 〈X 1A′1|Hso|3A′′2〉 ≈

60 cm−1. The long-range behavior of the potential energy surfaces accounting for spin-orbit

coupling was discussed in Ref. [100].

To study the effect of spin-orbit coupling, the total nuclear-electronic wave function must

be expanded, including for simplicity just one generic triplet state, as

ΨvJm(Ω,Q) =
∑
k

[
c1 |1A′1〉ψvJk;1A′1

(Q) + c2 |3A′′2〉ψvJk;3A′′2
(Q)
]
RJkm(Ω) . (14)

As before, the product of electronic and nuclear motion functions must have the same

symmetry as the rotational function, except for their parity. However, the nuclear motion

component of the 3A′′2 electronic state is antisymmetric and can therefore correlate with

the asymptotic O2 + O wave function. A full treatment of the nuclear dynamics of ozone

accounting for the spin-orbit coupling would involve solving the rovibrational Schrödinger

equation on several coupled potential energy surfaces, which is hardly possible at present.
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However, an adiabatic approach with respect to the spin-orbit coupling should also be ac-

curate and could be used in a future study. In the approach, the first step would be to

construct the matrix of the potential energy. The matrix would include the lowest three

Born-Oppenheimer PES’s, mentioned above, and the spin-orbit coupling such as described

in Refs. [99, 100]. The matrix then should be diagonalized for each geometry, which will

produce adiabatic potential surfaces accounting for the spin-orbit coupling. Because the

lowest Born-Oppenheimer PES (X1A1) does not cross the two other PES’s at energies near

or below the dissociation threshold, after the diagonalization, the lowest obtained PES will

be very similar to the original X1A1 Born-Oppenheimer PES, except that the dissociation

limit will be shifted down. Low-energy rovibrational states obtained with the new adiabatic

PES will be almost identical to the ones discussed in this study. States near the dissociation

threshold (approximately 60 cm−1 above and below D0) will have energies somewhat differ-

ent compared to the ones obtained with the PES without the spin-orbit coupling. However,

qualitatively the structure of rovibrational levels near the dissociation will stay the same.
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[98] L. De Vico, L. Pegado, J. Heimdal, P. Söderhjelm, and B. O. Roos, Chem. Phys. Lett. 461,

136 (2008).

[99] P. Rosmus, P. Palmieri, and R. Schinke, J. Chem. Phys. 117, 4871 (2002).

[100] M. Lepers, B. Bussery-Honvault, and O. Dulieu, J. Chem. Phys. 137, 234305 (2012).

33


