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We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a
relativistic hybrid method that combines configuration interaction (CI) with the linearized coupled-
cluster approach. Extensive study of the completeness of the four-electron CI calculations for Hf
and Rf was carried out. As a test of theoretical accuracy, we also calculated ionization potential of
Yb, Lu, Hf, and their ions, which are homologues of the superheavy elements of this study.
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I. INTRODUCTION

The first ionization potential (IP) of atoms and ions,
which is defined as the minimal energy required to remove
one electron, is an important characteristic of an element
that determines its chemical properties. The IP values
presented in tables as experimental ones are usually ob-
tained by extrapolating a sequence of Rydberg levels to
n → ∞ (n is principal quantum number). This method
has very high accuracy but requires detailed knowledge
of the spectra of Rydberg states, otherwise it cannot be
used. For this reason IPs are known to high accuracy for
most of neutral atoms and for many ions, the systems
with very well studied spectra [1]. For other ions and
for superheavy elements (SHEs) the IPs are either not
known or known to very poor accuracy only.

The goal of the present work is to address both issues:
accurate predictions of IPs for the superheavy atoms and
ions and testing the accuracy of the IP predictions for
the lighter ions to asses the potential for significant im-
provement of the IP calculations in ions with one to four
valence electrons using state-of-the art methodology.

We focus on the IPs of SHEs (nuclear charge Z > 100)
as the atomic calculations provide important informa-
tion for planning and interpreting the measurements for
this multidisciplinary area of research involving nuclear
physics, atomic physics, and chemistry (see, e.g. re-
views [2–4]) The sequence of No (Z = 102), Lr (Z = 103),
and Rf (Z = 104) atoms is particulary interesting since
these have two, three, and four valence electrons, respec-
tively, and can be modelled with the highest precision
relativistic approaches that treat correlation corrections
to all orders of perturbation theory [5, 6]. In Ref. [7], we
studied these systems but calculated ionization potential
only using the configuration interaction (CI) + second-

order many-body perturbation theory (MBPT) method.
In 2015, the first ionization potential of Lr was measured
[8], using efficient surface ion-source and a radioisotope
detection system coupled to a mass separator. This work
opened the way for the first IP measurements of trans-
actinide SHEs on an atom-at-a-time scale. The measure-
ment of the first IP of No is also in progress [9]. There-
fore, it is timely to provide accurate predictions for these
superheavy atoms and their ions, critically evaluated for
their accuracy.

II. COMPUTATIONAL METHODS

Prediction of IPs involves the calculation of the ground
state valence energies of the neutral atoms and ions. For
monovalent systems, the IP, i.e. the removal energy of
the electron in the ground state is generally calculated
directly. For systems with a few valence electrons, two
calculations are generally necessary, for the system of in-
terest and the corresponding ion with one electron re-
moved. For example, determining the first IP of divalent
Yb I can be accomplished by calculating its two-electron
binding energy for the ground 6s2 1S0 state and a re-
moval energy of Yb II ion in its ground 6s 2S1/2 state.
The difference of the two values gives the first IP of Yb I.
For systems with a few valence electrons, it is important
to ensure similar accuracy of these two calculations, as
the final IP is very sensitive to any inconsistencies in the
computations, both from omitted correlations and other
effects and from numerical aspects of both computations.
As a result, IPs present excellent benchmarks for tests of
computational methods.

We calculate the M−electron IPs of No I, No II, Lr I,
Lr II, Lr III, Rf I, Rf II, Rf III, and Rf IV, with the



2

TABLE I: Convergence of the calculated Hf energy levels (in cm−1) with the number of configuration functions. No is the
number of orbitals used in the construction of the configuration list used in the CI, Ne is the number of allowed excitations
from the initial configurations. Nc is the number of four-electrons relativistic configurations, Nd is the corresponding number
of determinants. The experimental energies are rounded values from the NIST ASD [1], the value for the ground state 5d26s2

being the sum of ionization potentials of Hf I–IV (see Table II). The last five columns give the differences of Run 1 - Run 5
values from the final results.

Configuration Expt. Run 1 Run 2 Run 3 Run 4 Run 5 Final Run 1 Run 2 Run 3 Run 4 Run 5
Nc 18 867 34 403 31 032 17 998 27 955 35 600 Differences with the “Final” run
Nd 516 419 872 452 1 941 424 1 278 986 1 159 894 1 505 340
No, Ne 47, 2 64, 2 24, 3 16, 4

5d26s2 3F2 632000 621721 622158 621912 622077 622829 622943 1222 784 1030 866 113
5d26s2 3F3 2357 2328 2338 2325 2318 2328 2334 6 -5 9 16 5
5d26s2 3F4 4568 4636 4662 4604 4584 4597 4598 -38 -64 -6 14 1
5d26s2 3P0 5522 6013 5949 5977 5670 5655 5600 -413 -348 -377 -69 -55
5d26s2 1D2 5639 6098 6024 6067 5871 5819 -279 -205 -247 -51

5d26s6p 3D1 14018 12995 13072 13131 13485 13621 13610 615 538 479 125 -12
5d26s6p 3F2 14435 13300 13381 13419 13758 13924 13911 611 529 491 152 -13
5d26s6p 3F3 14542 13481 13557 13618 13956 14123 14105 624 548 487 149 -18
5d26s6p 3D2 16163 15103 15187 15240 15590 15728 625 541 488 139

number of valence electrons M=1 to 4, which allowed us
to calculate the first IPs for all of the atoms and ions.
As a test of theoretical accuracy, we also calculate IPs
for their homologues, Yb I, Yb II, Lu I, Lu II, Lu III,
Hf I, Hf II, Hf III, and Hf IV. Carrying out these cal-
culations allowed us to both estimate the uncertainties
in our IP predictions, based on the comparisons of IPs
of Yb, Lu, and Hf with reference data, and to study the
differences between SHEs and their lighter homologues.
For example, large relativistic corrections in SHEs caused
changes in the ground state configurations for several sys-
tems that we have studied.

The starting point for all of our calculations is the
frozen core Dirac-Fock (DF) V N−M potential [10], where
N is the total number of electrons. The initial Dirac-Fock
procedure is carried out for the closed-shell ion, with all
valence electrons removed; with M = 2 for Yb and No,
M = 3 for Lu and Lr, and M = 4 for Hf and Rf. The
finite single-electron basis set is constructed using the B-
spline technique [11]. The basis contains 35 B-splines
of order 7 in a cavity of radius Rmax = 60 aB, where
aB is Bohr’s radius. The Breit interaction is included
in the present calculations using the approach developed
in Refs. [12, 13], while quantum electrodynamic (QED)
effects are accounted for by using the radiative potential
method developed in Ref. [14].

We used linearized coupled-cluster approach [5] (ini-
tially developed for accurate treatment of the alkali-metal
atoms) to calculate the one-electron ground state removal
energies of monovalent No II, Lr III, Rf IV, Yb II, Lu III,
and Hf IV. The details of the method, its applications
and accuracy have been discussed in a review [5]. All
other systems considered here have at least two valence
electrons, and are treated with the different approach
that combines a modified version of the method described
above with the CI method [6]. In this method, referred

to as CI+all-order, the coupled-cluster calculation is used
to construct an effective Hamiltonian that incorporates
core-core and core-valence correlations. Then, the ef-
fective Hamiltonian is used in the very large-scale CI
calculations. Thus, CI+all-order method treats corre-
lation corrections in all sectors, core-core, core-valence,
and valence-valence to all orders. We note that only the
valence CI calculation needs to be done since core exci-
tations are already accounted for by the effective Hamil-
tonian. All sums in the all-order terms evaluated for
the construction of the effective Hamiltonian are carried
out including lmax = 6 partial waves. We note that the
same effective Hamiltonian is used for the neutral systems
and corresponding multivalent ions. For example, the
same effective Hamiltonian is used for four-electron Rf I,
trivalent Rf II, and divalent Rf III calculations, since we
use the same Dirac-Fock starting potential of Rf V with
all valence electrons removed. Using the same effective
Hamiltonian for all three of these systems brings a high
degree of consistency to the binding energy computations
and corresponding evaluation of the first ionization po-
tentials, removing some sources of error. The main is-
sue in the computation becomes the saturation of the
valence CI space, i.e. ensuring that the uncertainty asso-
ciated with omitting some many-electron configurations
in the CI is small and consistent for all systems. This
is particulary difficult to achieve for four-electron Hf and
Rf, where the number of configurations is very large and
simply increasing the number of configurations without
ensuring that dominant configurations are included does
not guaranty a high accuracy of the CI calculation. We
describe the construction of the Hf CI space and tests
that were carried out to ensure convergence of the CI in
detail below since efficient construction of configuration
space for CI presents an important problem crucial for
the high final accuracy of the predicted values.
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TABLE II: Calculated ground state energies (EM) of Yb, Lu, Hf, No, Lr and Rf neutral atoms and positive ions. M is the
number of valence electrons. The difference Icalc = EM−1 −EM gives the IP. It is assumed that E0 = 0 and the corresponding
state is the 1S0 state of the closed-shell core, [4f14] for Yb, Lu and Hf, and [5f14] for No, Lr and Rf.

Atom Configu- Term M EM Icalc Iref
a Ref. ∆Icalc−ref

/Ion ration [a.u.] [cm−1] [cm−1] [cm−1]
Yb I 6s2 1S0 2 -0.68050 50591 50443.20(10) [18] 148
Yb II 6s 2S1/2 1 -0.44999 98761 98231.75(20) [20] 530

Lu I 6s25d 2D3/2 3 -1.48409 43296 43762.60(10) [27] -467
Lu II 6s2 1S0 2 -1.28682 112795 [112000(3000)] [26, 29]
Lu III 6s 2S1/2 1 -0.77289 169630 169049(10) [23] 581

Hf I 6s25d2 3F2 4 -2.83969 54570 55047.9(1) [28] -478
Hf II 6s25d 2D3/2 3 -2.59105 117821 [120000(4000)]b [25]
Hf III 5d2 3F2 2 -2.05422 181835 [187800(4000)] [22]
Hf IV 5d 2D3/2 1 -1.22572 269014 [269150(200)] [24] -136

No I 7s2 1S0 2 -0.72010 53738 [53600(600)] [30] 138
No II 7s 2S1/2 1 -0.47525 104305 [101000(3000)] [19]

Lr I 7s27p 2Po
1/2 3 -1.51676 39749 40000(650) [8] -251

Lr II 7s2 1S0 2 -1.33565 117289 [115000(3000)] [19]
Lr III 7s 2S1/2 1 -0.80124 175852 [173000(3000)] [19]

Rf I 7s26d2 3F2 4 -2.79617 48579 (48500(500))b [15] 79
Rf II 7s26d 2D3/2 3 -2.57483 115736 (115900(500))b [15] -164
Rf III 7s2 1S0 2 -2.04750 192301 [192800(2400)] [21]
Rf IV 7s 2S1/2 1 -1.17131 257073 [255700(3200] [21]

aMost of the reference values are taken from the NIST ASD [1].
The original sources of these values are given in the next column.
Uncertainty in the unit of the last digit is given in parentheses after
the value. Values enclosed in parentheses are purely theoretical;
those in square brackets are semi-empirical (see text).
bUncertainty is estimated in the present work.

In principle, the CI calculation should contain all possi-
ble multi-electron configurations that can be constructed
from a single-electron basis set wave functions. However,
this is impractical even for two electrons since contri-
butions of the nlml′ configurations with large principle
number n andm are negligible. For two-electron systems,
only configurations with large n are excluded without the
loss of accuracy. For systems with larger numbers of elec-
trons, further restrictions have to be implemented since
the problem of including all possible configurations be-
comes intractable even for 3 electrons with reasonable
computational resources. Moreover, it is not necessary
to include all of the configurations. It is sufficient to
select those that provide non-negligible contributions to
the low-lying states of interest.

To construct such a set, we start with a few configura-
tions, for example 6s25d2, 6s26p2, 6s5d3 for even states
of Hf and 6s26p5d and 6s6p5d2 for odd states. Then, we
make a list of configurations that can be produced by re-
placing Ne number of electrons from these configurations
to No basis set orbitals. Generally, it is good to select
Ne = 2, which would allow single and double excitations
from the initial configurations. This limited set is used
for the initial computation and its results are used to
re-order the configurations by their weights. Then, one

more excitation is allowed from about 300 configurations
with highest weights, and two excitations are allowed
from about 30 most important configurations. The new
resulting list of configurations is then merged with the
original one, ordered by configuration weights. We find
this procedure to be the most efficient and fast construc-
tion of the configuration list for an accurate large-scale
CI calculation. We tested this procedure in the cases of
Hf and Rf. Results of 6 different calculations of Hf ener-
gies with different number of configurations used in the
four-electron CI calculations are given in Table I. Nc is
the number of four-electrons relativistic configurations,
Nd is the corresponding number of determinants (anti-
symmetrized many-electron basis states). Note that the
size of the CI matrix is equal to the number of deter-
minants Nd. The computational time is roughly pro-
portional to N2

d . Runs 1 to 4 are different initial runs,
with 2, 3, or 4 excitations allowed from 6s25d2, 6s26p2,
6s5d3, 6s26p5d and 6s6p5d2 configurations. Additional
restrictions are introduced on how many electrons with
the same principal and orbital quantum numbers can be
present in the configurations, with only two allowed for
orbitals with high principal quantum number (for exam-
ple, 15d). Two calculations were carried out with two
excitations, Run 1 allowed excitations to 47 orbitals,
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15spd14f10g, and Run 2 to 64 orbitals, 20spd16f10g.
Run 3 allowed up to 3 excitations to 24 orbitals, 10s9pdfg
and Run 4 allowed 4 excitations to 16 orbitals, 8spd7fg.
Run 5 and a final run combined the results of the previous
runs with some additional excitations from the dominant
configurations but used a different method of construct-
ing the dominant configuration lists. These were two
best variants of the calculations. We find similar results
from Runs 1 to 4, indicating that it is important to both
include a sufficient number of higher orbitals and triple
and higher excitations. Results of two best calculations,
Run 5 and the final run, differ insignificantly, with the
differences being mush smaller than the uncertainty in
the core-valence contributions. Our study showed that
we have sufficiently saturated the configuration space for
Hf, which is further confirmed by a similar accuracy of
our values for the first IP of Hf and trivalet Lr. a similar
study was conducted for Rf.

III. RESULTS AND ESTIMATES OF

UNCERTAINTIES

The final values for the ground state energies (EM ) of
Yb, Lu, Hf, No, Lr and Rf neutral atoms and positive
ions and corresponding first IPs are given in Table II.
The quantity Icalc = EM−1 − EM gives the calculated
IP, where M is the number of valence electrons. The 1S0
closed-shell core energies, are set to zero. We note that
wrong electronic configurations and terms were listed for
Hf III and Hf IV in [7], with also a typo in the term labels
listed for Hf I and Rf I ground states.
The calculated energies given in Table II were con-

verted from atomic units (a.u.) to cm−1 using the con-
version factor 219474.6313702(17) from 2014 CODATA
fundamental constants [17].
The CI+all-order results are in better agreement with

experiment than the CI+MBPT values of [7], both ow-
ing to a more complete inclusion of the correlation cor-
rection in this approach and use of a larger-scale CI set
constructed as described above for Hf and Rf.
The column Iref of Table II lists the reference data

for IPs. Most of them are taken from the Atomic Spec-
tra Database of the National Institute of Standards and
Technology (NIST ASD [1]). One exception is the value
for Lu III. Ref. [1] gives it as [169010(50)] cm−1, quoted
from Sugar and Kaufman [31]. The square brackets
around the value denote that it is semiempirical. This
reflects the fact that Sugar and Kaufman [31] have used
interpolated values of the quantum defect of the 5g lev-
els along the Tm I isoelectronic sequence to arrive at this
value. However, in the same paper they noted that Kauf-
man and Sugar [23] obtained a more accurate IP value
(quoted here in Table II) derived from the ns Rydberg
series, which does not involve any semi-empirical adjust-
ments. Another exception is for the IP of Rf II, which was
quoted in Ref. [1] from Johnson et al. [21]. We replaced
it here with the theoretical value from Eliav et al. [15],

which was a result of a relativistic coupled-cluster cal-
culation similar to ours, but with no account for QED
effects.

We estimated the uncertainties of calculations of Eliav
et al. by extensive comparisons of results published by
that group with available reference data for about 50 dif-
ferent spectra. Only two of those results deviate sub-
stantially from the reference data in Ref. [1], the IPs of
Tl IV and Pr IV. For Tl IV, the NIST ASD [1] quotes
412500(300) cm−1 from the thesis of Gutmann [32]. A
close examination shows that the 5d9ns series used by
Gutmann to derive the IP from the Ritz quantum de-
fect formulas is strongly perturbed at n = 7 by interac-
tion with the 5d96d configuration (see percentage com-
positions of Tl IV levels in Ref. [1]). In addition, po-
sitions of three out of four 5d97s levels were revised by
Wyart et al. [33] by a few hundred cm−1. Thus, the
IP of Tl IV should be revised, and its present value in
ASD [1] should be disregarded. For Pr IV, ASD quotes
[314400(200)] cm−1 from Sugar and Reader [34]. This
value disagrees with the calculations of Eliav et al. [35],
311426 cm−1, by about 3000 cm−1. Sugar and Reader
derived their semiempirical value by assuming a constant
value for the change in effective principal quantum num-
bers ∆n∗ = 1.048(2) between the 7s and 6s levels of all
doubly and triply ionized lanthanide atoms. Perhaps,
this assumption does not hold for Pr IV, which might be
due to unusually strong interaction between the 4f7s and
5d6p configurations, not accounted for in the analysis of
the Pr IV spectrum [36].

Excluding the Tl IV and Pr IV data from the com-
parison, the root-of-mean-square (rms) deviation of the
remaining 50 calculated values of Eliav et al. from high-
quality reference data was calculated separately for elec-
tron affinities of neutral atoms and for IPs of atoms and
ions. For the former, it is about 200 cm−1, and for the
latter, it is about 500 cm−1. We adopted the latter value
as an estimate of the average uncertainty of their IP cal-
culations for atoms and ions. The same estimate is given
here for the Rf I result from Ref. [15].

The IP of Hf II was given in ASD [1] as [120000] cm−1

without an uncertainty. This value was quoted fromMeg-
gers and Scribner [25], who approximately estimated the
IP based on analogies between the level structure of Hf II
and La II, assuming that the e2D and e4F terms form se-
ries with a2D and a4F. If these assumptions are valid,
the accuracy of their estimated IP should be around
4000 cm−1, which is a typical uncertainty of IP of the
second spectra derived from two-member series.

To compare our results with compiled reference data,
we first note that semiempirical data on Lu II, Hf II,
Hf III, No II, Lr II, Lr III, Rf III, and Rf IV have
very large uncertainties ranging from 2400 cm−1 to
4000 cm−1, and they agree with our calculations within
these uncertainties. Excluding those low-quality data
from the comparison, we obtain the rms deviation of
our values from the reference data about 350 cm−1, with
no discernible correlation of the magnitude of deviations
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with the core charge or with the magnitude of IP. Thus,
we estimate the uncertainty of our calculated values as
350 cm−1 for all spectra in Table II.
Our value for the IP of Lr I is in excellent agreement

with the 2015 experiment [8], the difference being smaller
than the experimental uncertainty. It also agrees with
the results of coupled cluster calculations presented in
the same work [8]. Similar agreement is found with the
result of calculation of Ref. [16] for No I, 53 489 cm−1.
We note that our estimate of uncertainty of this value
is the same as that for Ref. [15], 500 cm−1, as it was
included in our statistical analysis of results of Eliav and
co-workers. This is lower that the uncertainty stated
in Ref. [16], 0.1 eV (800 cm−1). It is also lower than
the uncertainty of the reference value from Sugar [30],
600 cm−1. Nevertheless, in our choice of reference data
we give stronger preference to experimental data, if they
are available. The semiempirical result of Ref. [30] for
No I is essentially based on experimental data on several
actinide spectra and withstood a reliability test of several
decades.

In summary, we provided accurate predictions for IP
of superheavy No, Lr, Rf, and their ions. We expect
these values to be accurate to about 350 cm−1. Exten-
sive study of CI convergence was carried out for Hf and
Rf to ensure that uncertainty of the CI calculations is sig-
nificantly below the uncertainty in the treatment of core-
valence correlation corrections. We also demonstrated
that CI+all-order method is capable of predicting IP of
ions with 1 to 4 valence electron to a very good precision,
which may be used to provide improved recommended
data.
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