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We compare the effect of single qubit incoherent and coherent errors on the logical error rate of the Steane
[[7,1,3]] quantum error correction code by performing an exact full-density-matrix simulation of an error cor-
rection step. We find that the effective 1-qubit process matrix at the logical level reveals the key differences
between the error models and provides insight into why the Pauli twirling approximation is a good approxi-
mation for incoherent errors and a poor approximation for coherent ones. Approximate channels composed
of Clifford operations and Pauli measurement operators that are pessimistic at the physical level result in pes-
simistic error rates at the logical level. In addition, we observe that the pseudo-threshold can differ by a factor
of five depending on whether the error is calculated using the fidelity or the distance.

I. INTRODUCTION

Error thresholds for fault-tolerant quantum procedures are
typically calculated assuming random, independent Pauli er-
rors [1–8]. This error model allows for efficient calculation
of thresholds for quantum error correction (QEC) protocols
[9–13]. Actual errors in the laboratory often differ from this
approximation and the question remains if these errors are suf-
ficiently small and independent for QEC. There are a number
of methods for measuring the error, from the average fidelity
[14, 15], which is easy to measure experimentally [16–19], to
the diamond distance [15, 20], a more challenging measure-
ment. For random Pauli errors, there is no substantial differ-
ence between using the average fidelity or the diamond dis-
tance to measure the gate error. Small incoherent errors can
be well approximated by Pauli errors. In turn, these Pauli er-
ror models can accurately reproduce the behavior of quantum
error-correcting (QEC) protocols in the presence of incoher-
ent channels [21–24].

On the other hand, if the noise process is best described by a
unitary operation, there is a large difference between the error
magnitude quantified by the fidelity and the diamond distance
[25–27]. One could generate two distinct Pauli channels to
approximate the error. The first one corresponds to the Pauli
twirling approximation, an optimistic model that matches the
error in the fidelity. The second one is a pessimistic model that
is constrained to not underestimate a distance-based measure,
like the average trace distance or the diamond distance [28,
29]. The latter are referred to as honest approximations.

The question we address here is how optimistic or pes-
simistic are these approximations in practice. We do this in
the context of exact simulation of the errors using the Steane
[[7,1,3]] code [30]. We previously used this code to test
expanded efficient error models based on Clifford gates and
Pauli measurements for incoherent channels [23, 28, 29]. In
order to understand the difference between incoherent errors,
such as amplitude damping, and coherent errors, such as an
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unwanted rotation, we start with the respective process ma-
trices. We then examine the small error limit and perform
a polynomial expansion of each entry in the process matrix
in terms of the error strength parameter and base our analy-
sis on the leading order terms. We also construct effective 1-
qubit process matrices for a QEC step with the respective error
channels acting on the physical qubits. This method provides
a way to visualize how an error channel is modified by QEC.
In real quantum information processing systems, errors arise
from both incoherent and coherent processes [31, 32]. How-
ever, we focus on purely incoherent and coherent errors to em-
phasize their respective distinctive features. We include two
coherent error models in our analysis, an over-rotation about
the Z and the Hadamard, H , axes. We compare these realistic
error models to their respective classically tractable approxi-
mate channels [28]. Finally, we quantify the error magnitude
at the physical and logical levels using various metrics.

The paper is organized as follows. In Section II we intro-
duce our effective 1-qubit process (χ) matrix method and give
an illustrative example employing the 3-qubit bit-flip code.
In Section III we present the physical process matrices and
the effective 1-qubit process for the model error channels and
their approximations in the low noise limit. We also present
the error magnitude of each channel for various error metrics.
In Section IV we present our level-1 pseudo-threshold values
for the Steane [[7,1,3]] code under our model error channels.
We compute the pseudo-threshold based on the different error
metrics. Finally, in Section V we conclude and we discuss
open questions and future directions.

II. ANALYSIS IN THE LIMIT OF LOW ERROR
STRENGTHS

We are interested in understanding why, at the logical error-
corrected level, Pauli channels provide exceptionally good ap-
proximations to incoherent error channels, but in general a
poor one for coherent ones. Our analysis is based on the ef-
fective 1-qubit process matrix for the whole circuit, including
the encoding, occurrence of error, syndrome measurement, er-
ror correction, and decoding. This strategy is motivated by the
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observation that in our simulation scheme the final state of the
quantum circuit is always completely localized on the logical
codespace, so that the overall circuit can be compactly repre-
sented by a 1-qubit process matrix.

We choose the process matrix representation because it pro-
vides a convenient way to visualize the effect and coherent
nature of a quantum channel. Additionally, it is also unique
once an operator basis set is fixed. Other representations of
non unitary maps, like the Liouville superoperator, are also
useful for this purpose [33].

A quantum channel defined by the set of Kraus operators
E = {Ei} maps a state ρ to:

E(ρ) =
∑
i

EiρE
†
i . (1)

We can select a complete operator basis set {Am} and rep-
resent each Ei as a linear combination of operators: Ei =∑
m aimAm with complex coefficients aim. The action of the

channel E then becomes:

E(ρ) =
∑
m,n

χmnAmρA
†
n (2)

where

χmn =
∑
i

aima
∗
in. (3)

The matrix χ corresponds to the process matrix of the quan-
tum channel E in the {Am} basis. It is Hermitian and positive
semi-definite. Throughout this paper, we will express every
1-qubit process matrix in the normalized Pauli basis:

1√
2
{I,X, Y, Z}. (4)

We will also work exclusively with trace-preserving channels,
so the trace of every process matrix will be equal to 2.

For perfect QEC, after the stabilizer measurement and cor-
rection, it is evident that the final state will live in the logical
codespace. In general, this will not be the case when the QEC
is faulty, since errors during the measurement of the stabiliz-
ers will cause the logical state to not be projected perfectly
onto the code subspaces. However, in our previous analy-
sis [23], after faulty QEC we always perform one round of
perfect QEC, to account exclusively for uncorrectable errors.
This has the effect of completely projecting the final state onto
the codespace.

The concept of effective noise channels at the logical QEC
level is not new. It has been previously employed to study the
exact performance of general concatenated QEC codes [34,
35], the entanglement in encoded quantum systems [36] and
the error-suppressing properties of the five-qubit code [37]. In
these papers, the general assumption has been that the QEC
circuits are error-free. A general stochastic error model has
also been used to examine the effect of faulty QEC on the
noise channel at the logical level [38]. However, to the best

of our knowledge, there has not been a study on how coherent
errors during a QEC step affect the effective noise channel.

We are particularly interested in the low error rate limit,
where it is appropriate to Taylor-expand each entry in the pro-
cess matrix in terms of powers of the error rate. This helps
us visualize in a very clear way which terms are more im-
portant in determining the relevant characteristics of a given
error channel. As an example, consider a 1-qubit coherent er-
ror channel consisting of a rotation about the X axis by an
angle θ:

RX(θ) = exp(−iθX/2) = cos(θ/2)I − i sin(θ/2)X (5)

In the normalized Pauli basis, the process matrix for this
channel is:

2 cos2(θ/2) i sin(θ) 0 0
−i sin(θ) 2 sin2(θ/2) 0 0

0 0 0 0
0 0 0 0


In the small error limit (θ → 0), this becomes:2− θ2/2 +O(θ4) iθ +O(θ3) 0 0
−iθ +O(θ3) θ2/2 +O(θ4) 0 0

0 0 0 0
0 0 0 0


The Pauli twirled approximation to this channel is given by

the diagonal entries of its process matrix:
2 cos2(θ/2) 0 0 0

0 2 sin2(θ/2) 0 0
0 0 0 0
0 0 0 0


which corresponds to a channel where the qubit is flipped

with a probability px = sin2(θ/2):

E =

{√
1− px I√
pxX

(6)

For illustrative purposes, imagine the situation where we
use the 3-qubit bit flip code (with stabilizers generated by
ZZI and IZZ). We perfectly encode our qubit, then 3 in-
dependent error instances happen, 1 on each qubit, and finally
we perfectly measure the stabilizer generators, correct, and
decode. If the individual errors correspond to flips with prob-
ability px, the effective channel for the whole circuit is given
by:

E =

{√
(1− px)3 + 3(1− px)2px I√
3(1− px)p2x + p3xX

(7)

This channel is still a probabilistic application of an X op-
erator. The first Kraus operator corresponds to the situation
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where either no flip or 1 flip occurred. The second Kraus op-
erator accounts for the case where 2 or 3 flips occurred, thus
causing a logical X error. Since the error operators do not
have Y or Z components, the last two rows and columns of
the process matrix will be 0. We focus on the first two rows
and columns, the ones corresponding to I and X , and refer to
this matrix as the channel’s reduced process matrix. For the
channel described by Equation 7, the reduced process matrix
is: (

2(1− px)3 + 6(1− px)2px 0
0 2p3x + 6(1− px)p2x

)

On the other hand, if the 3 independent errors are coherent
rotations about the X axis by an angle θ and px = sin2(θ/2),
the effective reduced process matrix for the whole circuit is:(

2(1− px)3 + 6(1− px)2px i8[px(1− px)]3/2
−i8[px(1− px)]3/2 2p3x + 6(1− px)p2x

)

Interestingly, for a circuit where the errors are the Pauli
twirled approximation to the coherent channels, the effective
process matrix for the whole circuit still matches the diagonal
entries perfectly. However, it is completely unable to match
the off-diagonal entries. Since px = sin2(θ/2), in the limit
of small error (θ → 0), the effective reduced process matrix
becomes:(

2− (3/8)θ4 +O(θ6) iθ3 +O(θ5)
−iθ3 +O(θ5) (3/8)θ4 +O(θ6)

)

At the physical level, the process matrix for the RX(θ)
channel has diagonal entries proportional to θ2 and off-
diagonal entries proportional to θ. At the logical level with
perfect QEC, the leading orders get supressed and the effec-
tive process matrix now has diagonal entries proportional to
θ4 and off-diagonal ones proportional to θ3. In this case, the
Pauli twirled approximation underestimates the magnitude of
the error by 1 power of θ both at the physical and logical lev-
els.

III. EFFECTIVE PROCESS MATRICES FOR
INCOHERENT AND COHERENT CHANNELS

We have followed the same exact full-density-matrix pro-
cedure explained in [23] to compute the final states after error
correction with the Steane code. Because of the size of the
density matrices and the time it takes to cover all the possible
syndrome branches, we are unable to obtain symbolic expres-
sions for the effective 1-qubit process matrices. Instead, we
use quantum process tomography [39–42] to reconstruct the
numerical process matrix for various error strengths and sub-
sequently fit each entry to a polynomial to determine the lead-
ing order and its coefficient. We test several polynomial fits
and select the one with the smallest total variance. In every
case, the relative variance (variance divided by the value of

the leading order coefficient) was less than 10−7. Throughout
the paper, we will refer to the effective 1-qubit process matrix
simply as the process matrix at the logical level.

We report the error magnitude for each channel and its ap-
proximations using three different metrics: the average error
rate (average fidelity error), the average trace distance, and
the diamond distance. Each one of these has a particular im-
portance in our analysis. The average error rate [15] is the
measure of choice when experimentally characterizing quan-
tum gates and it can be efficiently calculated in the laboratory
[17, 18]. Usually in the literature, the error rate is defined
with respect to an ideal gate U . Throughout the paper, the
ideal gate U will always be the Identity. There is no loss of
generality with this assumption, since it is equivalent to an
interaction picture where the error channel E actually corre-
sponds to the discrepancy channel between the real operation
and the ideal gate.

We define the average error rate, r, for a noise process E as:

r(E) = 〈1− F 〉 = 1−
〈
〈ψ|E(|ψ〉〈ψ|)|ψ〉

〉
, (8)

where the average is defined over the space of pure states1.
Whenever possible, we use the process matrix to analytically
integrate over the Bloch sphere surface and obtain the exact
expressions for both the average and the standard deviation.
For clarity purposes, an explicit example of an analytical cal-
culation is presented in Section VI (appendix). All analytical
calculations were performed with Mathematica [43]. For the
cases where the exact symbolic expressions are challenging
to compute, we select 150 uniformly distributed states on the
surface of the Bloch sphere and integrate numerically. More
specifically, we perform the following procedure:

1. For a given initial state, compute the error rate (fidelity
error) at 3 different error strengths.

2. Test several polynomial fits, select the one with the
smallest total variance, and store the coefficient of the
leading order.

3. Repeat this for each one of the 150 initial states.

4. Calculate the average and the standard deviation of the
set of 150 leading order coefficients.

The average trace distance for the error channel E is defined
as:

〈Dtr〉 =
1

2

〈
Tr|E(ρ)− ρ|

〉
, for ρ = |ψ〉〈ψ|. (9)

Once again, the average is calculated analytically whenever
possible or numerically by following the procedure described

1 In our previous work and in older literature, the fidelity between a pure
state, |ψ〉, and a general state, σ, was defined as

√
〈ψ|σ|ψ〉. In this paper,

we follow the more recent convention and define the fidelity as 〈ψ|σ|ψ〉.
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above. The trace distance is important because in our previous
work [23, 28] we have used it to distinguish between honest
and dishonest approximations to error channels.

Finally, as a worst-case measure with several useful prop-
erties, the diamond distance is the preferred metric in the con-
text of fault tolerance [15, 20]. The diamond distance between
channels E and F is defined as:

D� =
1

2
max
ρ
||(E ⊗ I)(ρ)− (F ⊗ I)(ρ)||1, (10)

where, as mentioned before, the channel F will always be
taken as the Identity. For a channel acting on a vector space of
dimension d, the 1-norm is maximized over a vector space of
dimension d2. For a linear operator A, the 1-norm is defined
as:

||A||1 = Tr
[√

A†A
]

(11)

To find the coefficient of the leading order term in the dia-
mond distance, we follow the same procedure described pre-
viously: we test several polynomial fits and select the one
with the smallest total variance. To compute the diamond
distance we use QETLAB’s diamond norm function [44] in
Matlab [45]. All the other calculations are done with our own
python-based software tools.

Although our analysis is based exclusively on the three met-
rics described above, it is important to note that these do not
constitute an exhaustive list of options to characterize a quan-
tum channel [15] or the performance of a QEC code [35, 46–
49].

A. Efficiently simulable approximate channels

In our previous work, we introduced several classically
tractable noise models [28]. These noise models correspond
to Kraus channels where each operator is efficiently simula-
ble in the stabilizer formalism. The free parameters in our
noise models are the probabilities associated with the Kraus
operators. To approximate a target channel, we minimize the
Hilbert-Schmidt distance [50] between the process matrices
of the classically tractable noise model and the target channel.
For each target non-Clifford error channel, we study two dif-
ferent models: (a) the Pauli channels (PC), which employ only
single-qubit Pauli operators, and (b) the expanded channels
or Clifford+measurements channels (CMC), which include
all the single-qubit Clifford operators and the measurement-
induced translations. When minimizing the Hilbert-Schmidt
distance between channels, we have the option to perform a
constrained minimization, in which we enforce that for every
initial pure state its trace distance to the resulting state after
the target transformation is not greater than its trace distance
to the resulting state after the model transformation. Approx-
imate channels that satisfy this condition are referred to as
honest, since they do not underestimate the magnitude of the
target error. We label unconstrained approximations as “a”

and constrained ones as “w”. Finally, we also include in our
analysis the depolarizing channel (DC), a Pauli channel where
the probabilities of the X , Y , and Z operators are equal. The
approximations are summarized in Table I.

TABLE I. Summary of the various target and approximate channels.

Channel Complete name Honesty constrained
ADC amplitude damping –
PolC polarization along non-Clifford axis –
RZC rotation about the Z axis –
RHC rotation about the H axis –
PCa Pauli no
PCw Pauli yes

CMCa Clifford+measurements no
CMCw Clifford+measurements yes

DC Depolarizing channel no

B. Incoherent channels

We define an incoherent channel as a quantum operation
E that maps, at least, one pure state ρ = |ψ〉〈ψ| to a mixed
state σ. As in our previous work [23, 28], we have selected
two representative 1-qubit incoherent channels: the amplitude
damping channel (ADC) and a depolarizing channel about the
non-Clifford π/8 axis on the XY plane of the Bloch sphere
(Polπ/8C).

1. ADC

Table II presents the process matrices for the ADC and its
approximations at the physical level and logical level with
faulty QEC. Table III describes how the error magnitude for
these channels scales with the damping strength, γ, for the
metrics introduced in the previous section. In both tables,
the results refer to the behavior in the limit of small damp-
ing strength. For the average error rate and the average trace
distance, the standard deviation is also presented. Standard
deviations below 10−7 are not reported.

There are several interesting trends. At the physical level,
the entries of the ADC process matrix are all linear in γ, ex-
cept for the χzz term, which is quadratic. Consequently, the
error magnitude is linear, regardless of the metric used. At
the logical level, all the linear terms are suppressed, which
confirms that the Steane code’s correcting procedure is indeed
fault tolerant and successful in suppressing single errors. The
terms on the diagonal entries are now proportional to γ2, while
the off-diagonal terms are proportional to γ3. At this level, the
error magnitude is quadratic.
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TABLE II. Process matrices for the ADC and its approximations at the physical level and logical level with faulty QEC in the low damping
limit (γ → 0). Only the leading orders are shown.

Channel Physical process matrix Effective process matrix at the logical level

ADC


2−O(γ) 0 0 γ/2

0 γ/2 −iγ/2 0

0 iγ/2 γ/2 0

γ/2 0 0 γ2/8



2−O(γ2) 0 0 −211γ3

0 1580γ2 i211γ3 0

0 −i211γ3 180γ2 0

−211γ3 0 0 509γ2



PCa


2−O(γ) 0 0 0

0 γ/2 0 0

0 0 γ/2 0

0 0 0 γ2/8



2−O(γ2) 0 0 0

0 1570γ2 0 0

0 0 180γ2 0

0 0 0 491γ2



PCw


2−O(γ) 0 0 0

0 1.047γ 0 0

0 0 1.047γ 0

0 0 0 0.2915γ



2−O(γ2) 0 0 0

0 7080γ2 0 0

0 0 790γ2 0

0 0 0 3020γ2



CMCa


2−O(γ) 0 0 3γ/8

0 3γ/8 −i3γ/8 0

0 i3γ/8 3γ/8 0

3γ/8 0 0 3γ/8



2−O(γ2) 0 0 −89.2γ3

0 988γ2 i89.2γ3 0

0 −i89.2γ3 101γ2 0

−89.2γ3 0 0 771γ2



CMCw


2−O(γ) 0 0 γ/2

0 γ/2 −iγ/2 0

0 iγ/2 γ/2 0

γ/2 0 0 γ/2



2−O(γ2) 0 0 −212γ3

0 1760γ2 i212γ3 0

0 −i212γ3 180γ2 0

−212γ3 0 0 1370γ2



DC


2−O(γ) 0 0 0

0 γ/3 0 0

0 0 γ/3 0

0 0 0 γ/3



2−O(γ2) 0 0 0

0 773γ2 0 0

0 0 80.0γ2 0

0 0 0 601γ2



TABLE III. Behavior of the ADC and its approximations at various levels in low damping limit (γ → 0) for the three different error metrics.
Only the leading orders are shown.

Channel Physical level Logical level with faulty QEC
〈1− F 〉 〈Dtr〉 D� 〈1− F 〉/103 〈Dtr〉/103 D�/10

3

ADC (0.33± 0.30) γ (0.55± 0.27) γ γ (0.76± 0.19) γ2 (0.80± 0.17)γ2 1.14γ2

PCa (0.333± 0.075) γ (0.345± 0.077) γ γ/2 (0.75± 0.19) γ2 (0.78± 0.17)γ2 1.12γ2

PCw (0.80± 0.11) γ (0.81± 0.12) γ 1.19γ (3.63± 0.82) γ2 (3.78± 0.78)γ2 5.45γ2

CMCa (0.38± 0.22) γ (0.50± 0.18) γ 3γ/4 (0.62± 0.12) γ2 (0.64± 0.12)γ2 0.930γ2

CMCw (0.50± 0.29) γ (0.67± 0.24) γ γ (1.10± 0.21) γ2 (1.13± 0.22)γ2 1.65γ2

DC γ/3 γ/3 γ/2 (0.485± 0.093) γ2 (0.497± 0.095)γ2 0.727γ2
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At the physical level, the PCa matches the diagonal entries
perfectly, since it corresponds to the Pauli twirling approxi-
mation (PTA). Its average error rate is also identical to that of
the ADC, a known property of the PTA. The average trace dis-
tance, however, is less than that of the ADC, and therefore we
classify this channel as dishonest. At the logical level, the PCa
still approximates the diagonal terms very closely, but not ex-
actly, which shows that the off-diagonal terms on the physical
process matrix can influence the diagonal terms on the logical
process matrix. The error magnitude is practically equivalent
to that of the ADC up to second order. In the case of the PCw,
the constrained Pauli approximation, at the physical level all
the terms are linear, which guarantees that the error is not un-
derestimated. At the logical level, this pessimistic behavior
becomes even more pronounced, resulting in a very honest,
but inaccurate approximation.

In contrast to the Pauli channels, the expanded (CMC)
channels have access to the off-diagonal entries in the process
matrix. At the physical level, this allows both the constrained
and unconstrained approximations of the expanded channels
to be more accurate. While an advantage at the physical level,
the access to the off-diagonal entries becomes unfavorable at
the logical level. The CMCw is a great example: at the logical
level, it matches the off-diagonal terms almost perfectly, but
this is useless because its approximation to the leading order
in the target channel (γ2) is less accurate than that achieved by
the PCa, especially on the χzz entry. In other words, for the
ADC at the logical level, the critical requirement for a good
approximation is to be able to match the diagonal entries ac-
curately, since these contain the leading orders in the error
magnitude.

The constrained approximations at the physical level re-
main honest at the logical level, for every error measure used.
On the other hand, the unconstrained approximations remain
dishonest, with the notable exception of the PCa, which is
practically honest up to second order in γ. Finally, for every
channel and at every level, the average trace distance is con-
sistently about twice as the average error rate. The diamond
distance is about 3-4 times larger than the average error rate.

2. Polπ/8C

Table IV presents the process matrices for the Polπ/8C and
its approximations at the physical level and the logical level
with faulty QEC. Table V describes how the error magnitude
scales with p, the depolarizing strength.

The trends are very similar to the ones observed on the
ADC. In this case, at the physical level, all the non-zero en-
tries in the process matrices have linear leading orders, which
means once again that the error magnitude is linear in the error
strength. In terms of the average trace distance, at the physi-
cal level, the constrained approximations are honest, while the
unconstrained ones are dishonest. However, this does not hold
for the average error rate. First, as expected, the average error
rate of the Polπ/8C is equal to the PCa’s. Also, the CMCa re-

sults in an honest approximation in terms of the average error
rate.

As observed for the ADC and its approximations, at the
logical level, the leading terms in the process matrices be-
come quadratic for the diagonal entries, but cubic for the off-
diagonal ones. This implies that, just like for the ADC, the
advantage of the CMC approximations at the physical level
becomes a drawback at the logical level, since the diagonal
terms are more important than the off-diagonal.

There is an interesting difference between the effective pro-
cess matrices at the logical level for the ADC and the Polπ/8C.
For the former, the zero entries at the physical level remained
zero at the logical level. For the latter, however, this is not
true. For example, whereas the χzz entry is zero at the phys-
ical level for the Polπ/8C and some of its approximations, at
the logical level there is a term proportional to p2. The PCa
provides the most intuitive case to understand where this term
is coming from. At the physical level, only X and Y errors
occur. However, for the Steane code with perfect QEC, certain
combinations of one X and two Y errors can result in an un-
correctable logical Z error (For example, IIIXY Y I), which
give rise to a term in the χzz entry proportional to the third
power of the error strength. On the other hand, if the QEC is
faulty, a Y error on the ancillae and another one on the data
can cause a logical Z error, thus turning the error strength pro-
portional to p2.

To summarize, we have found several common features for
the 2 incoherent channels analyzed:

1. The expanded (CMC) channels provide more accurate
approximations than the Pauli channels at the physical
level. However, at the logical level, they become com-
pletely eclipsed by the high accuracy of the PCa. This
characteristic of the PCa has been observed previously
[21–23].

2. The high accuracy of the PCa arises, somewhat ironi-
cally, from its inability to approximate the off-diagonal
terms of the target error process matrix. At the log-
ical QEC level, the off-diagonal terms in the process
matrix are weaker (proportional to the cube of the er-
ror strength) than the diagonal terms (proportional to
the square of the error strength), so in the low noise
limit, the important contribution to the error at the logi-
cal level is really made by the diagonal terms.

3. At the physical level, the error magnitude for all the
channels is linear in the error strength, whereas at the
logical level, the error magnitude is quadratic in the er-
ror strength. This holds for every error metric we have
studied. The average trace distance is consistently about
twice as the average error rate, while the diamond dis-
tance is 3-4 times larger than the average error rate.
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TABLE IV. Process matrices for the Polπ/8C and its approximations at the physical level and logical level with faulty QEC in the low noise
limit (p→ 0). Only the leading orders are shown.

Channel Physical process matrix Effective process matrix at the logical level

Polπ/8C


2−O(p) 0 0 0

0 (1 + 1/
√
2)p (1/

√
2)p 0

0 (1/
√
2)p (1− 1/

√
2)p 0

0 0 0 0



2−O(p2) 0 0 −i3790 p4

0 5860 p2 337 p3 0

0 337 p3 61.8 p2 0

i3790 p4 0 0 851 p2



PCa


2−O(p) 0 0 0

0 (1 + 1/
√
2)p 0 0

0 0 (1− 1/
√
2)p 0

0 0 0 0



2−O(p2) 0 0 0

0 5860 p2 0 0

0 0 61.8 p2 0

0 0 0 851 p2



PCw


2−O(p) 0 0 0

0 (1 + 1/
√
2)p 0 0

0 0 (1− 1/
√
2)p 0

0 0 0 (1/
√
2)p



2−O(p2) 0 0 0

0 6350 p2 0 0

0 0 61.8 p2 0

0 0 0 2190 p2



CMCa


2−O(p) 0 0 0

0 3(3 + 1/
√
2)p/7 (3 + 1/

√
2)p/7 0

0 (3 + 1/
√
2)p/7 (3 + 1/

√
2)p/7 0

0 0 0 0



2−O(p2) 0 0 −i1020 p4

0 6790 p2 142 p3 0

0 142 p3 202 p2 0

i1020 p4 0 0 1280 p2



CMCw


2−O(p) 0 0 0

0 (1 + 1/
√
2)p (1 + 1/

√
2)p/3 0

0 (1 + 1/
√
2)p/3 (1 + 1/

√
2)p/3 0

0 0 0 (3− 2
√
2)p/3



2−O(p2) 0 0 −i1370 p4

0 7890 p2 176 p3 0

0 176 p3 233 p2 0

i1370 p4 0 0 1600 p2



DC


2−O(p) 0 0 0

0 2p/3 0 0

0 0 2p/3 0

0 0 0 2p/3



2−O(p2) 0 0 0

0 3090 p2 0 0

0 0 320 p2 0

0 0 0 2400 p2



TABLE V. Behavior of the Polπ/8C and its approximations at various levels in low noise limit (p → 0) for the three different error metrics.
Only the leading orders are shown.

Channel Physical level Logical level with faulty QEC
〈1− F 〉 〈Dtr〉 D� 〈1− F 〉/103 〈Dtr〉/103 D�/10

3

Polπ/8C (0.67± 0.30) p (0.79± 0.23)p p (2.26± 0.81)p2 (2.51± 0.69)p2 3.39p2

PCa (0.67± 0.24) p (0.74± 0.20)p p (2.26± 0.81)p2 (2.51± 0.69)p2 3.39p2

PCw (0.90± 0.19) p (0.93± 0.18)p 1.35p (2.87± 0.83)p2 (3.06± 0.76)p2 4.30p2

CMCa (0.71± 0.25) p (0.78± 0.22)p 1.06p (2.76± 0.91)p2 (3.02± 0.79)p2 4.14p2

CMCw (0.78± 0.26) p (0.86± 0.23)p 1.17p (3.2± 1.1)p2 (3.53± 0.92)p2 4.86p2

DC 2p/3 2p/3 p (1.94± 0.37)p2 (1.99± 0.38)p2 2.91p2
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C. Coherent channels

We define a coherent channel as a quantum operation that
maps pure states to pure states. They correspond to unitary
rotations about a given axis in the Hilbert space of the system.
As model coherent errors, we have selected rotations about
the Bloch sphere’s Z and H (Hadamard) axes by an angle θ:

RZC = exp(−iθZ/2) = cos(θ/2)I − i sin(θ/2)Z (12)

RHC = exp(−iθH/2) = cos(θ/2)I − i sin(θ/2)H (13)

These channels arise if there is an unwanted Hamiltonian
during the gates, for example, from an uncontrolled magnetic
field. The angle θ parametrizes the error strength. Just like
for the incoherent channels, we have selected 150 uniformly
distributed states on the Bloch sphere surface to calculate the
average error rate and the average trace distance.

1. RZC

Table VI presents the process matrices for the RZC and its
approximations at the physical level and logical level with
faulty QEC. Table VII describes how the error magnitude
scales with θ, the over-rotation angle, in the limit θ → 0.

The process matrix for the RZC reveals very different char-
acteristics from those seen in the incoherent channels. At the
physical level, the process matrix has a quadratic term on its
diagonal and a linear one on its off-diagonal entries. Since
the average error rate depends only on the diagonal terms, this
implies, as seen in Table VII, that there is a considerable mis-
match between the average error rate and the distance-based
metrics. While for both the average trace distance and the dia-
mond distance the error magnitude is linear in θ, for the aver-
age error rate it is quadratic in θ. This agrees with the scaling
of the diamond distance with the average error rate reported
by Kueng et al. [26] and Wallman [25].

At the logical level, although not completely coherent any-
more, the effective process matrix for the RZC still holds
some features of its unitary nature at the physical level. In
this case, the diagonal term becomes quartic, while the off-
diagonal ones becomes cubic in θ. This implies that the error
magnitude becomes proportional to θ4 when quantified by the
average error rate, but proportional to θ3 when quantified by a
distance-based measure.

These unique characteristics of the process matrices of the
RZC make the approximation by the PCa problematic. As
expected, at the physical level the PCa matches the diagonal
terms and the average error rate exactly, but this means it pre-
dicts a quadratic error, when in reality it is linear. In terms of
the average trace distance and the diamond distance, it under-
estimates the real error by one order of magnitude, making it

very dishonest. At the logical level, this extreme dishonesty is
maintained. Once again, in terms of the distance-based mea-
sures, the real error is underestimated by one order of mag-
nitude (θ4 vs. θ3). For the average error rate, something in-
teresting occurs: although the error order is the same (θ4),
because the off-diagonal terms in the physical process matrix
influence the diagonal terms in the effective logical process
matrix, the error magnitude is still severely underestimated.
As can be seen from Table VII, at the logical level, the aver-
age error rate for the the RZC is about 37 times larger than
for the PCa. This highlights a very important limitation of the
PCa: its inability to match off-diagonal terms turns it into a
very bad approximate channel for coherent operations.

In order to not underestimate the error magnitude, at the
physical level the PCw approximation results in a process ma-
trix with a linear term on the diagonal. This implies that the
error magnitude is linear for every metric. In terms of the
average error rate, the error is overestimated by one order of
magnitude (θ vs. θ2). Interestingly, in terms of both the av-
erage trace distance and the diamond distance, the honesty
constraint is tight: the PCw results in exactly the same error
magnitude as the RZC. At the logical level, however, the PCw
becomes too pessimistic. At this level, the error magnitude is
proportional to θ2 for every error metric.

The expanded (CMC) approximations both result in pro-
cess matrices at the physical level with linear terms on the
off-diagonal and the diagonal entries. Consequently, the error
magnitude is linear for every error metric. As expected, the
CMCa approximation is dishonest when quantified with the
average trace distance and the diamond distance. However, it
is honest by one order of magnitude when quantified with the
average error rate. The CMCw approximation is honest for
every error metric, and just like the PCw, it saturates the hon-
esty bound when quantified by the average trace distance and
the diamond distance. At the logical level, both approximate
channels result in effective process matrices with a quadratic
term on the diagonal and cubic terms on the off-diagonal en-
tries, just like for the incoherent channels studied in the pre-
vious section. This means that the error magnitude is propor-
tional to θ2, regardless of the metric employed. Both CMC
approximations overestimate the error magnitude by 2 orders
of θ when employing the average error rate, and 1 order of θ
when employing the distance-based metrics.

2. RHC

Table VIII presents the process matrices for the RHC and
its approximations at the physical level and logical level with
faulty QEC. Table IX describes how the error magnitude
scales with θ in the limit of θ → 0.

The results are very similar to the RZC. At the physical
level, the process matrix has off-diagonal quadratic terms and
linear diagonal terms. This implies, once again, that the aver-
age error rate is quadratic in θ, while the average trace distance
and the diamond distance are linear in θ.
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TABLE VI. Process matrices for the RZC and its approximations at physical level and logical level with QEC in the limit of small rotation
angle (θ → 0). Only the leading orders are shown.

Channel Physical process matrix Effective process matrix at the logical level

RZC


2−O(θ2) 0 0 iθ

0 0 0 0

0 0 0 0

−iθ 0 0 θ2/2



2−O(θ4) 0 0 i558 θ3

0 0 0 0

0 0 0 0

−i558 θ3 0 0 7870 θ4



PCa


2−O(θ2) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 θ2/2



2−O(θ4) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 206 θ4



PCw


2−O(θ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 θ



2−O(θ2) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 824 θ2



CMCa


2−O(θ) 0 0 iθ/2

0 0 0 0

0 0 0 0

−iθ/2 0 0 θ/2



2−O(θ2) 0 0 i69.7 θ3

0 0 0 0

0 0 0 0

−i69.7 θ3 0 0 206 θ2



CMCw


2−O(θ) 0 0 iθ/

√
2

0 0 0 0

0 0 0 0

−iθ/
√
2 0 0 θ/

√
2



2−O(θ2) 0 0 i197 θ3

0 0 0 0

0 0 0 0

−i197 θ3 0 0 412 θ2



DC


2−O(θ2) 0 0 0

0 θ2/6 0 0

0 0 θ2/6 0

0 0 0 θ2/6



2−O(θ4) 0 0 0

0 193 θ4 0 0

0 0 20.1 θ4 0

0 0 0 150 θ4



TABLE VII. Behavior of the RZC and its approximations at various levels in limit of small rotation angle (θ → 0) for the three different error
metrics. Only the leading orders are shown.

Channel Physical level Logical level
〈1− F 〉 〈Dtr〉 D� 〈1− F 〉/103 〈Dtr〉/103 D�/10

3

RZC (0.167± 0.075) θ2 (0.39± 0.11) θ θ/2 (2.6± 1.2) θ4 (0.214± 0.063) θ3 0.273 θ3

PCa (0.167± 0.075) θ2 (0.196± 0.056) θ2 θ2/4 (0.069± 0.031) θ4 (0.081± 0.024) θ4 0.103 θ4

PCw (0.33± 0.15) θ (0.39± 0.11) θ θ/2 (0.28± 0.13) θ2 (0.328± 0.097) θ2 0.420 θ2

CMCa (0.167± 0.075) θ (0.278± 0.079) θ 0.354 θ (0.071± 0.032) θ2 (0.083± 0.025) θ2 0.107 θ2

CMCw (0.24± 0.11) θ (0.39± 0.11) θ θ/2 (0.143± 0.064) θ2 (0.168± 0.049) θ2 0.214 θ2

DC θ2/6 θ2/6 θ2/4 (0.121± 0.023) θ4 (0.125± 0.024) θ4 0.182 θ4
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TABLE VIII. Process matrices for the RHC and its approximations at physical level and logical level with QEC in the limit of small rotation
angle (θ → 0). Only the leading orders are shown.

Channel Physical process matrix Effective process matrix at the logical level

RHC


2−O(θ2) iθ/

√
2 0 iθ/

√
2

−iθ/
√
2 θ2/4 0 θ2/4

0 0 0 0

−iθ/
√
2 θ2/4 0 θ2/4



2−O(θ4) i828 θ3 O(θ6) i819 θ3

−i828 θ3 (1.27× 104) θ4 O(θ7) O(θ6)
O(θ6) O(θ7) O(θ8) O(θ7)
−i819 θ3 O(θ6) O(θ7) (1.22× 104) θ4



PCa


2−O(θ2) 0 0 0

0 θ2/4 0 0

0 0 0 0

0 0 0 θ2/4



2−O(θ4) 0 0 0

0 107 θ4 0 0

0 0 O(θ8) 0

0 0 0 83.0 θ4



PCw


2−O(θ) 0 0 0

0 θ/2 0 0

0 0 θ/2 0

0 0 0 θ/2



2−O(θ2) 0 0 0

0 1710 θ2 0 0

0 0 186 θ2 0

0 0 0 1340 θ2



CMCa


2−O(θ) i0.283 θ 0 i0.283 θ

−i0.283 θ 0.283 θ 0 0

0 0 0 0

−i0.283 θ 0 0 0.283 θ



2−O(θ2) i52.1 θ3 O(θ5) i52.1 θ3

−i52.1 θ3 136 θ2 O(θ6) O(θ5)
O(θ5) O(θ6) (1.03× 104) θ4 O(θ6)
−i52.1 θ3 O(θ5) O(θ6) 106 θ2



CMCw


2−O(θ) i0.408 θ 0 i0.408 θ

−i0.408 θ 0.408 θ 0 0.204 θ

0 0 0.204 θ 0

−i0.408 θ 0.204 θ 0 0.408 θ



2−O(θ2) i159 θ3 O(θ4) i155 θ3

−i159 θ3 662 θ2 O(θ4) −0.571 θ3

O(θ4) O(θ4) 31.3 θ2 O(θ4)
−i155 θ3 −0.571 θ3 O(θ4) 516 θ2



DC


2−O(θ2) 0 0 0

0 θ2/6 0 0

0 0 θ2/6 0

0 0 0 θ2/6



2−O(θ4) 0 0 0

0 193 θ4 0 0

0 0 20.1 θ4 0

0 0 0 150 θ4



TABLE IX. Behavior of the RHC and its approximations at various levels in limit of small rotation angle (θ → 0) for the three different
metrics. Only the leading orders are shown.

Channel Physical level Logical level
〈1− F 〉 〈Dtr〉 D� 〈1− F 〉/103 〈Dtr〉/103 D�/10

3

RHC (0.167± 0.075) θ2 (0.39± 0.11) θ θ/2 (8.5± 1.9) θ4 (0.45± 0.14) θ3 0.589 θ3

PCa (0.167± 0.037) θ2 (0.172± 0.039) θ2 θ2/4 (0.063± 0.015) θ4 (0.066± 0.015) θ4 0.0951 θ4

PCw θ/2 θ/2 3 θ/4 (0.98± 0.16) θ2 (1.00± 0.17) θ2 1.64 θ2

CMCa (0.189± 0.042) θ (0.251± 0.058) θ 0.362 θ (0.084± 0.020) θ2 (0.087± 0.020) θ2 0.126 θ2

CMCw (0.340± 0.060) θ (0.416± 0.081) θ 0.602 θ (0.397± 0.080) θ2 (0.408± 0.081) θ2 0.596 θ2

DC θ2/6 θ2/6 θ2/4 (0.121± 0.023) θ4 (0.125± 0.024) θ4 0.182 θ4
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In contrast to the RZC, at the logical level, the effective pro-
cess matrix for the RHC is considerably less sparse than at the
physical level. However, the important trends are maintained.
The strongest terms are proportional to θ4 on the diagonal and
to θ3 on the off-diagonal. Once again, because of its lack
of access to the off-diagonal entries, the PCa provides an ex-
tremely optimistic (and dishonest) approximation both at the
physical and logical levels.

The PCw provides an honest approximation at the physical
level, but this results in an overly pessimistic one at the logical
level: it predicts the diamond distance to scale like θ2, when
in reality it scales like θ3. Regarding the expanded (CMC)
approximations, at the logical level, they result in effective
process matrices where the strongest terms scale like θ2 on
the diagonal and θ3 on the off-diagonal. This means that they
overestimate the error magnitude by 2 orders of magnitude,
when employing the average error rate, and 1 order of mag-
nitude, when employing the distance-based metrics. The ex-
panded approximate channels (CMCs) show the same trends
as in the RZC case.

To summarize, the common features for the 2 coherent
channels analyzed are:

1. Just like for the incoherent operations, the expanded
(CMC) channels provide more accurate approximations
then the Pauli channels at the physical level.

2. In contrast to incoherent operations, at the logical level
the PCa results in a very bad approximation. Formally,
it is still the most accurate approximation, since its dif-
ference from the target channel is proportional to θ3

(the error magnitude of the target channel), while all the
other approximations differ from the target channel by
a term proportional to θ2 (the error magnitude of the ap-
proximate channel). However, the PCa underestimates
the error magnitude of the real error so severely that, for
practical purposes, it is a very bad approximation. This
holds for every error metric used, but it is more pro-
nounced for the average trace distance and the diamond
distance.

3. The severe underestimation of the error magnitude by
the PCa is caused by its lack of access to off-diagonal
terms in the process matrix. In contrast to incoher-
ent channels, coherent rotations have process matrices
whose off-diagonal terms are stronger by 1 order of the
error strength, θ, than the diagonal terms.

4. In contrast to incoherent channels, no approximation re-
sults in a very accurate description at the logical level.
While the PCa severely underestimates the error mag-
nitude of the target coherent channel, the rest of the
approximations overestimate it, because of this partic-
ular trait of coherent channels of having stronger off-
diagonal than diagonal terms. At the logical level, we
cannot approximate accurately the behavior of the co-
herent channels, at least not with the methods devel-
oped in [28]. However, we can use the PCa to provide a

lower bound and the other approximate channels to pro-
vide an upper bound to the error magnitude. The CMCa
(unconstrained expanded approximation) provides the
tighest upper bound.

5. In contrast to incoherent channels, the error magnitude
of coherent channels greatly depends on the metric em-
ployed. At the physical level, the average error rate re-
turns a quadratic error, while the distance-based metrics
return a linear error. At the logical level, the average er-
ror rate returns a quartic error, while the distance-based
metric return a cubic error. This occurs because the
average error rate depends exclusively on the diagonal
terms of the process matrix, which are weaker than the
off-diagonal terms for coherent channels.

6. Comparing the orders of the terms at the diagonal and
off-diagonal entries in the process matrix provides a
convenient way to visualize how the diamond distance
scales with the average error rate. At the physical level,
the diamond distance scales like the square root of the
average error rate (D� ∝ r1/2). However, at the log-
ical level, the exponent of the scaling becomes 3/4
(D� ∝ r3/4). As shown by Kueng et al. [26] and Wall-
man [25], a scaling exponent of 1/2 is a characteristic
signature of coherent noise. On the other hand, com-
pletely Pauli noise has a scaling exponent of 1. There-
fore, at the logical level, the effective noise, although
not yet Pauli, becomes less coherent than the physical
noise.

IV. LEVEL-1 PSEUDO-THRESHOLDS

As in [23], the pseudo-threshold is calculated by finding the
intersection between the error magnitude curve at the physical
level with the error magnitude curve at the logical level. For
the approximate channels, we simulate the real error exactly
at the physical level and use the approximations only at the
logical level. We follow the notation convention of [23] and
refer to these as exact channel / approximate channel. This
makes the comparisons between the different thresholds esti-
mates easier, since they will only depend on the behavior of
the approximate channels at the logical level. We report the
pseudo-thresholds obtained by the different error magnitude
metrics.

Tables X and XI present the level-1 pseudo-thresholds for
the ADC and for Polπ/8C and their corresponding approxima-
tions, respectively. The pseudo-thresholds are given in terms
of the characteristic error strength: the damping strength (γ)
for the ADC and the error probability p for the Polπ/8C. The
pseudo-threshold values in terms of the average error rate, the
average trace distance, and the diamond distance can be eas-
ily calculated from the expressions on Tables III and V. Fig-
ure 1 shows how the average error rate scales with the damp-
ing strength, γ, for the ADC and its approximations. Figure
2 shows the scaling of the diamond distance. The pseudo-
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TABLE X. Level-1 pseudo-thresholds for the ADC and its approxi-
mations for the three different error magnitude metrics.

Channel 〈1− F 〉 〈Dtr〉 D�

γth × 104 γth × 104 γth × 104

ADC 4.8± 4.2 7.7± 4.3 9.10

ADC / PCa 4.9± 4.2 7.7± 4.3 9.24

ADC / PCw 0.97± 0.86 1.56± 0.84 1.86

ADC / CMCa 5.8± 5.6 9.2± 5.1 11.0

ADC / CMCw 3.2± 3.1 5.2± 2.8 6.16

ADC / DC 7.4± 7.2 11.8± 6.5 14.1

Physical ADC
Logical ADC
Logical PCa
Logical PCw
Logical CMCa
Logical CMCw
Logical DC
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FIG. 1. Average error rate for the ADC and its approximations for
various damping strengths. The curve for the PCa at the logical level
is located exactly underneath the curve for the ADC at the logical
level. The level-1 pseudo-thresholds are given by the intersection
between the best fits for the physical and the logical error magni-
tudes. The lines are just guides to the eye and do not correspond to
the best fits.

threshold for the ADC and its approximations can be visually
obtained from these.

There are important common characteristics for both in-
coherent channels. First, and as observed in [23], the PCa
estimates the pseudo-threshold very accurately. Its pseudo-
thresholds are practically the same as the exact ones regardless
of the error metric used. Second, since the constrained chan-
nels remain honest at the logical level, they always provide
lower bounds to the pseudo-threshold. This is not that useful
when approximating incoherent channels, since the PCa is so
accurate, but it will be useful for the coherent errors. Finally,
the pseudo-threshold does not depend too much on the error
metric. In the case of the ADC, the diamond distance pseudo-

Physical ADC
Logical ADC
Logical PCa
Logical PCw
Logical CMCa
Logical CMCw
Logical DC
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FIG. 2. Diamond distance for the ADC and its approximations for
various damping strengths. The curve for the PCa at the logical level
is located exactly underneath the curve for the ADC at the logical
level. The lines are guides to the eye.

TABLE XI. Level-1 pseudo-threshold Polπ/8C and its approxima-
tions for the three different error magnitude metrics.

Channel 〈1− F 〉 〈Dtr〉 D�

pth × 104 pth × 104 pth × 104

Polπ/8C 3.1± 1.2 3.4± 1.2 3.02

Polπ/8C / PCa 3.1± 1.2 3.4± 1.2 3.02

Polπ/8C / PCw 2.32± 0.87 2.65± 0.73 2.36

Polπ/8C / CMCa 2.45± 0.91 2.74± 0.83 2.46

Polπ/8 / CMCw 2.08± 0.77 2.33± 0.69 2.09

Polπ/8C / DC 3.50 4.07 3.49

threshold (9.1×10−4) is almost twice as the average error rate
pseudo-threshold (4.8 × 10−4), but they are both in the same
order of magnitude. For the Polπ/8C, the pseudo-thresholds
obtained from the different metrics are practically the same.

Tables XII and XIII present the level-1 pseudo-threshold
for the RZC and the RHC and their corresponding approxima-
tions, respectively. The pseudo-thresholds are given in terms
of the over-rotation angle, θ. Figure 3 shows how the aver-
age error rate scales with the over-rotation angle for the RZC.
Figure 4 shows the scaling of the diamond distance.

The level-1 pseudo-threshold trends are very different for
coherent channels. The PCa gives an overly optimistic esti-
mate of the pseudo-threshold. The PCw and the expanded
channels give an overly pessimistic pseudo-threshold. This
holds for every error metric used. In contrast to the inco-
herent case, none of our approximations predicts the pseudo-
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TABLE XII. Level-1 pseudo-thresholds for the RZC and its approx-
imations for the three different error magnitude metrics.

Channel 〈1− F 〉 〈Dtr〉 D�

θth × 103 θth × 103 θth × 103

RZC 7.92 39.8 39.8

RZC / PCa 49.5 170 170

RZC / PCw 0 1.22 1.22

RZC / CMCa 0 4.84 4.84

RZC / CMCw 0 2.40 2.40

RZC / DC 36± 11 147± 24 142

Physical RZC
Logical RZC
Logical PCa
Logical PCw
Logical CMCa
Logical CMCw
Logical DC
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FIG. 3. Average error rate for the RZC and its approximations for
various over-rotation angles. The curves for the PCw, CMCa, and
CMCw do not intersect the physical RZC curve because they all
scale quadratically with θ, but the coefficient of the RZC curve is
the smallest. In this case, the PCw and the expanded channels pro-
vide a useless lower bound (0) to the exact pseudo-threshold. The
lines are guides to the eye.

threshold accurately, although we can bound the pseudo-
threhsold. The PCa will always give an upper bound, while
the PCw and expanded channels will always give a lower
bound. Notice, however, that this lower bound is not useful
at all if we employ the average error rate as our metric. In
this case, the pseudo-threshold given by the PCw and the ex-
panded approximations is exactly 0. When the error is quan-
tified by the average trace distance and the diamond distance,
the lower bound is tighter.

For coherent channels, the level-1 pseudo-threshold quan-
tified by the diamond distance is 1 order of magnitude higher
than the one quantified by the average error rate. This is quite
unexpected, since the assumption is that the threshold value

Physical RZC
Logical RZC
Logical PCa
Logical PCw
Logical CMCa
Logical CMCw
DC
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FIG. 4. Diamond distance for the RZC and its approximations for
various over-rotation angles. The lines are guides to the eye.

TABLE XIII. Level-1 pseudo-threshold for the RHC and its approx-
imations for different error metrics.

Channel 〈1− F 〉 〈Dtr〉 D�

θth × 103 θth × 103 θth × 103

RHC 4.3± 1.2 28.5± 2.1 27.7

RHC / PCa 50± 14 181± 21 174

RHC / PCw 0 0.33± 0.12 0.272

RHC / CMCa 0 4.7± 1.5 4.07

RHC / CMCw 0 0.97± 0.30 0.837

RHC / DC 36± 11 147± 24 142

given by the diamond distance would actually be lower than
the one given by the average error rate, because the diamond
distance is a worst-case measure. Intuitively, this is a conse-
quence of the average error rate being very small (0.082 θ2)
and the diamond distance being considerably larger (θ/2) at
the physical level. At the logical level, the diamond distance
is still larger than the average error rate, but by a smaller
amount. This can be observed on Figure 5. To appreciate
how the different scalings cause a huge discrepancy between
the two pseudo-thresholds, it is convenient to normalize the
error magnitude at the logical level by the error magnitude at
the physical level. This is shown in Figure 6. Since we are
normalizing by the respective error magnitude at the physi-
cal level, both curves at this level become equal to 1 and the
curves at the logical level become quadratic in θ.

Finally, the behavior of the PCa and the DC allow for an
interesting comparison between symmetric and asymmetric
Pauli channels. For every realistic error model considered,
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Physical RZC (1 - F)
Logical RZC (1 - F)
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FIG. 5. Error magnitude for the RZC quantified with two different
error metrics: the average error rate and the diamond distance. The
intersection of the two blue curves gives the level-1 pseudo-threshold
based on the average error rate. The intersection of the two cyan
curves gives the pseudo-threshold based on the diamond distance. In
this case, the θth obtained from the diamond distance is about 1 order
of magnitude higher than the one obtained from the average error
rate, as can be seen on Table XII.
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FIG. 6. Normalized error magnitude for the RZC. The normaliza-
tion factor is the respective error magnitude for each method at the
physical level.

the PCa (asymmetric Pauli channel) and the DC (symmetric
Pauli channel) have the same average error rate and diamond

distance at the physical level. However, at the logical level
the error magnitude for these channels is different: in the two
incoherent cases it is worse for the PCa, whereas in the two
coherent cases it is worse for the DC. This does not have to
do directly with the target error channel, but instead with the
noise assumptions in the decoder. Although the Steane code
can correct any 1-qubit Pauli error, our decoder is set up to
prioritize X and Z errors over Y errors: all 2-qubit errors
consisting of one X error and one Z error are correctable,
yet that is not the case for all 2-qubit errors involving one Y
error. Therefore, for channels of equal error magntiude at the
physical level, the larger the Y component, the worse the error
magnitude at the logical level. Similar results have been ob-
served for the entanglement fidelity of the Steane code under
various Pauli error regimes [47].

V. CONCLUSIONS

We have computed the physical process (χ) matrix and the
effective 1-qubit process (χ) matrix at the first level of QEC
with the Steane [[7,1,3]] code for different incoherent and co-
herent error models in the limit of low noise. For incoher-
ent errors, at the logical level, the off-diagonal terms decay
faster than the diagonal terms, which explains the high accu-
racy of the PCa for incoherent channels. On the other hand,
for coherent errors, the off-diagonal terms, stronger than the
diagonal ones at the physical level, remain stronger at the log-
ical level. This implies that the PCa approximation (and any
stochastic approximation that matches the average fidelity at
the physical level) to coherent channels will unavoidably un-
derestimate the error magnitude at the logical level. On the
other hand, a stochastic channel that matches (or does not un-
derestimate) a distance-based measure at the physical level
will result in an approximation that is too pessimistic at the
logical level. These trends provide bounds on the pseudo-
threshold of coherent channels, but these are not very tight.
We have also observed that for coherent channels, the level-1
pseudo-threshold depends strongly on the error measure em-
ployed. However, distance-based measures result in consider-
ably higher pseudo-thresholds than the average fidelity.

As several authors have shown [26, 51], a characteristic fea-
ture of stochastic noise is that the diamond distance scales lin-
early with the average error rate. In contrast, for coherent
noise the diamond distance scales like the square root of the
average error rate. As we can see from the effective process
matrices at the logical level, if the physical noise is unitary,
at the first level of concatenation, the effective noise has θ3

off-diagonals terms and θ4 diagonal terms. This means that
diamond distance scales like 〈1 − F 〉3/4. The scaling of this
exponent as a function of the level of concatenation or the
code distance remains an open question.

We have examined channels that are either coherent or in-
coherent while in reality most channels contain both aspects
[51]. We have also focused exclusively on single-qubit, in-
dependent processes while real errors on quantum computers
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will present correlations in space and time [52–57]. For the
unitary error models considered, the errors can be completely
removed by dynamic-decoupling techniques [58–60]. In gen-
eral, open-loop control techniques can be used to transform
error channels that have a larger coherent character into errors
that have less coherent character [61, 62]. At the gate level the
addition of Pauli twirling gates [63, 64] can also reduce the co-
herent noise. Given the negative effect of coherent errors on
the pseudothreshold, we expect these coherent noise reduc-

ing methods will be essential for achieving logical qubits that
outperform physical qubits.
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VI. APPENDIX: CALCULATION OF THE AVERAGE
ERROR RATE AND ITS STANDARD DEVIATION

To illustrate our procedure, we include an explicit calcula-
tion of the average error rate and its standard deviation for the
amplitude damping channel (ADC) at the physical level. We
define a 1-qubit pure state in terms of the angles θ and φ as:

|ψ〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉 (14)

After a noise channel, E , the fidelity between the initial
state, |ψ〉, and the final state depends on θ and φ and is given

by:

FE(θ, φ) = 〈ψ| E(|ψ〉〈ψ|) |ψ〉 (15)

We integrate over the surface of the Bloch sphere to obtain
an average fidelity error:

〈1− FE〉 =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)(1− FE), (16)

where 4π is the normalization factor corresponding to the sur-
face area of the Bloch sphere.

The standard deviation of the fidelity error is given by:

sd(1− FE) =
√
〈(1− FE)2〉 − 〈1− FE〉2 (17)

For example, for the ADC:

FADC = 1− 3γ

8
− γ2

32
+

cos(θ)γ

2
+

cos(2θ)γ(γ − 4)

32
(18)

Notice that the fidelity does not depend on φ, which is con-
sistent with the fact that the ADC preserves the symmetry of
the Bloch sphere with respect to rotations about the Z axis.
The average error rate is given by:

〈1− FADC〉 =
γ

3
+
γ2

24
(19)

Likewise, the standard deviation is given by:

sd(1− FADC) =

√
4γ2

45
− γ3

360
+

γ4

2880
=

2γ

3
√
5
+O(γ2)

(20)

In the limit of small γ, the linear terms are the strongest
ones:

lim
γ→0
〈1− FADC〉 =

(
1

3
± 2

3
√
5

)
γ ≈ (0.33± 0.30)γ, (21)

which corresponds to the first entry in Table III. All the other
results are calculated in a similar fashion.


