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Quantum Bayesian approach to circuit QED measurement with moderate bandwidth

Alexander N. Korotkov
Department of Electrical and Computer Engineering,
University of California, Riverside, California 92521

We consider continuous quantum measurement of a superconducting qubit in the circuit QED
setup with a moderate bandwidth of the measurement resonator, i.e., when the “bad cavity” limit
is not applicable. The goal is a simple description of the quantum evolution due to measurement,
i.e., the measurement back-action. Extending the quantum Bayesian approach previously developed
for the “bad cavity” regime, we show that the evolution equations remain the same, but now they
should be applied to the entangled qubit-resonator state, instead of the qubit state alone. The
derivation uses only elementary quantum mechanics and basic properties of coherent states, thus
being accessible to non-experts.

I. INTRODUCTION

The problem of instantaneous wavefunction collapse
(reduction) due to measurement [1] has been a stum-
bling block for many physicists since the creation of
quantum mechanics. The unavoidable “spookiness” [2]
of the quantum collapse is related to the impossibility
to find a traditional physical mechanism responsible for
the collapse. Mathematically, the “spookiness” can be
expressed via violation of the Bell inequalities [3]. Even
though this violation [4] is common knowledge nowadays,
the mechanism and interpretation of the collapse remain
debatable [5].

A natural approach to understanding the physics of the
wavefunction reduction is through analysis of the grad-
ual evolution at a shorter time scale, i.e., “inside” the
collapse. A few decades ago there was an idea that such
an evolution can be fully described by decoherence. How-
ever, nowadays it is becoming common knowledge that
gradual collapse of individual quantum systems is gov-
erned by a continuous flow of information during the mea-
surement, thus showing essentially the same “spookiness”
as the textbook collapse. This understanding was signif-
icantly influenced by experiments with superconducting
qubits in the last decade [6–14], which demonstrated the
actual evolution “inside” the collapse.

There are many approaches to the theoretical descrip-
tion of the evolution “inside” the collapse, i.e., the de-
scription of partial or continuous quantum measurement.
In spite of very different mathematical treatments, many
of these approaches are essentially equivalent. Prob-
ably the most well-known approach is based on posi-
tive operator-valued measure (POVM) and Kraus oper-
ators [15–17]. Let us also mention quantum trajectories
[18–22], quantum filtering [23, 24], Monte Carlo wave-
function approach [25], quantum state diffusion [26], re-
stricted path integral [27, 28], quantum Bayesian formal-
ism [29, 30] (see also [28] and Chap. 2.2 of [31]) and many
other approaches, e.g., [32–37]. Among these approaches,
one of the simplest formalisms is the quantum Bayesian
formalism, which is based only on elementary quantum
mechanics and common sense.

For solid-state systems, the gradual collapse due to

continuous measurement was first described using the
quantum Bayesian formalism [29, 30, 38], and soon af-
ter that was also described by the quantum trajectory
approach [39, 40]. From late 1990s to mid-2000s the anal-
ysis was mainly focused on the continuous measurement
of a charge qubit by a quantum point contact (QPC) or a
single-electron transistor (SET) [29, 30, 38–45]. The next
considered system was based on a partially/continuously
measured superconducting phase qubit [6, 7, 46–49]; the
first experimental demonstration of a partial collapse [6]
and uncollapsing [7] was realized with this system. Af-
ter the development of circuit QED qubit measurement
[50, 51] and the transmon [52], much attention was paid
to this system since it experimentally allowed truly con-
tinuous quantum measurement of qubits [8–14]. In this
measurement setup the qubit state affects the frequency
of a coupled resonator, which in turn is probed by an
applied microwave in the homodyne way. For the circuit
QED measurement of a qubit the quantum trajectory
approach was developed in Ref. [22] and the quantum
Bayesian approach was introduced in Ref. [53]. In par-
ticular, the quantum Bayesian theory was used in several
circuit QED experiments on quantum feedback and quan-
tum trajectories [9, 11, 14, 55], and several experiments
used the quantum trajectory theory [12, 54, 55].

While the description of the qubit evolution in the
process of circuit QED measurement is generally simi-
lar to that for measurement by QPC or SET, there is
one considerable difference. The measurement by a QPC
or SET is of the broad-band type, while the circuit QED
measurement is narrow-band. Correspondingly, instead
of one output signal I(t) in the QPC/SET case, there
are in general two output signals in the circuit QED
case, since a narrow-band signal can be represented as
I(t) cos(ωt) + Q(t) sin(ωt), where ω is the carrier fre-
quency. The existence of two signals (two quadratures)
leads to the importance of the question of which ampli-
fier is used in the process of measurement. In the case
of a phase-sensitive amplifier, only one quadrature is am-
plified, and therefore only one signal [say, I(t)] is avail-
able. This makes the phase-sensitive case similar to the
measurement by QPC or SET (however, it is still impor-
tant exactly which quadrature is amplified). For the case
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of a phase-preserving amplifier, both output signals I(t)
and Q(t) are available (and both are noisier than in the
phase-sensitive case [56–58]); this makes the description
of qubit evolution significantly different from that for the
QPC/SET case.

An advantage of the quantum Bayesian formalism in
comparison with the quantum trajectory formalism is its
simplicity, so that it does not require special theoreti-
cal training, and can be used by non-experts. This sim-
plicity is due to a transparent physical meaning, which
directly relates the quantum back-action to the infor-
mation acquired during measurement. In Ref. [53] the
quantum Bayesian formalism for the circuit QED mea-
surement of a qubit was developed for the so-called “bad
cavity” limit, in which the damping (bandwidth) κ of
the measurement resonator is much larger than the rate
of qubit collapse (quantum back-action) due to measure-
ment. In this limit the qubit is practically unentangled
with the resonator and experiences two kinds of back-
action due to measurement. The “spooky” back-action
(which can also be called “quantum”, “informational”,
or “non-unitary” [53]) moves the qubit state along the
meridians of the Bloch sphere and is directly related to
the continuous information on the qubit state (|0〉 or |1〉)
obtained during the measurement. This back-action does
not have a physical mechanism, similarly to the Einstein-
Podolsky-Rosen-Bell example [2, 3]. The other type,
the “phase” backaction (called “realistic”, “classical” or
“unitary” back-action in [53]) has a physical mechanism:
fluctuation of the (ac Stark-shifted) qubit frequency due
to a fluctuating number of photons in the resonator. The
phase back-action moves the qubit state along the par-
allels of the Bloch sphere. In spite of the clear physical
mechanism, the phase back-action also has some “spook-
iness”; for example, it is possible to choose the qubit
movement along the parallels or meridians afterwards, by
choosing the amplified microwave quadrature [53] (this
prediction has been confirmed experimentally [11]).

In the present paper we extend the quantum Bayesian
formalism to the case when the “bad cavity” limit is not
applicable. As we will see, in this case the evolution equa-
tions remain practically the same as in the “bad cavity”
regime [53]; however, now they should be applied to the
entangled qubit-resonator system. In the derivation we
will assume that the qubit evolves only due to measure-
ment; in particular, we assume no Rabi oscillations. The
Rabi oscillations can be added later phenomenologically;
however, such addition is not really correct if the Rabi
frequency is comparable to or larger than the resonator
damping κ. In this respect the theory discussed here has
the same limitation as the “polaron frame approxima-
tion” usually used in the quantum trajectory approach
[22] (see also [59, 60]). Actually, our theory is equivalent
to the quantum trajectory theory with this approxima-
tion. However, the evolution equations are formally dif-
ferent and have a simple and intuitive physical meaning.
We expect that our approach may have advantage over
the quantum trajectory theory in numerical simulations,

similar to the QPC/SET case. (In the latter case the rea-
son for the numerical advantage was that the quantum
trajectory equation is essentially the lowest-order approx-
imation in the time step, while the quantum Bayesian
evolution is the exact solution in the absence of Rabi os-
cillations, and this permits using larger time steps even
in the presence of Rabi oscillations.)

Our derivation will be based on elementary quantum
mechanics. We will also need some basic facts related
to coherent states; for completeness, they are discussed
in Appendix A. The paper is mainly addressed to non-
experts in continuous quantum measurement and non-
experts in quantum optics; this is why we include brief
discussion of facts well-known to experts and focus on
simple logic. We hope that our derivation is accessible
at the advanced-undergraduate level. While we discuss
the circuit QED measurement of one qubit, it is straight-
forward to extend the discussion to the measurement of
several qubits, including entanglement by measurement
[54, 55].

The paper is organized in the following way. In Sec. II
we discuss the system and the model. In Sec. III we re-
view the results of Ref. [53] for the “bad cavity” regime of
circuit QED measurement. The main section of this pa-
per is Sec. IV, in which we derive the quantum Bayesian
formalism for circuit QED measurement with a moder-
ate bandwidth. We first introduce a natural idea of “his-
tory tail”, which consists of the microwave field emitted
by the measurement resonator, and thus carries informa-
tion about the resonator state at previous time moments
(Sec. IV A). Then we develop the Bayesian formalism by
applying a natural measurement procedure to pieces of
the “history tail” of short duration ∆t (Sec. IV C). The
textbook collapse due to this measurement leads to evo-
lution of the entangled qubit-resonator state. We first
derive the results for phase-sensitive measurement (Sec.
IV F) and then for phase-preserving measurement (Sec.
IV G). The obtained evolution equations for short ∆t
are also converted into the differential form (Sec. IV H)
and integrated for an arbitrary long duration (Sec. IV I)
We conclude in Sec. V. Appendix A reviews basic facts
related to coherent states. In Appendix B we derive the
formulas for the phase back-action in the “bad cavity”
regime via a simple language based on vacuum noise.

II. SYSTEM AND MODEL

We consider a superconducting qubit (transmon) mea-
sured in the circuit QED setup (Fig. 1). The idea of the
measurement [50, 51] is based on the dispersive coupling
of the qubit with a microwave resonator, whose frequency
slightly changes depending on whether the qubit is in the
state |0〉 or |1〉 (both are the eigenstates of qubit energy).
This frequency shift affects the phase and amplitude of
a probing microwave, which is transmitted through or
reflected from the resonator (theoretically, there is no
significant difference between the transmission and re-
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FIG. 1: Schematic of the circuit QED setup. Microwave field
of frequency ωd is transmitted through (or reflected from) the
resonator, whose frequency slightly changes, ωr±χ, depending
on the qubit state. After amplification, the microwave is sent
to the IQ mixer, which produces two quadrature signals: I(t)
and Q(t). In the case of a phase-sensitive amplifier we define
I(t) as the signal corresponding to the amplified quadrature,
while for a phase-preserving amplifier we define I(t) as the
quadrature carrying information about the qubit state.

flection configurations; however, in practice it is often
better to use reflection). The outgoing microwave is am-
plified, and then the GHz-range signal is downconverted
by mixing it with the original microwave tone, so that
the low-frequency (<∼ 100 MHz) output of the IQ mixer
provides information about the qubit state. The rate of
the information acquisition is limited by the output noise,
which is mainly determined by the first amplifying stage
(pre-amplifier). In recent years nearly quantum-limited
superconducting parametric amplifiers [61–64] became
the standard pre-amplifiers, replacing formerly used cryo-
genic high-electron-mobility transistors (HEMTs), which
have a much higher noise level.

The Hamiltonian of the qubit interacting with the res-
onator in the dispersive approximation [50] is

Hq&r/h̄ = (ωq/2)σz + ωr a
†a + χa†a σz, (1)

where ωq is the (effective) qubit frequency, ωr is the
(effective) resonator frequency, χ is the dispersive cou-
pling, a† and a are the creation and annihilation oper-
ators for the resonator (so that n = a†a is the num-
ber of photons in the resonator), and the Pauli operator
σz = |1〉〈1| − |0〉〈0| acts on the qubit state in the en-
ergy basis |1〉 and |0〉. As we see from this Hamiltonian,
the resonator frequency increases by 2χ when the qubit
state changes from |0〉 to |1〉; conversely, the qubit fre-
quency increases by 2χ per each additional photon in
the resonator (ac Stark shift). The typical value of |χ| is
crudely 1 MHz, while the qubit and resonator frequencies
are typically between 4 and 9 GHz, with the detuning |∆|
of crudely 1 GHz, where ∆ = ωq − ωr.

The microwave drive of the resonator can be described
by the standard additional Hamiltonian

Hd/h̄ = ε(t) e−iωdta† + ε∗(t) eiωdta, (2)

where ωd is the drive frequency and ε(t) is the properly
normalized drive amplitude. [This form is the Rotating
Wave Approximation (RWA) of the physical Hamiltonian
Re[ε(t) e−iωdt](a + a†).] We do not consider the case
when the resonator is driven by a squeezed microwave

or a squeezed vacuum. We assume that the field in the
resonator decays with the rate κ/2 (so that the energy
decays with the rate κ) due to coupling with transmission
lines and possibly due to other mechanisms of decay (at
zero temperature). For the ensemble-averaged evolution,
the effect of damping with rate κ can be described via the
standard Lindblad term in the master equation; however,
we will not use it, since we are interested in evolution of
an individual quantum system rather than an ensemble.

Note that the derivation of the dispersive Hamiltonian
(1) for a transmon is somewhat involved (see, e.g., Ref.
[52] and Appendix of Ref. [65]) because at least 3 trans-
mon levels should be taken into account to find the cou-
pling χ (4 levels are needed for the lowest-order depen-
dence of χ on n). The small-n value of the coupling χ
can be approximated [65] as

χ =
ωr

ωq

g2δq
∆(∆− δq)

, (3)

where g is the coupling in Jaynes-Cummings Hamilto-
nian and δq = ωq − ωq,12 is the transmon anharmonicity
(ωq,12 is the transition frequency between transmon lev-
els |1〉 and |2〉). With increasing n the value of χ changes
(as well as ωr), and a better description of the evolu-
tion should be based on the eigenlevels of the transmon-
resonator system, rather than bare levels [66]. In the
present paper we do not take these complications into ac-
count and use the simple Hamiltonian (1); however, there
is a natural way to include these effects into our formal-
ism phenomenologically. One more subtlety is that the
resonator damping κ leads to the qubit energy relaxation
[67, 68] via the Purcell effect, which we do not take into
account. However, in many present-day experiments this
effect is suppressed by a Purcell filter [65, 69, 70], so de-
scription by the simple Hamiltonian (1) again becomes a
good approximation.

In this paper we will be using the rotating frame, based
on the drive frequency ωd for the resonator and the fre-
quency ωq for the qubit. This essentially means that
instead of fast-oscillating coefficients in the lab-frame
wavefunction c0,n(t) |0, n〉 + c1,n(t) |1, n〉 (here n is the
number of photons in the resonator), we implicitly oper-
ate with slower-varying coefficients c0,n(t) e−iωqt/2eiωdnt

and c1,n(t) eiωqt/2eiωdnt. Equivalently, we can change the
Hamiltonian (1) and (2) to the rotating-frame Hamilto-
nian

Hrot/h̄ = (ωr − ωd) a†a+ χa†a σz + εa† + ε∗a. (4)

Note that in Appendix A we use tilde signs for the
rotating-frame variables, which are omitted in the main
text.

Our goal in this paper is to find (in a simple way) the
evolution of the qubit-resonator state in the process of
measurement. For that we assume that the qubit evolves
only due to measurement, so we explicitly assume the
absence of a Rabi drive applied to the qubit and absence
of qubit energy relaxation. Since the Hamiltonian (1) is



4

of the quantum non-demolition (QND) type [32], then if
the initial qubit state is |0〉, it will remain |0〉 during the
whole measurement process. Similarly, the initial qubit
state |1〉 will remain |1〉. In these two simple cases, evo-
lution of the resonator state is decoupled from the qubit,
but the effective resonator frequency ωr ± χ depends on
the qubit state (the upper sign is for the qubit state |1〉).
Then the classical evolution of the resonator field α(t)
can be described in the standard RWA way as [71]

α̇± = −i(ωr ± χ− ωd)α± −
κ

2
α± − iε, (5)

where the rotating frame is based on the drive frequency
ωd. The quantum evolution is described by exactly the
same equation [71], with the classical field state replaced
by the coherent state |α±(t)〉 (see Appendix A). Note
that |α|2 = n̄ is the average number of photons in the
resonator. Besides the notation α±, we will interchange-
ably use a notation that explicitly shows the correspond-
ing qubit state,

α1 ≡ α+, α0 ≡ α−. (6)

From Eq. (5), we see that the resonator field depends
on the qubit state. In particular, the steady state is

α±,st =
−iε

i(ωr ± χ− ωd) + κ/2
. (7)

(It is easy to see that these complex numbers always be-
long to the circle in the complex plane, which is centered
at −iε/κ and passes through the origin.)

The outgoing field F in the transmission and reflection
configurations (Fig. 2) can be described as [71]

Ftrans =
√
κout α, Frefl =

√
κout α+

iε
√
κout

, (8)

where κout is the resonator damping due to coupling with
the outgoing transmission line (κout ≤ κ), and in this
normalization |F |2 is the average number of propagating
photons per second. (Note that the phase of F can be
chosen arbitrarily; in our choice the coefficient between
F and α is real and positive.) By combining Eqs. (7)
and (8) it is easy to see that in the case κout ≈ κ the
reflection configuration operates with smaller fields for
the same response (and therefore larger phase response)
than the transmission configuration, and in this sense
it is preferable from the practical point of view. How-
ever, for our purposes in this paper the two configura-
tions are equivalent (the well-defined difference iε/

√
κout

can theoretically be simply subtracted). We will implic-
itly assume the transmission configuration (without loss
of generality), while all the results are applicable to both
the transmission and reflection configurations.

The outgoing microwave field F is then amplified (ei-
ther in a phase-preserving or a phase-sensitive way) and
sent to the IQ mixer (Fig. 1). A phase-sensitive amplifier
amplifies only a certain phase (quadrature) φa of the mi-
crowave field and de-amplifies the π/2-shifted phase (or-
thogonal quadrature). For the complex number F this

𝐴d = −𝑖𝜀/ 𝜅in

𝜅in 𝜅out

𝐹 = 𝜅out 𝛼(𝑡)
𝛼 𝑡

−𝐴d + 𝜅𝑖𝑛 𝛼(𝑡)

𝐴d = −𝑖𝜀/ 𝜅out
𝜅out

𝐹 = 𝜅out 𝛼 𝑡 − 𝐴d
𝛼 𝑡

(a)

(b)

FIG. 2: Comparison between (a) transmission and (b) reflec-
tion configurations. The incoming drive field Ad is mostly
reflected, but its small part enters the resonator, contributing
to the field change as α̇ =

√
κinAd in the transmission case

and α̇ =
√
κoutAd in the reflection case. For the resonator

field, |α|2 is the average number of photons, while for the
propagating fields, |F |2 and |Ad|2 are the average numbers of
photons per second.

means amplification of only a certain direction on the
complex plane along eiφa . For a faster qubit measure-
ment, the obvious choice is to amplify the quadrature
that connects the complex numbers α0 and α1 corre-
sponding to qubit states |0〉 and |1〉. We will consider
amplification of an arbitrary quadrature, including this
optimal case. The IQ mixer produces two low-frequency
signals, which correspond to the real and imaginary parts
of an amplified F ; however it is easy to rotate the axes of
the complex plane by using the linear combinations of the
two outputs. Since only one quadrature is amplified by
a phase-sensitive detector, there is no information in the
mixer output corresponding to the orthogonal quadra-
ture. Therefore, the phase-sensitive amplifier essentially
produces only one output signal after the mixer, which
we will call I(t). Note that the amplified phase φa can in
principle vary in time; then we also vary the quadrature,
corresponding to I(t).

A phase-preserving amplifier equally amplifies any
quadrature, so both outputs of the IQ mixer are im-
portant. (Note that usual non-parametric amplifiers, in-
cluding HEMT, are phase-preserving.) In this case we
will call I(t) the linear combination of the outputs corre-
sponding to the quadrature connecting α0 and α1, so that
I(t) carries information about the measured qubit state
|0〉 or |1〉. The output signal for the orthogonal quadra-
ture will be called Q(t); it does not carry information
about the qubit state, but will still be important for pro-
ducing phase back-action. Since α0(t) and α1(t) evolve
before reaching steady values, we will correspondingly
vary the quadratures corresponding to I(t) and Q(t).

The main reason why phase-sensitive amplifiers are of-
ten preferred for the qubit measurement is that their
quantum limitation for the output noise is twice smaller
than that for phase-preserving amplifiers [56–58]. The
output noise of a phase-sensitive amplifier should exceed
the “half quantum”, which exactly corresponds to the
width of the ground state of the oscillator, represent-
ing the amplified field (so that the energy is h̄ωd/2). In
other words, this is the amplified vacuum noise of the
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coherent state of the field, and the ideal phase-sensitive
amplifier does not add its own noise (the output noise
can be smaller if a squeezed state is amplified). The out-
put noise power of a phase-preserving amplifier is at least
two “half quanta”: one comes from the amplified vacuum
noise, and one more is added by the amplifier [56–58].

As discussed above, the dynamics of the system is very
simple when the qubit is either in the state |0〉 or |1〉
during the whole measurement process. The goal of this
paper is to describe the evolution when the initial qubit
state is a superposition c0|0〉 + c1|1〉 or, more generally,
an arbitrary density matrix ρ(0).

III. “BAD CAVITY” LIMIT

In this section we review results of Ref. [53] for the
“bad cavity” limit, which assumes κ � Γ, where Γ is
the qubit ensemble dephasing rate due to measurement,
discussed below. In this case we can neglect transient
evolution of the resonator state, and there is practically
no entanglement between the qubit and the measurement
resonator, because the two steady states (7) are very close
to each other, |α1,st − α0,st| � 1. Therefore, the evolu-
tion of the qubit state can be considered by itself. It is
assumed that parameters of the measurement setup (κ,
ε, etc.) do not change in time. We review here the “bad
cavity” limit mainly for later comparison with the more
general case κ ∼ Γ; the derivation in the next section
does not rely on results discussed in this section.

Ensemble dephasing rate of the qubit in the “bad cav-
ity” regime is [72]

Γ = 2χ Im(α∗1,st α0,st) =
κ

2
|α1,st − α0,st|2. (9)

We see that the condition κ� Γ is equivalent to |α1,st−
α0,st| � 1. In the case when |χ| � κ, the ensemble
dephasing [50, 72] can be expressed as [see Eq. (7)]

Γ =
8χ2n̄

κ

1

1 + [2(ωr − ωd)/κ]2
, (10)

and the ac Stark shift contribution δωq to the effective
qubit frequency ωq + δωq is [50, 72]

δωq = 2χn̄. (11)

If |χ| is comparable to κ (but still Γ � κ), then Eqs.
(10) and (11) should be modified (see Sec. IV B), but
the Bayesian formalism reviewed in this section does not
change.

A. Phase-sensitive amplifier

Evolution of the qubit density matrix ρ(t) due to mea-
surement of an arbitrary duration τ can be described by

simple equations [53]

ρ11(t+ τ)

ρ00(t+ τ)
=
ρ11(t)

ρ00(t)
exp

[
Ĩm(τ) ∆I

D

]
, (12)

ρ10(t+ τ)

ρ10(t)
=

√
ρ11(t+ τ) ρ00(t+ τ)√

ρ11(t) ρ00(t)

× exp[−iKĨm(τ) τ ] e−γτ e−iδωqτ , (13)

where

Ĩm(τ) = Im(τ)− I0 + I1
2

, Im(τ) =
1

τ

∫ t+τ

t

I(t′) dt′,

(14)
so that Im is the measured output signal I(t) averaged

over the time interval [t, t+ τ ], while for Ĩm we also sub-
tract the mean value (I0 +I1)/2, with I0 and I1 being the
average output signals, corresponding to the qubit states
|0〉 and |1〉. The measurement response is

∆I = I1 − I0 = ∆Imax cosφd, (15)

φd = φa − arg(α1,st − α0,st), (16)

where φd is the phase difference between the ampli-
fied quadrature φa and the optimal quadrature φopt =
arg(α1,st−α0,st), which gives the largest response ∆Imax.

The variance of Ĩm(τ) due to the amplifier noise is

D =
SI
2τ

=
(∆I)2τm

4τ
, (17)

where SI is the single-sided spectral density of the noise
[for different definitions of the spectral density, Eq. (17)
should be changed correspondingly] and τm is the so-
called “measurement time”: the time needed to distin-
guish the states |0〉 and |1〉 with the signal-to-noise ratio
of 1. The phase back-action depends on the coefficient
K, which equals

K =
∆Imax

SI
sinφd =

∆Imax

2Dτ
sinφd. (18)

The dephasing rate γ is due to non-ideality of the mea-
surement,

γ = Γ− (∆Imax)2

4SI
= Γ− (∆Imax)2

8Dτ
, (19)

where Γ is the qubit ensemble dephasing [see Eqs. (9)
and (10)]. The quantum efficiency of the measurement
process can be introduced in two different ways,

η = 1− γ

Γ
=

(∆Imax)2

8DτΓ
= ηampηcol, η̃ = η cos2 φd, (20)

where η (0 ≤ η ≤ 1) takes into account quantum effi-
ciency ηamp of the phase-sensitive amplifier and efficiency
ηcol of the microwave signal collection, while η̃ also in-
cludes the effect of choosing a non-optimal quadrature for
amplification. Here ηcol = κcol/κ is the ratio of the mi-
crowave energy reaching amplifier to the total energy loss
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by the resonator, so that κcol/κout describes the loss in
the transmission line before reaching the amplifier. The
amplifier efficiency ηamp = SI,q.l./SI is the ratio between
the output noise SI,q.l. of an ideal quantum-limited am-
plification chain to the actual output noise SI . The last
term in Eq. (13) is due to the ac Stark shift δωq given
by Eq. (11) (note that in Ref. [53] the rotating frame
was already accounting for this term and the equation
was written for the conjugate variable ρ01). Note that
ρ00 + ρ11 = 1 and therefore ρ00 = (1 + ρ11/ρ00)−1.

Equations (12)–(14) can be used to find the qubit evo-
lution in an experiment by using experimental output
signal record I(t); in numerical simulations Ĩm(τ) can be
picked randomly from the probability density distribu-
tion

P (Ĩm) = ρ00(t)P (Ĩm|0) + ρ11(t)P (Ĩm|1), (21)

P (Ĩm|j) =
1√

2πD
exp

[
− [ Ĩm + (−1)j(∆I/2) ]2

2D

]
, (22)

where j = 0, 1 and P (Ĩm|j) is the standard Gaussian
distribution in the case when the qubit is in the state
|j〉. For an infinitesimally small averaging time τ , this is
equivalent to using

I(t) =
I0 + I1

2
+

∆I

2
[ρ11(t)− ρ00(t)] + ξI(t), SξI = SI ,

(23)
where ξI(t) is the white noise with spectral density SI .

The qubit evolution equations (12) and (13) have a
very simple physical meaning. The evolution (12) of the
diagonal matrix elements of the density matrix is the
classical Bayesian update for the probabilities,

ρjj(t+ τ) =
ρjj(t)P (Ĩm|j)

Norm
, (24)

where P (Ĩm|j) is the likelihood, given by Eq. (22). Note
that another form of Eq. (12) in terms of the non-centered
measurement result Im is

ρ11(t+ τ)

ρ00(t+ τ)
=
ρ11(t) exp[−(Im − I1)2/2D]

ρ00(t) exp[−(Im − I0)2/2D]
. (25)

The evolution (13) of the off-diagonal matrix element
contains the natural term due to change of the diago-
nal elements (conservation of relative purity), the phase
back-action term, decoherence due to non-ideality, and
contribution from the ac Stark shift. The phase back-
action has a natural mechanism: when measuring a non-
optimal quadrature, φd 6= 0, the output signal gives us in-
formation about the fluctuating number of photons in the
resonator, and therefore the fluctuating ac Stark shift.
The factor K in Eq. (13) is the coefficient characterising
this linear relation between the ac Stark shift and output
signal fluctuations.

The evolution equations (12) and (13) have been de-
rived in Ref. [53] in the following way. The Bayesian
evolution (12) of the diagonal matrix elements was es-
sentially postulated from the necessary correspondence

between the classical and quantum evolution. This fol-
lows from common sense as much as the standard collapse
postulate in quantum mechanics. For the off-diagonal
elements, the logic of the derivation (sketched below)
was essentially the same as in the first derivation [29]
for measurement by a QPC. Using the general inequal-
ity |ρ10| ≤

√
ρ11ρ00 and evolution (12) for the diago-

nal elements, it is easy to derive inequality for the en-
semble dephasing, Γ ≥ (∆I)2/4SI . In the quantum-
limited case [in this case |∆α| = 1 is resolved with
signal-to-noise ratio of 1 after time 1/κ, and therefore
SI = Smin = (∆Imax)2κ[1 + 4(ωr − ωd)2/κ2]/(32χ2n̄) ],
and for φd = 0, the lower bound of this inequality for
Γ coincides with the actual value (10). Therefore, in
this case the evolution of ρ10 should be precisely the first
term in Eq. (13) and possibly a result-independent phase
(which is naturally associated with the qubit frequency
shift in the last term); otherwise the ensemble dephas-
ing would be larger than in Eq. (10). Thus, in the ideal
case Eqs. (12) and (13) have been derived “logically”, by
comparing unavoidable evolution due to acquired infor-
mation with the ensemble dephasing.

In the non-optimal case (φd 6= 0), the derivation in Ref.
[53] took into account the phase back-action by explic-
itly analyzing the information on the fluctuating photon
number in the resonator provided by the measurement
result Ĩm. In this way Eq. (18) for the correlation fac-
tor K was obtained, leading to the term with K in Eq.
(13). Finally, the term e−γτ in Eq. (13) was obtained by
averaging over the extra noise from a non-ideal amplifier
[73] and averaging over the signal that was lost due to
imperfect microwave collection. This is how the qubit
evolution equations (12) and (13) have been obtained in
Ref. [53].

Actually, the derivation for the phase back-action co-
efficient K in Ref. [53] was presented only for the case
of resonant microwave frequency, ωd = ωr. In Appendix
B we show the derivation, which is still valid in the case
of a significant detuning, |ωd − ωr| >∼ κ. This derivation
is based on an analysis of the effect of vacuum noise en-
tering the resonator from the transmission line. In this
analysis the vacuum noise is treated essentially classi-
cally, consistent with the Poisson statistics n̄ ±

√
n̄ for

the photon number.
Note that averaging of the evolution equations (12) and

(13) over random Ĩm with the probability distribution
(21) produces ensemble-averaged equations

ρjj(t+ τ) = ρjj(t), (26)

ρ10(t+ τ) = ρ10(t) e−Γτe−iδωqτ , (27)

in which there is no dependence on the measured phase
φd (as required by causality) because

(∆I)2

4SI
+
K2SI

4
=

(∆Imax)2

4SI
= Γ− γ. (28)

Let us briefly discuss the role of the “weak response”
condition |χ| � κ in the formalism reviewed in this sec-
tion. In the case of not too small a number of photons
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in the resonator, n̄ >∼ 1, this inequality follows from the
“bad cavity” condition |α1,st − α0,st| � 1, and therefore
is not needed as an additional condition. However, for
n̄0,1 � 1 it is possible to have |α1,st − α0,st| � 1 even
when |χ| >∼ κ. In this case the Bayesian formalism (12)–
(22) is still applicable, but the ensemble dephasing Γ and
ac Stark shift δωq are not necessarily given by Eqs. (10)
and (11), in particular, because n̄0 and n̄1 may be sig-
nificantly different, |n̄1 − n̄0| ∼ n̄1 + n̄0. The formulas
for Γ and δωq in this case are given in Ref. [72] and also
derived in Sec. IV B [Γ is given by Eq. (9), while δωq is
given by Eq. (61)].

Note that the Bayesian evolution equations (12) and
(13) are exactly the same as for the continuous qubit
measurement by QPC or SET [29, 30, 38]. However, the
dependence (15) and (18) of the response ∆I and phase
back-action coefficient K on the measured quadrature φd

is a specific feature of the circuit QED (or cavity QED)
setup.

B. Phase-preserving amplifier

As was discussed in Sec. II, in the case of a phase-
preserving amplifier we choose I(t) to be the output
signal, corresponding to the optimal quadrature φopt =
arg(α1,st − α0,st), while the output Q(t) corresponds to
the orthogonal quadrature φopt +π/2. Therefore, φd = 0
for I(t) and φd = π/2 for Q(t).

The qubit state evolution due to a phase-preserving
measurement for an arbitrary duration τ is described by
equations [53]

ρ11(t+ τ)

ρ00(t+ τ)
=
ρ11(t)

ρ00(t)
exp

[
Ĩm(τ) ∆I

D

]
, (29)

ρ10(t+ τ)

ρ10(t)
=

√
ρ11(t+ τ) ρ00(t+ τ)√

ρ11(t) ρ00(t)

× exp[−iKQ̃m(τ) τ ] e−γτ e−iδωqτ , (30)

which have exactly the same form as Eqs. (12) and (13),

except Ĩm(τ) in Eq. (13) is replaced by Q̃m(τ) in Eq. (30).

The measurement result Ĩm(τ) is given by Eq. (14), and
similarly

Q̃m(τ) =
1

τ

∫ t+τ

t

Q(t′) dt′ −Q0, (31)

with equal average values, Q1 = Q0, for the two qubit
states. Since I(t) and Q(t) are equally amplified, the

variances of Ĩm(τ) and Q̃m(τ) due to amplifier noise are
both equal to

D =
SI
2τ
, SQ = SI . (32)

The phase back-action is now caused by Q̃m(τ), and the
coefficient K is the same as in Eq. (18) for φd = π/2,

K =
∆I

SI
=

∆I

2Dτ
, ∆I = I1 − I0. (33)

The dephasing rate γ due to non-ideality is

γ = Γ− 2
(∆I)2

4SI
= Γ− (∆I)2

4Dτ
, (34)

where ensemble dephasing Γ is still given by Eqs. (9)
and (10) (it cannot depend on the detector because of
causality), and the extra factor of 2 is related to equal
contributions due to fluctuations of I(t) and Q(t). The
quantum efficiency can again be defined in two different
ways,

η = 1− γ

Γ
= ηampηcol, η̃ =

η

2
= η̃ampηcol, (35)

where η (0 ≤ η ≤ 1) compares the measurement with
the ideal phase-preserving case, while η̃ and η̃amp com-
pare the operation using only I(t) channel with the ideal
phase-sensitive case (η̃ ≤ η̃amp ≤ 1/2 because of twice
larger noise in an ideal phase-preserving amplifier).

Equations (29) and (30) describe the qubit evolution
when the signals I(t) and Q(t) are obtained from an ex-

periment, while in numerical simulations Ĩm(τ) can be

generated using Eqs. (21) and (22), while Q̃m(τ) can be
picked from the Gaussian probability distribution

P (Q̃m) =
1√

2πD
exp

[
− Q̃2

m

2D

]
. (36)

For infinitesimally small τ , the signal I(t) can also be
generated using Eq. (23), and for Q(t) we can use

Q(t) = Q0 + ξQ(t), SξQ = SQ = SI , (37)

with equal spectral densities, SξQ = SξI , of uncorrelated
noise in I(t) and Q(t) channels.

Equations (29) and (30) have been derived in Ref. [53]
in three different ways, leading to the same result. In
the first derivation, Eq. (29) has been again postulated
from the necessary correspondence with classical evolu-
tion of probability, and the phase back-action coefficient
K in Eq. (33) has been calculated from information on
fluctuation of photon number, provided by Q(t). This
gives the inequality Γ ≥ 2(∆I)2/4SI , whose lower bound
in the ideal case coincides with the actual value (10).
Thus in the ideal case Eqs. (29) and (30) can be derived
“logically”, while the non-ideal case (η < 1) can be an-
alyzed by averaging over the extra noise of the amplifier
(ηamp < 1) and over information contained in the lost
fraction of the microwave signal (ηcol < 1).

In the second derivation [53], Eqs. (29) and (30) have
been obtained from Eqs. (12) and (13) by considering
a phase-preserving amplifier as a phase-sensitive ampli-
fier with rapidly rotating amplified phase φa, so that
the difference φd from the optimal phase is also chang-
ing. Then averaging the evolution in Eqs. (12) and (13)
over the period of phase rotation, we obtain Eqs. (29)
and (30). Finally, the third derivation in Ref. [53] has
been based on considering a phase-preserving amplifier
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as two phase-sensitive amplifiers, which amplify orthog-
onal quadratures in two microwave channels, obtained
from the microwave signal by using a symmetric beam
splitter. Then using Eqs. (12) and (13) for each channel,
we again obtain Eqs. (29) and (30).

Note that since in the “bad cavity” regime the qubit
is practically not entangled with the measurement res-
onator, it is easy to include the qubit evolution due to
Rabi oscillations, energy relaxation, etc. (this extra evo-
lution should be much slower than κ, but can be slower,
comparable, or faster than Γ). For that we need to take
the derivative of the evolution equations (12) and (13)
for the phase-sensitive case or Eqs. (29) and (30) for the
phase-preserving case, and simply add the terms due to
other mechanisms of evolution (this is equivalent to inter-
leaving the both types of evolution). As always [30, 74],
in taking the derivative it is important to specify whether
the Itô or Stratonovich definition of the derivative is used.

IV. MODERATE BANDWIDTH

Now let us discuss the main subject of this paper: the
Bayesian formalism for continuous qubit measurement in
the circuit QED setup (Fig. 1) in the case when the “bad
cavity” limit is not applicable. Therefore, we now assume
that the resonator damping rate κ is comparable to the
speed of the qubit evolution due to measurement back-
action, which can be characterized by the qubit ensemble
dephasing Γ. In this case there is significant entangle-
ment between the qubit and resonator, so we should con-
sider the evolution of the combined qubit-resonator sys-
tem. Also, since the typical measurement time is compa-
rable to κ−1, our formalism should focus on the transient
evolution. The parameters of the measurement setup (ε,
φa, κ, etc.) are allowed to change in time (this change
should be much slower than ωd for RWA to be valid, but
can be comparable to or even faster than κ).

In general, this problem is rather complicated, but we
use a simplifying assumption: we assume that the qubit
evolution is only due to measurement, i.e., there are no
Rabi oscillations, qubit energy relaxation, etc. In prac-
tice this means that the frequency of Rabi oscillations and
rate of energy relaxation should be much smaller than κ
(then the extra evolution can be added phenomenologi-
cally, as discussed in the previous section).

We will assume that the initial state of the qubit-
resonator system is unentangled, and the resonator starts
in a coherent state |αin〉,

|ψ(0)〉 = (c0 |0〉+ c1 |1〉)⊗ |αin〉, (38)

where |c0|2 + |c1|2 = 1 and, for example, |αin〉 is vacuum.
Generalization to a mixed initial state,

ρq&r(0) = ρq,in ⊗ |αin〉〈αin|, (39)

or a slightly more general state [see Eq. (95) below] will
be straightforward. In the analysis we will use the ro-
tating frame, corresponding to the Hamiltonian (4). We

will first discuss a simple general point of view, which
describes the evolution due to measurement, then derive
equations for the ensemble-averaged evolution, and then
discuss the evolution during an individual realization of
the measurement process. Until Sec. IV F we will assume
the ideal case, in particular κout = κ – see Fig. 2(a), in
which we need to assume κin � κout.

A. Idea of “history tail”

Suppose the initial state of the qubit is |0〉. Since the
measurement is of the QND type and the qubit does not
evolve by itself, it will remain in the state |0〉, and since
the resonator is initially in a coherent state, its state will
remain to be an (evolving) coherent state (see Appendix
A). Therefore, the qubit-resonator system will evolve in
the rotating frame as

|ψ(t)〉 = |0〉 e−iϕ0(t)|α0(t)〉, (40)

where the coherent state amplitude α0(t) and the overall
phase ϕ0(t) evolve according to Eqs. (A24) and (A25)
with the resonator frequency ωr − χ and drive (rotating
frame) frequency ωd,

α̇0 = −i(ωr − χ− ωd)α0 −
κ

2
α0 − iε, (41)

ϕ̇0 = Re(ε∗α0). (42)

Here the drive amplitude ε can be time-dependent and
the damping κ can in general be also time-dependent.
Note that the evolution (42) of the overall phase is of-
ten not considered in textbooks, but for us it is very
important. Derivation of Eq. (42) from the Schrödinger
equation with the Hamiltonian (4) is very simple.

Now let us consider a larger physical system, which in-
cludes the field leaking from the resonator to the trans-
mission line (actually, we also necessarily need to con-
sider the incoming field from the transmission line, but
we assume that it is always vacuum). This larger system
keeps a record of the previous evolution in a form of a
“flying away tail” (a propagating microwave), which we
will call a “history tail” (Fig. 3). Let us divide this tail
into sufficiently short pieces of duration ∆t (∆t� κ−1);
each of them will also be a coherent state, as follows
from the property 2.6 discussed in Appendix A for a
beam splitter (in our case a leaking “mirror” at the end
of the resonator). The mth piece of the history tail

(counting back in time) will be |α0(t − m∆t)
√
κ∆t〉,

which is the resonator state at time t − m∆t, passed
through the beam splitter with transmission amplitude√
κ∆t [this value follows from the energy conservation,√
1− e−κ∆t ≈

√
κ∆t]. Therefore, the wavefunction, in-

cluding the history tail is

|Ψ(t)〉 = e−iϕ0(t)|0〉 |α0(t)〉
∏
m

|α0(t−m∆t)
√
κ∆t〉.

(43)



9

|. . 〉 |. . 〉
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FIG. 3: Illustration of the “history tail” idea. Since the qubit
does not evolve by itself, we can think in terms of superposi-
tion [Eq. (46)] of two evolutions of the resonator state [|α0(t)〉
and |α1(t)〉], which leave the “history record” in the form of
propagating field, leaked from the resonator. We call this
propagating field a “history tail”. The quantum Bayesian for-
malism developed in this paper is based on measuring small
pieces of the history tail in the textbook way. The corre-
sponding state collapse leads to change of the coefficients in
the superposition, which is the evolution due to measurement.

If κ depends on time, then the factor
√
κ∆t in this equa-

tion should be replaced with
√
κ(t−m∆t) ∆t. Note

that the coherent states in the tail are unentangled with
each other and with the resonator state (see property 2.6
in Appendix A). Also note that the number of terms in
the direct product (43) increases with time; this seems
unphysical, but it is only a matter of notation; we can
keep the number of terms constant by adding vacuum
states of the pieces of field incoming from the transmis-
sion line.

If the qubit is initially in the state |1〉, then it remains
in |1〉, so that the wavefunction of the system including
the history tail is given by Eq. (43) with |0〉 replaced with
|1〉, α0 replaced with α1, and ϕ0 replaced with ϕ1, where
α1(t) and ϕ1(t) evolve according to Eqs. (A24) and (A25)
with the resonator frequency ωr + χ,

α̇1 = −i(ωr + χ− ωd)α1 −
κ

2
α1 − iε, (44)

ϕ̇1 = Re(ε∗α1). (45)

Now let us make a simple but very important logical
step in the derivation. Since the qubit does not evolve by
itself, we can consider two evolutions at the same time:
for the qubit in the state |0〉 and in the state |1〉, so that
the coefficients in the initial superposition (38) do not
change in time (Fig. 3). This follows from the general
linearity of quantum mechanics and somewhat resembles
the “many worlds” interpretation. Therefore, for the ini-
tial state (38) of the qubit-resonator system we obtain the
wavefunction evolution (including the flying away history
tail)

|Ψ(t)〉 = c0 e
−iϕ0(t)|0〉 |α0(t)〉

∏
m

|α0(t−m∆t)
√
κ∆t〉

+c1 e
−iϕ1(t)|1〉 |α1(t)〉

∏
m

|α1(t−m∆t)
√
κ∆t〉, (46)

where c0 and c1 are constant in time, while α0, ϕ0, α1,
and ϕ1 evolve according to Eqs. (41), (42), (44) and (45),
starting with α0(0) = α1(0) = αin and ϕ0(0) = ϕ1(0) =
0.

The approach to qubit measurement via the wavefunc-
tion evolution in Eq. (46) is physically transparent and
quite powerful. In particular, it will easily allow us to
describe evolution of the qubit-resonator system in the
process of measurement by applying the textbook col-
lapse postulate to measurement of the tail pieces (Fig.
3). However, let us first discuss the ensemble-averaged
evolution.

B. Ensemble-averaged evolution

If the result of the tail measurement is not taken into
account, we need to average the quantum state over
all possible measurement results, which is equivalent to
tracing the state (46) over the tail. This leads to a
density operator in the qubit-resonator Hilbert space,

ρq&r = ρq&r
00 + ρq&r

11 + ρq&r
01 + ρq&r

10 , in which the parts
diagonal in the qubit subspace are

ρq&r
00 (t) = |c0|2 |0〉〈0| ⊗ |α0(t)〉〈α0(t)|, (47)

ρq&r
11 (t) = |c1|2 |1〉〈1| ⊗ |α1(t)〉〈α1(t)|, (48)

while the off-diagonal parts contain the inner product of
the tails for the two different evolutions,

ρq&r
10 (t) = c1c

∗
0 e
−i[ϕ1(t)−ϕ0(t)] |1〉〈0| ⊗ |α1(t)〉〈α0(t)|

×
∏
m

〈α0(t−m∆t)
√
κ∆t |α1(t−m∆t)

√
κ∆t〉, (49)

and similarly for ρq&r
01 = (ρq&r

10 )†. The inner product for
each time piece ∆t is given by Eq. (A9) in Appendix A,
so that we find

ρq&r
10 (t) = c1c

∗
0 e
−i[ϕ1(t)−ϕ0(t)] |1〉〈0| ⊗ |α1(t)〉〈α0(t)|

× exp

(
−
∫ t

0

κ

2
|α1(t′)− α0(t′)|2 dt′

)
× exp

(
−i
∫ t

0

κ Im [α∗1(t′)α0(t′)] dt′
)
. (50)

In this equation the second line obviously describes
dephasing with the rate

Γd(t) =
κ

2
|α1(t)− α0(t)|2, (51)

which is directly related to distinguishability of the field
emitted into the transmission line and therefore to the
information that can in principle be obtained from mea-
surement. The third line in Eq. (50) is the changing
phase factor which can be ascribed to the shift of the
qubit frequency in the process of measurement,

δωq,1(t) = κ Im [α∗1(t)α0(t)]. (52)

However, a similar frequency shift comes from the term
e−i[ϕ1(t)−ϕ0(t)] in Eq. (50); using Eqs. (42) and (45), we
obtain the corresponding value

δωq,2(t) = Re {ε∗(t) [α1(t)− α0(t)]}, (53)
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so that the total frequency shift of the qubit (which can
be called the ac Stark shift) is

δωq,s = δωq,1 + δωq,2. (54)

Thus, the ensemble-averaged evolution of the qubit-
resonator state can be described (neglecting the overall
phase) by the wavefunction

|ψ(t)〉 = c0 |0〉 |α0(t)〉+ e−i
∫ t
0
δωq,s(t

′) dt′c1 |1〉 |α1(t)〉,
(55)

subjected to dephasing Γd(t) between the two compo-
nents.

If we also want to trace the state over the resonator,
then we have an additional inner product 〈α0(t) |α1(t)〉,
which changes the dephasing rate (51) by

∆Γ(t) =
d

dt

[
1

2
|α1(t)− α0(t)|2

]
(56)

(this change can be positive or negative) and introduces
additional contribution to the qubit frequency shift,

δωq,3(t) =
d

dt
Im[α∗1(t)α0(t)], (57)

as follows from Eq. (A9). The qubit-only density matrix
elements then become

ρq
00(t) = |c0|2, ρq

11(t) = |c1|2, (58)

ρq
10(t) = c1c

∗
0 exp

[
−
∫ t

0

[Γd(t′) + ∆Γ(t′)] dt′
]

× exp

[
− i
∫ t

0

[δωq,s(t
′) + δωq,3(t′)] dt′

]
. (59)

[Note that ρq
ij are numbers, while ρq&r

ij in Eqs. (47)–(50)

are operators.] Using Eqs. (41) and (44), it is easy to
show that

Γd(t) + ∆Γ(t) = 2χ Im[α∗1(t)α0(t)], (60)

δωq,s(t) + δωq,3(t) = 2χRe[α∗1(t)α0(t)], (61)

which coincide with the results of Refs. [22, 72] for the
qubit dephasing and ac Stark shift.

Note that the results (51) and (60) for the dephasing
rate coincide in the steady state (because then ∆Γ = 0),
but they are different during the transient evolution. The
rate (51) reflects the information loss due to emitted field,
while the rate (60) also includes the effect from chang-
ing entanglement between the qubit and the resonator.
Similarly, the results (54) and (61) for the ac Stark shift
coincide in the steady state (then δωq,3 = 0), but dif-
fer during transients. Equation (54) is applicable to the
entangled qubit-resonator state, while Eq. (61) assumes
tracing over the resonator state.

Also note that all these results for the dephasing rate
and ac Stark shift are applicable only in the case of a
non-evolving qubit (i.e., when the evolution is only due
to measurement). Therefore, they are applicable to the

Ramsey sequence (with short pulses), but, strictly speak-
ing, not applicable to Rabi oscillations, spectroscopic
measurement of the ac Stark shift, etc. For the echo
sequence our results are not applicable directly, but the
exact results can still be easily obtained using the same
derivation (assuming sufficiently short pulses applied to
the qubit).

In the “bad cavity” limit we can neglect the transients
and use the steady-state values α1,st and α0,st. If addi-
tionally |χ| � κ, then Eqs. (60) and (61) reduce to Eqs.
(10) and (11). If |χ| >∼ κ, then for the qubit dephasing
and ac Stark shift in Sec. III we need to use steady-state
versions of Eqs. (60) and (61) or, equivalently, Eqs. (51)
and (54).

C. Main idea for the state update

To describe an individual measurement realization
with a random result and evolution depending on this
result, we will measure the pieces of the “history tail”
in Eq. (46) – see Fig. 3. Note that each piece can be
measured in a different way, so the measurement prop-
erties can be changing in time. Moreover, in general the
sequence of measurement of the pieces can also be arbi-
trary (e.g., in a “delayed choice” experiment). We are
interested in describing homodyne measurement with a
phase-sensitive or phase-preserving amplifier.

Let us start with describing an ideal (with perfect
quantum efficiency) phase-sensitive homodyne measure-
ment. We will use the following physical model to de-
scribe such a measurement:

1. A large coherent-state field αp (|αp| � 1) from a
pump is added to the piece of the tail.

2. The number of photons n is measured in the result-
ing state.

3. For a particular random n obtained in this measure-
ment, the wavefunction is collapsed in the standard
textbook way.

This procedure describes well the optical homodyne
measurement (note that the photon number does not ac-
tually need to be resolved with single-photon precision
since the fluctuations are significant). It is also similar
to what is done experimentally in a phase-sensitive super-
conducting parametric amplifier. For example, in Refs.
[9, 63] the phase-sensitive parametric amplifier works
by adding a pump microwave to the microwave leaked
from the resonator using a directional coupler (a mi-
crowave analog of a beam splitter). Then the result-
ing microwave is sent to a nonlinear oscillator, whose
frequency depends on the oscillation amplitude. This
frequency change is then sensed via the corresponding
phase change at the mixer. Thus we measure the power
of the pump with added signal, i.e., within the time in-
terval ∆t we essentially measure the corresponding num-
ber of photons n (again, single-photon precision in mea-
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suring n is not needed). In a more complicated case of
sideband pumping (double-pumping) of the parametric
amplifier [11, 14, 55], the added resonant pump wave is
modulated in amplitude; however, the general principle
remains practically the same. The case of a parametric
pumping at the doubled frequency is different, but it is
still practically equivalent to the measurement described
by our model.

Note that in order to add the field αp, we need a beam
splitter (directional coupler) which almost fully passes
the signal, so the applied pump field should be much
larger than the already large field αp. Also note that a
small part of the signal in this case will be lost, so that
perfect quantum efficiency is impossible. However, we
will not consider these details, and will also not consider
ways to go around these problems (e.g., by using a bal-
anced homodyne detection).

It is rather simple to analyze the measurement using
our model. For describing measurement of mth piece of
the tail, let us rewrite Eq. (46) as

|Ψ〉 = c0|ψ0〉|α0,t〉+ c1|ψ1〉|α1,t〉, (62)

|αj,t〉 = |αj(t−m∆t)
√
κ∆t〉, j = 0, 1, (63)

|ψj〉 = e−iϕj |j〉|αj〉
∏
k 6=m

|αj(t− k∆t)
√
κ∆t〉, (64)

where |αj,t〉 is the measured mth piece of the tail, while
remaining terms in Eq. (46) are denoted as the normal-
ized wavefunctions |ψj〉. [Actually, if we measure each
piece of the tail immediately as it emerges, then it is
sufficient to consider |ψj〉 = e−iϕj |j〉|αj〉, which contain
only the qubit and resonator states and do not contain
unmeasured pieces of the tail. However, with Eqs. (62)–
(64) we can in general consider a “delayed choice” version
of the measurement.]

After the first step in the procedure (addition of the
pump field αp), the tail pieces |αj,t〉 become |αp +
αj,t〉 exp[−iIm(α∗pαj,t)] [see Eq. (A11) for displacement

by operator D̂(αp)], therefore, the state (62) becomes

|Ψ〉 = c0|ψ0〉 e−i Im(α∗pα0,t)|αp + α0,t〉
+c1|ψ1〉 e−i Im(α∗pα1,t)|αp + α1,t〉. (65)

At the second step of our procedure we need to measure
the number of photons n in the pump-plus-piece-of-tail
part of the state (65). The probability distribution for
obtaining a particular n is

P (n) = |c0|2e−|αp+α0,t|2 |αp + α0,t|2n/n!

+|c1|2e−|αp+α1,t|2 |αp + α1,t|2n/n!, (66)

as follows from Eqs. (65) and (A7). This distribution is
normalized,

∑
n P (n) = 1, because |c0|2 + |c1|2 = 1.

The third step of the procedure is the orthodox col-
lapse of the state (65) onto the particular (random) mea-
surement result n. This means that instead of the states

|αp +α0,t〉 in Eq. (65), we pick only the amplitude corre-
sponding to |n〉, and then renormalize the wavefunction
(65), so that it becomes [see Eq. (A4)]

|Ψ̃〉 = (c̃0|ψ0〉+ c̃1|ψ1〉) |n〉, (67)

c̃j =
cj e
−i Im(α∗pαj,t)e−

1
2 |αp+αj,t|2(αp + αj,t)

n

Norm
, (68)

where the normalization Norm ensures that |c̃0|2+|c̃1|2 =

1. Note that the the overall phase of |Ψ̃〉 is not important.
As we see, the “quantum back-action” due to the col-

lapse changes the amplitudes of the pre-measured state
(62): c0 → c̃0 and c1 → c̃1. This is the main idea for
the description of the evolution due to measurement in
the quantum Bayesian formalism. The procedure can be
applied to measurement of other pieces of the “history
tail” in the same way.

D. Gaussian approximation

Let us transform Eqs. (66) and (68) into a more useful
form, using the assumption of a large pump amplitude,
|αp| � 1 and |αp| � |αj,t|. In this case we can use the
Gaussian approximation for the coherent states |αp+αj,t〉
[see Eq. (A4)],

|αp + αj,t〉 ≈
∞∑
n=0

√
exp[−(n− n̄j)2/2σ2]√

2πσ2

× exp[in arg(αp + αj,t)] |n〉, (69)

n̄j = |αp|2 + 2 Re(α∗pαj,t) + |αj,t|2

≈ |αp|2 + 2 Re(α∗pαj,t), (70)

σ = |αp| � 1, (71)

where n̄j is the average number of photons for the state
|αp+αj,t〉 (we can neglect the last term |αj,t|2 for n̄j since

|αj,t| � |αp|) and σ =
√
n̄ is the standard deviation.

Note that we use the same σ for both states because
|n̄1 − n̄0| � n̄j . Also note that for exact normalization
of the Gaussian state (69) at finite |αp| the denominator√

2πσ2 should be slightly changed; however, this is not
important for the derivation.

The probability distribution (66) for measuring n pho-
tons in this case becomes

P (n) =
|c0|2 e−(n−n̄0)2/2σ2

√
2πσ2

+
|c1|2 e−(n−n̄1)2/2σ2

√
2πσ2

, (72)

and the updated amplitudes c̃0 and c̃1 given by Eq. (68)
become

c̃j =
cj e
−i Im(α∗pαj,t)e−(n−n̄j)2/4σ2

ein arg(αp+αj,t)

Norm
. (73)

We see that if the measurement result n is closer to n̄0

than to n̄1, then the amplitude c̃0 increases (by absolute
value) in this update. This is the expected feature of
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the quantum Bayesian formalism: if the measurement
result is more consistent with the qubit state |0〉, then
the amplitude of this state increases.

To simplify the phase factor in Eq. (73), let us write
ein arg(αp+αj,t) as ein arg(αp)ein arg(1+αj,t/αp), and then ex-
pand arg(1 + αj,t/αp) to the second order, so that

ein arg(αp+αj,t) = ein arg(αp)ein Im(αj,t/αp)[1−Re(αj,t/αp)]

(74)

(we need the second order because αj,t ∝
√

∆t and we
wish to keep the terms linear in ∆t). The j-independent
phase factor ein arg(αp) can be ignored as an overall phase.
In the remaining phase in Eq. (74) let us represent n as
n = n̄c + (n− n̄c) with the center point

n̄c ≡ (n̄0 + n̄1)/2. (75)

From Eq. (70), neglecting the term |αj,t|2, we find n̄c =
|αp|2 + Re[α∗p(α0,t + α1,t)].

If n = n̄c, then the phase in Eq. (73) (neglecting
the overall phase) is −Im(α∗pαj,t) + n̄c Im(αj,t/αp)[1 −
Re(αj,t/αp)], which can be written (neglecting the terms
of order α−1

p ) as Im(αj,t/αp) Re[(α0,t + α1,t − αj,t)α∗p].
Moving the phase difference to j = 1 (i.e., considering
the phase for j = 0 as an unimportant overall phase), we
find that the phase evolution in Eq. (73) can be described

by multiplying c1 by e−i Im(α∗1,tα0,t). This is exactly what
we would expect from the phase of the inner product
〈α0,t|α1,t〉, and it is fully consistent with the result (52)
for the ac Stark shift contribution. Thus, for n = n̄c the
phase shift produced by the collapse is the same as the
ensemble-averaged phase shift.

When n 6= n̄c, there is an additional phase factor
ei(n−n̄c) Im(αj,t/αp) in Eqs. (73) and (74) [we now use
1 − Re(αj,t/αp) ≈ 1, neglecting a phase correction of
order α−1

p ]. Moving the phase difference to j = 1,
we find that c1 should be additionally multiplied by
e−i(n−n̄c) Im[(α0,t−α1,t)/αp].

Thus, the evolution due to measurement [see Eqs. (62),
(67), and (73)] can be described as

c̃0 =
c0 exp[−(n− n̄0)2/4σ2]

Norm
, (76)

c̃1 =
c1 exp[−(n− n̄1)2/4σ2]

Norm
e−i∆ϕ, (77)

Norm =

√∑
j=0,1

|cj |2 exp[−(n− n̄j)2/2σ2], (78)

∆ϕ = −n− n̄c

σ

√
κ∆t Im{[α1(tm)− α0(tm)] e−iφa}

+κ∆t Im[α∗1(tm)α0(tm)], (79)

φa = φp = arg(αp), (80)

where tm = t−m∆t is the time moment when the mea-
sured piece of the “history tail” leaked from the res-
onator, and φa is the phase of the pump, which deter-
mines the amplified quadrature. We emphasize that the
measured piece becomes unentangled with the rest of the

wavefunction [see Eq. (67)] and therefore can be disre-
garded when the measurement of the next piece is ana-
lyzed.

Note that the pump phase φa affects the response [see
Eq. (70)]

n̄1 − n̄0 = 2σ
√
κ∆t Re{[α1(tm)− α0(tm)] e−iφa} (81)

and also affects the phase shift ∆ϕ in Eq. (79). Thus, the
choice of the measured quadrature affects evolution of the
system (as in the “bad cavity” case [53]). However, it is
simple to show that the state update (76)–(79) averaged
over the measurement result (72) does not depend on the
choice of φa.

E. Continuous phase-sensitive measurement

The formalism developed in Secs. IV C and IV D allows
us to consider measurement of the “history tail” pieces in
an arbitrary sequence and thus to describe various “de-
layed choice” experiments. However, usually this is not
needed, and we can assume measurement of the pieces as
soon as they leak from the resonator. In this case it is
sufficient to describe the system by an entangled qubit-
resonator wavefunction (we still consider an ideal case)

|ψ(t)〉 = c0(t) |0〉 |α0(t)〉+ c1(t) |1〉 |α1(t)〉, (82)

with the coefficients c0(t) and c1(t) evolving in time due
to measurement. Then the evolution equations are es-
sentially the same as Eqs. (76)–(79), but now there is no
delay in measurement, and we have included the phase
factors e−iϕ0 and e−iϕ1 in Eq. (46) into the coefficients
c0 and c1 in Eq. (82) [actually, we include the phase dif-
ference e−i(ϕ1−ϕ0) into c1, neglecting the overall phase
e−iϕ0 ]. Also, instead of the measured number of photons
n, let us introduce the output signal Im = n/∆t. Simi-
larly, I0 = n̄0/∆t and I1 = n̄1/∆t are the corresponding
average values, and D = (σ/∆t)2 is the variance of Im.
Then Eqs. (76)–(79) can be rewritten as

c0(t+ ∆t) =
c0(t) exp[−(Im − I0)2/4D]

Norm
, (83)

c1(t+ ∆t) =
c1(t) exp[−(Im − I1)2/4D]

Norm
e−i∆ϕ, (84)

Norm =

√∑
j=0,1

|cj(t)|2 exp[−(Im − Ij)2/2D], (85)

∆ϕ = −Im − (I0 + I1)/2√
D

√
κ∆t Im[(α1 − α0) e−iφa ]

+ δωq,s ∆t, (86)

where the qubit ac Stark shift δωq,s due to leaking field
is given by Eqs. (52)–(54).

Note that Eqs. (83)–(86) do not change if we multiply

Im, I0, I1, and
√
D by an arbitrary factor. Therefore, we

can consider them just as experimental output signals (in
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arbitrary units), so that

Im =
1

∆t

∫ t+∆t

t

I(t′) dt′ (87)

for a continuous measurement output I(t), and the vari-
ance D is related to the single-sided spectral density SI
of the output signal as

D =
SI

2∆t
. (88)

Now let us introduce the angle difference φd between
the amplified quadrature along αp and the “information-
carrying” quadrature along α1 − α0,

φd = φa − arg[α1(t)− α0(t)], (89)

and also introduce the maximum response ∆Imax > 0,
which would correspond to φd = 0, so that

∆I = I1 − I0 = ∆Imax cos(φd). (90)

Then we can write the factor
√
κ∆t Im[(α1 − α0) e−iφa ]

in Eq. (86) as − sin(φd) ∆Imax/(2
√
D).

Also counting the measurement signal from the central
point (I0 + I1)/2,

Ĩm = Im −
I0 + I1

2
, (91)

we can rewrite evolution equations (83)–(86) as

c0(t+ ∆t) =
c0(t) e−Ĩm cos(φd) ∆Imax/4D

Norm
, (92)

c1(t+ ∆t) =
c1(t) eĨm cos(φd) ∆Imax/4D

Norm
e−i∆ϕ, (93)

∆ϕ =
Ĩm sin(φd) ∆Imax

2D
+ δωq,s∆t, (94)

where Norm ensures |c0(t+ ∆t)|2 + |c1(t+ ∆t)|2 = 1.
Note that for short ∆t the variance D of the noisy

signal Ĩm is much larger than (∆Imax)2, and then

|Ĩm∆Imax| � D, so that the change of c0 and c1 is small.
However, from the structure of Eqs. (92)–(94) it is easy
to see that they remain valid for an arbitrary long ∆t
if ∆Imax, φd, δωq,s and noise SI do not change with
time. Therefore, the practical upper limit for the time
step ∆t (e.g., in numerical simulations) is determined by
transients, which change the resonator states α0(t) and
α1(t), and by possible changes of the amplified quadra-
ture phase φa.

F. Phase-sensitive measurement with imperfect
quantum efficiency

So far we considered an ideal phase-sensitive measure-
ment, so that the evolution description using a wavefunc-
tion was sufficient. To describe a measurement with im-
perfect efficiency, we need to use the language of density

matrices (we still assume that the qubit evolves only due
to measurement). Then instead of Eq. (82), the evolu-
tion of the entangled qubit-resonator system is described
by the density operator

ρq&r(t) =
∑

j,j′=0,1

ρjj′(t) |j〉〈j′| ⊗ |αj(t)〉〈αj′(t)|, (95)

where α0(t) and α1(t) are given by Eqs. (41) and (44).
We emphasize that the matrix elements ρjj′(t) describe
the entangled qubit-resonator state, not only the qubit
state. (Note that using the form (95) for the qubit-
resonator state is equivalent to the polaron-frame approx-
imation used in the theory of quantum trajectories [22].)
In the ideal case the evolution of the matrix elements
ρjj′ can be obtained by converting Eqs. (92)–(94) into
the language of density matrices,

ρ11(t+ ∆t)

ρ00(t+ ∆t)
=
ρ11(t)

ρ00(t)
exp[Ĩm cos(φd) ∆Imax/D], (96)

ρ10(t+ ∆t)

ρ10(t)
=

√
ρ11(t+ ∆t) ρ00(t+ ∆t)√

ρ11(t) ρ00(t)
e−i∆ϕ, (97)

where the phase shift ∆ϕ is still given by Eq. (94). An-
other, more intuitive way to describe the evolution of the
diagonal elements is by using the uncentered signal Im as
in Eq. (83):

ρjj(t+ ∆t) =
ρjj(t) exp[−(Im − Ij)2/2D]

Norm
. (98)

Note that these evolution equations for ρjj′ are ex-
actly the same as Eqs. (12) and (13) of the quantum
Bayesian formalism in the “bad cavity” limit, except
the ac Stark shift δωq is now δωq,s, dephasing is so
far absent (γ = 0), and, most importantly, Eqs. (96)
and (97) describe the entangled qubit-resonator state
(95) and are capable of describing transient evolution.
During transients there is significant time-dependence in
α0(t) and α1(t), which also leads to time-dependence in
∆Imax(t), the quadrature phase difference φd(t), the re-
sponse I1 − I0 = cos(φd)∆Imax, and the middle point
(I1 + I0)/2. Therefore, during transients the time step
∆t in Eqs. (96) and (97) should be much smaller than
κ−1, in contrast to arbitrary τ in Eqs. (12) and (13).

Imperfect quantum efficiency η of the measurement
(0 ≤ η ≤ 1), similar to the case discussed in Sec. III A,
mainly originates from two mechanisms: imperfect col-
lection efficiency and imperfect amplifier efficiency. First,
a fraction of the field leaked from the resonator is lost
before reaching the amplifier. Second, the amplifier pro-
duces more output noise than the quantum limitation.
Therefore, we can define the total quantum efficiency η
as

η = ηcolηamp, ηcol =
κcol

κ
, ηamp =

SI,q.l.
SI

, (99)

where κcol/κ is the ratio of the “collected” microwave en-
ergy, which reaches amplifier, to the total energy lost by
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the resonator (κcol/κ = κout/κ × κcol/κout), and SI,q.l.
is the spectral density of the output noise if a quantum-
limited phase-preserving amplifier were used instead of
the actual amplifier, which produces a larger noise SI .
Let us now discuss the effects produced by imperfect ηcol

and ηamp.
An imperfect collection efficiency ηcol can be modelled

by adding an asymmetric beam splitter on the path of the
leaked field, which splits each piece of the “history tail”
into two pieces, |αj,t〉 → |

√
ηcol αj,t〉 ⊗ |

√
1− ηcol αj,t〉,

so that the first piece is measured, while the second one
remains unmeasured. Since no information can be ob-
tained from the unmeasured piece, we need to trace over
it, as in the calculation of the ensemble-averaged evolu-
tion, while for the measured piece we use the same pro-
cedure as above. The tracing over the unmeasured piece
does not change the diagonal matrix elements in Eq. (95);
therefore, the total change of ρ00 and ρ11 is still given by
Eq. (96). Note, however, that imperfect collection effi-
ciency reduces the response, ∆Imax =

√
ηcol ∆Imax,ideal

and changes the central point (I0 + I1)/2, while the vari-
ance D (determined by the amplifier noise) remains un-
changed.

For the off-diagonal matrix element ρ10, the
tracing over the unmeasured piece |

√
1− ηcol αj,t〉

produces the factor 〈
√

1− ηcol α0,t|
√

1− ηcol α1,t〉 =

e−(1−ηcol)Γd(t)∆te−i(1−ηcol)δωq,s∆t [see Eqs. (49)–(54) in
Sec. IV B], while the measured piece gives the evolution
described by Eq. (97), with δωq,s in Eq. (94) multiplied by
ηcol. Therefore, the total evolution of ρ10 is described by
Eq. (97) with the extra factor e−(1−ηcol)Γd(t)∆t, while the
phase ∆ϕ is still given by Eq. (94) [note again that ∆Imax

and (I0+I1)/2 are affected by ηcol, but still correspond to
the experimentally measured values]. Thus, the only ef-
fect of an imperfect collection efficiency ηcol on the system
evolution (96)–(97) is the extra factor e−(1−ηcol)Γd(t)∆t in
Eq. (97), where Γd is given by Eq. (51).

Imperfect quantum efficiency ηamp of the amplifier pro-
duces additional noise at the output, so that the response
∆Imax and the middle point (I0 + I1)/2 do not change,
while the variance D given by Eq. (88) increases because
of the increased noise spectral density SI . To take into
account the extra noise, for a given measured output
value Ĩm, we need to guess what was the “actual” value
Ĩm,a (the probability distribution is given by the classical
Bayesian analysis), then apply the evolution (96)–(97)

using the value Ĩm,a, and then average over all possible

values of Ĩm,a. This is exactly what was done in Ref.
[73] for a qubit measurement by QPC or SET. Since the
evolution equations (96), (97), and (94) have exactly the
same form as what was considered in Ref. [73], we can
simply use the obtained result: the evolution is still given
by Eqs. (96), (97), and (94) with two changes. First,
the variance D is the actual (increased) variance; second,
there is an extra dephasing factor in Eq. (97), which can
be found from comparison with ensemble-averaged evo-
lution.

Even though the formal derivation of this result is

rather lengthy [73], it is easy to understand it. The evo-
lution of the diagonal elements of the density matrix is
the evolution of probabilities, and therefore must obey
the classical Bayes formula, which directly gives Eq. (96).
The extra dephasing in Eq. (97) comes from uncertainty
of ρii and the phase ∆ϕ due to uncertainty of the un-
known “actual” value Ĩm,a. The reduced proportionality
factor between ∆ϕ and the (centered) measurement re-

sult Ĩm in Eq. (94) due to increased value of D can be
understood from the fact that for uncorrelated Gaussian-
distributed zero-mean random numbers x1 and x2, the
averaging of x1 for a fixed sum x1 + x2 gives the smaller
value, 〈x1〉 = (x1 + x2) var(x1)/[var(x1) + var(x2)].

Thus, combining both imperfection mechanisms of the
quantum efficiency η, we can describe the evolution of
the qubit-resonator system (95), measured using a phase-
sensitive amplifier. The resulting equations are very sim-
ilar to Eqs. (12) and (13) for the “bad cavity” case,

ρ11(t+ ∆t)

ρ00(t+ ∆t)
=
ρ11(t)

ρ00(t)
exp

[
Ĩm ∆I

D

]
, (100)

ρ10(t+ ∆t)

ρ10(t)
=

√
ρ11(t+ ∆t) ρ00(t+ ∆t)√

ρ11(t) ρ00(t)

× exp(−iKĨm ∆t) e−γ∆t e−iδωq,s∆t, (101)

where

Ĩm =
1

∆t

∫ t+∆t

t

I(t′) dt′ − I0 + I1
2

, (102)

∆I = I1 − I0 = ∆Imax cosφd, (103)

K =
∆Imax sinφd

2D∆t
=

∆Imax sinφd

SI
, (104)

γ = Γd − (∆Imax)2/4SI = (1− η)Γd, (105)

Γd = (κ/2) |α1(t)− α0(t)|2, (106)

δωq,s = 2χRe(α∗1α0)− d

dt
Im(α∗1α0), (107)

and we repeated several previous formulas here for con-
venience. Note that most parameters in these equations
depend on time during transients, and therefore the time
step ∆t should be sufficiently small. Recall that SI is
the single-sided spectral density of the output noise and
D = SI/(2∆t) is the corresponding noise variance of Ĩm.
Equations (100)–(107) are the main result of this paper.

If instead of using experimental output signal I(t) we

want to simulate the process, we can pick Ĩm from the
probability distribution

P (Ĩm) = ρ00(t)
exp[−(Ĩm + ∆I/2)2/2D]√

2πD

+ρ11(t)
exp[−(Ĩm −∆I/2)2/2D]√

2πD
. (108)

For an infinitesimally small ∆t this is equivalent to using

I(t) =
I0 + I1

2
+

∆I

2
[ρ11(t)− ρ00(t)] + ξI(t), (109)
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where ξI(t) is a white noise with spectral density SI .
It is easy to check that averaging of ρjj′(t+ ∆t) given

by Eqs. (100) and (101) over Ĩm with probability distri-
bution (108) produces the expected ensemble-averaged
equations

ρ00(t+ ∆t) = ρ00(t), ρ11(t+ ∆t) = ρ11(t), (110)

ρ10(t+ ∆t) = ρ10(t) e−Γd∆t e−iδωq,s∆t. (111)

Similar to what was mentioned in Sec. III B, the aver-
aging over the fluctuating phase −KĨm∆t in Eq. (101)
produces an ensemble dephasing rate K2SI/4, while the
averaging of the first term in Eq. (101) produces an en-
semble dephasing rate (∆I)2/4SI . Both dephasing rates
depend on the amplified quadrature via the angle φd, but
their sum, (∆Imax)2/4SI , does not depend on φd.

If there is extra (not measurement-related) dephas-
ing rate γint of the qubit-resonator system, e.g., due
to intrinsic pure dephasing of the qubit, then it can
be easily included into Eq. (101) by adding the fac-
tor e−γint∆t. Alternatively, we can include γint into the
ensemble-averaged dephasing, Γd → Γ = Γd + γint, so
that evolution equations (100) and (101) remain un-
changed, but now γ = Γ−(∆Imax)2/4SI . In this case the
overall quantum efficiency includes the extra dephasing,
η = ηcolηampηint, with ηint = Γd/(Γd + γint) [53].

Note that for the evolution equations discussed in this
section the initial state should not necessarily be pure,
so Eq. (38) for the initial state can be replaced with Eq.
(39). Moreover, it is sufficient to have an initial state of
the form (95); the only necessary condition is that each
qubit state |j〉 corresponds to a certain coherent state
|αj(0)〉.

G. Phase-preserving amplifier

So far we considered the measurement using a phase-
sensitive amplifier. In this section we use the results of
the previous section to describe the case when a phase-
preserving amplifier is used. We will do it in two ways,
which give the same result.

First, let us model the measurement using a phase-
preserving amplifier in the following way. Let us pass
each piece of the “history tail” through a symmetric
beam splitter |αj,t〉 → |αj,t/

√
2〉 ⊗ |αj,t/

√
2〉, amplify

orthogonal quadratures in these two parts, measure as
discussed in Sec. IV C, and output the results for both
quadratures. From the structure of Eqs. (100)–(108) it
is easy to see that it does not matter how these two or-
thogonal quadratures are chosen if the amplification con-
ditions in both channels are the same (the same D and
∆Imax, which also means the same quantum efficiency).
Note that for both channels we should simultaneously
use either the first or the second Gaussian in Eq. (108),
though no correlation is needed in the infinitesimal limit
(109). It is natural to choose one quadrature (we call it
I) along the informational direction α1(t)− α0(t), while

the other quadrature (we call it Q) is shifted by π/2,
so that φd = 0 for the I-quadrature and φd = π/2 for
the Q-quadrature. Thus, the directions of the I and Q
quadratures are changing in time, but they are practi-
cally constant during the time step ∆t. Note that if D
for both quadratures is kept the same as for a phase-
sensitive amplifier, then the response ∆I is a factor

√
2

smaller than ∆Imax for the phase-sensitive case (because
of the beam splitter). Equivalently, if ∆I is kept the same
as in the phase-sensitive case (e.g., by an additional clas-

sical amplification by the factor
√

2), then D for both
quadratures is twice larger than for the phase-sensitive
case (in the ideal case this corresponds to the fact that
the noise of a phase-preserving amplifier is twice as large
as for a phase-sensitive amplifier).

Therefore, for the phase-preserving case we can simply
use Eqs. (100)–(108) twice, for the optimal quadrature
(φd = 0) and for the orthogonal quadrature (φd = π/2),
assuming the same output noise, SI = SQ, for both out-
put quadratures I(t) and Q(t). The I-quadrature has
the maximum response, ∆I = I1 − I0 = ∆Imax, while
the Q-quadrature has no response, Q1 = Q0. Thus, after
the time step ∆t the density matrix (95) of the qubit-
resonator system changes as

ρ11(t+ ∆t)

ρ00(t+ ∆t)
=
ρ11(t)

ρ00(t)
exp

[
Ĩm ∆I

D

]
, (112)

ρ10(t+ ∆t)

ρ10(t)
=

√
ρ11(t+ ∆t) ρ00(t+ ∆t)√

ρ11(t) ρ00(t)

× exp(−iQ̃m∆I/2D) e−γ∆t e−iδωq,s∆t, (113)

where Ĩm is given by Eq. (102), while

Q̃m =
1

∆t

∫ t+∆t

t

Q(t′) dt′ −Q0, (114)

γ = Γd − 2
(∆I)2

4SI
= Γd −

(∆I)2

4D∆t
, (115)

D = SI/(2∆t) = SQ/(2∆t), (116)

the ensemble-averaged dephasing Γd is given by Eq. (51),
and the ac Stark shift δωq,s is given by Eq. (107) or
Eqs. (52)–(54). An equivalent form for Eq. (112) in
terms of the non-centered signal Im is given by Eq. (98).
The factor of 2 in Eq. (115) appears because averaging
over the result in each channel produces the contribution
(∆I)2/4SI into the total ensemble dephasing Γd.

Another way to derive Eqs. (112) and (113) from Eqs.
(100) and (101) is to assume a slightly shifted pump fre-
quency for a phase-sensitive amplifier, so that the an-
gle φd rotates sufficiently fast, and for both quadra-
tures I(t) and Q(t) we collect only the values aver-
aged over φd. Then we have a natural formation of
two quadratures in Eqs. (100) and (101): Ĩps

m cos(φd) →
Ĩpp
m and Ĩps

m sin(φd) → Q̃pp
m , where the superscripts

indicate the phase-sensitive (ps) or phase-preserving
(pp) case. The variance of the noise in each quadra-

ture is Dpp = Dps/2 (because cos2 φd = 1/2) and
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the response in the information-carrying quadrature is
∆Ipp = ∆Ips

max/2 (because the phase-sensitive response
∆Ips

max cosφd should be multiplied by cosφd to project
onto the proper quadrature). Therefore ∆Ips

max/D
ps =

∆Ipp/Dpp, and Eqs. (100) and (101) directly transform
into Eqs. (112) and (113). For the dephasing we get
γ = Γd − (∆Ips

max)2/4Sps
I = Γd − 2× (∆Ipp)2/4Spp

I since
Spp
I = Sps

I /2 and ∆Ipp = ∆Ips
max/2, thus reproducing Eq.

(115).
In numerical simulations the probability distribution

for Ĩm is still given by Eq. (108), while for Q̃m it is

P (Q̃m) =
exp[−Q̃2

m/2D]√
2πD

. (117)

For infinitesimal ∆t these distributions are equivalent to
using Eq. (109) for I(t) and

Q(t) = Q0 + ξQ(t), SξQ = SQ = SI , (118)

for Q(t), with uncorrelated white noises in the two chan-
nels. Averaging of ρjj′(t + ∆t) in Eqs. (112) and (113)

over random Ĩm and Q̃m using the probability distribu-
tions (108) and (117) produces the ensemble-averaged
evolution equations (110) and (111). The ensemble-
averaged evolution should remain the same as in the
phase-sensitive case because of causality.

Similar to Eq. (35), the quantum efficiency for a phase-
preserving measurement can be defined in two ways,

η = 1− γ/Γd, η̃ = η/2, (119)

where the first definition is based on the comparison with
ideal phase-preserving measurement, while in the second
definition we compare the information in I-channel only
with the ideal phase-sensitive case. We emphasize that
monitoring of a pure quantum state is still possible with
a phase-preserving amplifier if η = 1, in spite of the fun-
damental limitation η̃ ≤ 1/2.

H. Differential equations for evolution

We intentionally wrote the evolution equations (100),
(101), (112) and (113) for a finite ∆t because this form is
more transparent physically, suitable for numerical simu-
lations, and also unambiguous. The differential form for
an infinitesimal ∆t is significantly more ambiguous be-
cause it depends on a chosen definition of the derivative
(as should be for nonlinear stochastic differential equa-
tions [74]).

If we define the derivative in the symmetric way ḟ(t) ≡
lim∆t→0[f(t + ∆t/2) − f(t − ∆t/2)]/∆t (the so-called
Stratonovich form), then the standard calculus rules
apply, and the differential equations for the evolution
can be derived from Eqs. (100), (101), (112) and (113)
in a straightforward way (keeping linear order in ∆t).
Thus, for the phase-sensitive measurement we obtain the

Stratonovich-form evolution as (see [38])

ρ̇11 = ρ11ρ00
2 cosφd∆Imax

SI

[
I(t)− I0 + I1

2

]
, (120)

ρ̇10 = −(ρ11 − ρ00)
cosφd∆Imax

SI

[
I(t)− I0 + I1

2

]
−i sinφd∆Imax

SI

[
I(t)− I0 + I1

2

]
ρ10

−γρ10 − i δωq,sρ10, (121)

γ = Γd − (∆Imax)2/4SI , (122)

I(t) = ρ00(t) I0 + ρ11(t) I1 + ξI(t), SξI = SI , (123)

where for convenience we repeated equations for γ and
I(t). We emphasize that I0, I1, ∆Imax, and φd may
significantly depend on time during transients.

For the phase-preserving measurement we similarly ob-
tain the Stratonovich-form equations

ρ̇11 = ρ11ρ00
2∆I

SI

[
I(t)− I0 + I1

2

]
, (124)

ρ̇10 = −(ρ11 − ρ00)
∆I

SI

[
I(t)− I0 + I1

2

]
−i ∆I

SI
[Q(t)−Q0] ρ10

−γρ10 − i δωq,sρ10, (125)

γ = Γd − 2× (∆I)2/4SI , (126)

I(t) = ρ00(t) I0 + ρ11(t) I1 + ξI(t), (127)

Q(t) = Q0 + ξQ(t), SξQ = SξI = SI . (128)

If we define the derivative in the “forward” way, ḟ(t) ≡
lim∆t→0[f(t+∆t)−f(t)]/∆t (the so-called Itô form), then
the usual calculus rules are no longer correct, and the
derivation of the differential equations from Eqs. (100),
(101), (112) and (113) should retain the second order in
∆t. Alternatively, we can use the standard rules of the
transformation from the Stratonovich form into the Itô
form [38, 74], applied to Eqs. (120)–(128). The resulting
Itô-form equations for the phase-sensitive measurement
are

ρ̇11 = ρ11ρ00
2 cosφd∆Imax

SI
[I(t)− (ρ00I0 + ρ11I1)],(129)

ρ̇10 = −(ρ11 − ρ00)
cosφd∆Imax

SI
[I(t)− (ρ00I0 + ρ11I1)]

−i sinφd∆Imax

SI
[I(t)− (ρ00I0 + ρ11I1)] ρ10

−Γdρ10 − i δωq,sρ10, (130)

and the Itô-form equations for the phase-preserving mea-
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surement are

ρ̇11 = ρ11ρ00
2∆I

SI
[I(t)− (ρ00I0 + ρ11I1)], (131)

ρ̇10 = −(ρ11 − ρ00)
∆I

SI
[I(t)− (ρ00I0 + ρ11I1)]

−i ∆I

SI
[Q(t)−Q0] ρ10

−Γdρ10 − i δωq,sρ10, (132)

while I(t) and Q(t) for numerical simulations are still
given by Eqs. (123), (127), and (128). The Itô-form
equations (129)–(132) have two differences compared
with the Stratonovich equations: (i) the combination
I(t)−(I0 +I1)/2 is replaced with the “pure noise” combi-
nation I(t)−(ρ00I0+ρ11I1) = ξI(t) and (ii) the dephasing
rate γ is replaced with ensemble dephasing Γd.

Note that Itô and Stratonovich equations have iden-
tical solutions when the corresponding definitions of the
derivative are used. The drawback of the Itô form is
the loss of intuition based on the standard calculus, be-
cause the standard calculus rules are not valid in the
Itô form. However, the advantage is that the ensemble-
averaged equations can be obtained by simply replacing
the noises ξI(t) and ξQ(t) with zero. The quantum tra-
jectory formalism [18–22] is based on the Itô form, while
the quantum Bayesian formalism [29, 30, 38] usually uses
the Stratonovich form (some formalisms use both forms
[75]).

We emphasize that while the evolution equations in
the differential form are useful in analytical analysis, for
numerical calculations a relatively large time step ∆t is
often preferable. For finite time steps, the formalism dis-
cussed in Secs. IV F and IV G is more useful than the
differential equations. The use of non-infinitesimal ∆t
also avoids possible confusion between Stratonovich and
Itô forms.

I. Evolution for an arbitrary duration

Now let us discuss evolution of the qubit-resonator sys-
tem for an arbitrarily long duration τ . As in the previous
sections, we assume that the qubit does not evolve due to
Rabi oscillations, energy relaxation, etc. It is not obvious
what the solution of the differential equations discussed
in Sec. IV H is. However, the structure of equations for a
small time step ∆t derived in Secs. IV F and IV G permits
very simple integration for an arbitrary τ . This simple
solution is also expected from the picture of the “history
tail” in Fig. 3.

1. Phase-sensitive case

The evolution equations (100) and (101) for the qubit-
resonator system (95) can be easily integrated within the

time interval [t, t+ τ ],

ρ11(t+ τ)

ρ00(t+ τ)
=
ρ11(t)

ρ00(t)
exp(R‖m), (133)

ρ10(t+ τ)√
ρ11(t+ τ) ρ00(t+ τ)

=
ρ10(t)√

ρ11(t) ρ00(t)
exp(−iR⊥m)

× exp

[
−
∫ t+τ

t

γ(t′) dt′ − i
∫ t+τ

t

δωq,s(t
′) dt′

]
, (134)

where

R‖m =

∫ t+τ

t

Ĩ(t′)
2 ∆I(t′)

SI
dt′, (135)

R⊥m =

∫ t+τ

t

Ĩ(t′)
∆Imax(t′) sin[φd(t′)]

SI
dt′, (136)

Ĩ(t′) = I(t′)− I0(t′) + I1(t′)

2
, (137)

and the time-dependent dephasing γ(t) and ac Stark shift
δωq,s(t) are given by Eqs. (105)–(107). Note that because
parameters are time-dependent, there is no simple rela-

tion between the effective measurement results R
‖
m and

R⊥m, which produce “spooky” and phase back-actions.
The choice of notations ‖ and ⊥ relate to quadratures
that are parallel or perpendicular to the informational
quadrature.

If we need to generate measurement results numeri-

cally, then R
‖
m can be picked from the probability distri-

bution P (R
‖
m), which consists of two Gaussians, as usual

in the Bayesian formalism,

P (R‖m) = ρ00(t)P (R
‖
0) + ρ11(t)P (R

‖
1), (138)

P (R
‖
j ) = (2πD

‖
R)−1/2 exp[−(R

‖
j − R̄

‖
j )2/2D

‖
R], (139)

R̄
‖
1 = −R̄‖0 =

∫ t+τ

t

[∆I(t′)]2

SI
dt′, D

‖
R = 2R̄

‖
1. (140)

The validity of this formula can be checked by analyz-
ing a composition of two evolutions for τ1 and τ2, and
by checking consistency with formulas in Sec. IV F for
small τ . From Eqs. (138)–(140) we see that the qubit will
eventually be collapsed onto the state |0〉 or |1〉 (unless
∆I = 0), as expected for a measured qubit with no addi-

tional evolution. Note that Eqs. (138)–(140) for P (R
‖
m)

can be written in this simple way because Eq. (133) is
essentially the classical Bayes rule. Unfortunately, R⊥m
cannot be generated in a similar way. Therefore, we need
to numerically generate the whole record I(t′).

The output realization I(t′) within the interval [t, t+τ ]
can be generated by dividing τ into small pieces ∆t and
using Eq. (108). The probability of a realization I(t′)
will then be

P{I(t′)} ∝ ρ00(t) exp

[
−
∫ t+τ

t

[I(t′)− I0(t′)]2

SI
dt′
]

+ρ11(t) exp

[
−
∫ t+τ

t

[I(t′)− I1(t′)]2

SI
dt′
]
, (141)
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with an appropriate overall normalization. Alternatively,
the probability distribution can be obtained by applying
Eq. (109), i.e., taking into account the randomness “lo-
cally” instead of “globally”, which produces

P{I(t′)} ∝ exp

[
−
∫ t+τ

t

[I(t′)− Iav(t′)]2

SI
dt′
]
, (142)

Iav(t′) = ρ00(t′) I0(t′) + ρ11(t′) I1(t′), (143)

where ρ00(t′) and ρ11(t′) should be calculated using Eq.
(133) for the previous period [t, t′] [note that in Eq. (142)
we need to use Iav(t′ − 0), i.e., the value, which is not
yet affected by I(t′)]. Even though this gives the same
probability distribution, it is easier to use the “global”
method (141).

2. Phase-preserving case

Integrating Eqs. (112) and (113), we obtain the evolu-
tion during the time interval [t, t+ τ ],

ρ11(t+ τ)

ρ00(t+ τ)
=
ρ11(t)

ρ00(t)
exp(RIm), (144)

ρ10(t+ τ)√
ρ11(t+ τ) ρ00(t+ τ)

=
ρ10(t)√

ρ11(t) ρ00(t)
exp(−iRQm)

× exp

[
−
∫ t+τ

t

γ(t′) dt′ − i
∫ t+τ

t

δωq,s(t
′) dt′

]
, (145)

where

RIm =

∫ t+τ

t

Ĩ(t′)
2 ∆I(t′)

SI
dt′, (146)

RQm =

∫ t+τ

t

Q̃(t′)
∆I(t′)

SI
dt′, (147)

Q̃(t′) = Q(t′)−Q0(t′), Q1(t′) = Q0(t′), (148)

Ĩ(t′) is given by Eq. (137), γ(t′) is given by Eq. (115),
and δωq,s(t) is given by Eq. (107).

We emphasize that the outputs I(t) and Q(t) cor-
respond to the informational and non-informational
quadratures, which change in time. In terms of the
“fixed” experimental quadratures Ifix(t) and Qfix(t) from
the IQ mixer they are

I(t) = Ifix(t) cos[φopt(t)] +Qfix(t) sin[φopt(t)], (149)

Q(t) = Qfix(t) cos[φopt(t)]− Ifix(t) sin[φopt(t)], (150)

where φopt(t) = arg[α1(t) − α0(t)] corresponds to the
informational quadrature.

If the measurement results are not taken from an ex-
periment, but have to be generated numerically, then it
is always possible to generate RIm and RQm without ex-
plicitly generating the signals I(t) and Q(t). For RIm we
can still use Eqs. (138)–(140), just replacing the super-
script ‖ with I. The probability distribution for RQm is

the zero-mean Gaussian,

P (RQm) = (2πDQ
R)−1/2 exp[−(RQ)2/2DQ

R ], (151)

DQ
R = DI

R = 2

∫ t+τ

t

[∆I(t′)]2

SI
dt′. (152)

The probability distribution for a realization of I(t′) is
still given by Eqs. (141) or (142), while the similar prob-
ability distribution for Q(t′) is

P{Q(t′)]} ∝ exp

[
−
∫ t+τ

t

[Q(t′)−Q0(t′)]2

SI
dt′
]
. (153)

The evolution equations derived in this paper describe
the evolution of an entangled qubit-resonator state (95).
However, there is an important special case when we can
discuss the state of the qubit alone. If the measurement is
of a relatively short duration and the microwave drive is
switched off after that, then several decay times κ−1 later
(or after the rapid driven reset procedure [76]) the res-
onator field is practically vacuum for both qubit states.
In this case our formulas give the resulting qubit state,
unentangled from the resonator state.

V. CONCLUSION

In this paper we have developed a simple quantum
Bayesian formalism for the qubit measurement in the
circuit QED setup with a moderate bandwidth of the
measurement resonator, so that transients are important.
The simplification comes from three assumptions: (i) we
assume that the qubit evolves only due to measurement
(in particular, there are no Rabi oscillations or qubit en-
ergy relaxation), (ii) we assume that the measurement
resonator is driven by a classical, i.e., coherent field (in
particular, no squeezed fields are applied), and (iii) the
resonator is initially in a coherent state (e.g., vacuum).
In this case the entangled qubit-resonator state develop-
ing in the process of measurement can be described as
the density operator, Eq. (95), in which each of the two
qubit states corresponds to its own coherent state of the
resonator. Therefore, the entangled qubit-resonator state
at any moment of time is fully characterized by only 4
numbers: ρ00, ρ11, ρ10, ρ01, and two field amplitudes of
the resonator: α0 and α1. The field amplitudes evolve
according to the classical equations (41) and (44). The
elements of the 2× 2 matrix ρij evolve according to Eqs.
(100) and (101) if a phase-sensitive amplifier is used in
the measurement or according to Eqs. (112) and (113)
if a phase-preserving amplifier is used. These evolution
equations in differential form (in both Stratonovich and
Itô forms) are presented in Sec. IV H. Integrated equa-
tions for an arbitrary long evolution are presented in Sec.
IV I. The equations depend on parameters that are di-
rectly measurable in an experiment.

The evolution equations for ρij [Eqs. (100), (101),
(112), (113)] have exactly the same form as in the “bad
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cavity” limit [53] and have a simple physical meaning.
We see that the diagonal elements ρ00 and ρ11 evolve
as probabilities, i.e., they follow the classical Bayes rule,
which updates the probabilities according to the infor-
mation on the qubit state acquired from the measure-
ment result. Therefore, this “spooky” back-action is sen-
sitive to the “informational” quadrature of the microwave
field. The evolution of ρ10 (and ρ01 = ρ∗10) necessarily de-
pends on the evolution of ρ00 and ρ11 (at least because
|ρ10|2 ≤ ρ11ρ00). Besides that, there are three more ef-
fects producing evolution of ρ10: (i) phase back-action,
which depends on the measurement result sensitive to the
“non-informational” quadrature of the microwave field,
(ii) dephasing due to non-ideality of the measurement (es-
sentially loss of potential information), and (iii) ac Stark
shift of the qubit frequency. As discussed in Appendix
B, the phase back-action can be physically interpreted as
being due to fluctuations of the ac Stark shift because of
a fluctuating number of photons in the resonator.

Even though the evolution equations (100), (101),
(112), and (113) are the same as in the “bad cavity”
regime [53], the time step ∆t is no longer arbitrary, since
the parameters entering the equations (response ∆I, am-
plified phase difference φd, ensemble dephasing Γd, etc.)
change during the transients, and therefore ∆t should be
smaller than the time scale of this change. We emphasize
that in the case of non-changing parameters these equa-
tions are exact for an arbitrary long ∆t. This may be
beneficial for numerical simulations in comparison with
the quantum trajectory formalism [18, 22] based on a
Wiener process, which assumes infinitesimal ∆t. In par-
ticular, our evolution equations can be easily integrated
for an arbitrarily long duration [Eqs. (133), (134), (144),
and (145)].

We note that the evolution equations in the phase-
sensitive case are also exactly the same as for a qubit
measurement by QPC or SET [38], except now we con-
sider a significantly entangled qubit-resonator state, with
classically evolving resonator fields. The case of a phase-
preserving amplifier is different because there are two
output signals, I(t) and Q(t), instead of only one signal
I(t). Nevertheless, the evolution equations are almost
the same, and the only significant difference is that the
phase back-action is governed by the non-informational
quadrature Q(t), while the “spooky” back-action (evo-
lution of ρ00 and ρ11) is governed by the informational
quadrature I(t).

The derivation in this paper has been based on ele-
mentary quantum mechanics and basic facts related to
coherent states. In general, the idea is similar to the idea
of “microscopic” derivation used in Ref. [30] to describe a
qubit measurement by QPC or SET. We solve exactly the
quantum evolution due to interaction between the qubit
and resonator (which is very simple because the qubit
does not evolve by itself and measurement is of the QND
type), and then apply the textbook collapse postulate to
the pieces of microwave field, leaking from the resonator.

The formalism developed in this paper is equivalent

to the “polaron frame approximation” used in the quan-
tum trajectory formalism [22], even though our language
is significantly different. We hope that our derivation is
physically transparent and therefore more easily under-
standable. Also, as mentioned above, our formalism may
have advantages in numerical calculations.

For an evolving qubit (e.g., due to Rabi oscillations)
it is tempting to simply include additional evolution into
the differential equations for evolution derived in Sec.
IV H. However, this is formally incorrect because in this
case the approach based on coherent states is no longer
applicable (though this is still possible in the “bad cav-
ity” limit [53]). The reason is the following. When
the additional evolution of the qubit is comparable to
or faster than κ, the resonator state |α0(t)〉 or |α1(t)〉
may correspond to the “wrong” qubit state produced by
this evolution. Since for a resonator the evolution of a
superposition of coherent states (a “cat state”) cannot
be easily described with coherent states, the simple ap-
proach based on coherent states fails.

Therefore, for measurement of an evolving qubit the
simple formalism discussed in this paper is not applicable
and should be replaced with a more complicated formal-
ism. The derivation of the quantum Bayesian formalism
for measurement of an evolving qubit is similar ideolog-
ically (using the measurement of the “history tail”), but
much more cumbersome technically. The result is equiv-
alent to “full” quantum trajectory formalism [18, 22], but
uses an explicit Fock-space evolution in the Schrödinger
picture instead of the language of superoperators. We
will discuss this formalism in another paper.

The formalism developed in this paper can be easily
generalized to measurement of a multi-level transmon or
measurement of several qubits, which evolve only due to
measurement. Such a generalization is useful to describe
the process of entanglement of superconducting qubits
by measurement [54, 55, 79, 80]. For N qubits the state
of the system can be described in the way similar to Eq.
(95), so that each of 2N qubit basis states corresponds
to particular coherent states of the resonators, obtained
via the classical field evolution. Therefore, we only need
to describe the evolution of 2N × 2N matrix of coeffi-
cients, for which we can easily use the quantum Bayesian
approach to update the coefficients, depending on the
measurement results. This will also be the subject of a
future publication.
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Appendix A: Coherent states

In this appendix we review basic facts related to co-
herent states. Most of them are very well known in the
quantum optics community. However, some of these facts
[e.g., Eq. (A25)] are usually not discussed in optical text-
books. In contrast to the notation used in the main text,
in this appendix we will use hat symbols for operators.

1. Definition of a coherent state

As known from undergraduate quantum mechanics, for
an oscillator with frequency ωr and mass m, the ground
state in the x-representation is

|0〉 = ψgr(x) =
(mωr

πh̄

)1/4

exp
(
−mωr

2h̄
x2
)
. (A1)

If we want to describe the classical state of this oscillator
with coordinate xc and momentum pc (still taking into
account the uncertainty of the ground state), we need
to shift the ground-state wavefunction by xc, producing
ψgr(x−xc), and also apply the momentum shift by adding

the factor eipcx/h̄. This produces the so-called “coherent
state” |α〉, which is widely used in optics:

|α〉 ≡ ψgr(x− xc) exp(ipcx/h̄) exp(−ipcxc/2h̄), (A2)

α ≡ xc

2σx
+ i

pc

2σp
= xc

√
mωr

2h̄
+ ipc

1√
2h̄mωr

, (A3)

where σx =
√
h̄/2mωr and σp = h̄/2σp =

√
h̄mωr/2

are the ground-state uncertainties. The normalization
by doubled uncertanties σx and σp in Eq. (A3) as well

as the overall phase factor e−ipcxc/2h̄ in Eq. (A2) are
to some extent arbitrary, but this conventional choice
simplifies most of the formulas discussed below. Note
that the phase e−ipcxc/2h̄ is exactly in between what
we would obtain by first shifting x, and then p [in this
case we would obtain ψgr(x − xc) eipcx/h̄] and, instead,
first shifting p and then x [in this case we would obtain
ψgr(x− xc) eipc(x−xc)/h̄].

Equation (A2) can be rewritten in a more standard
form [71, 81]

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 (A4)

= e−
1
2 |α|

2
∞∑
n=0

(α â†)n

n!
|0〉 = e−

1
2 |α|

2

eαâ
†
|0〉, (A5)

where â† = (2h̄mωr)
−1/2(−ip̂+mωrx̂) is the raising (cre-

ation) operator, â†|n〉 =
√
n+ 1 |n+ 1〉. The equivalence

of Eqs. (A2) and (A4) can be verified by explicitly check-
ing that Eq. (A2) satisfies the relations d|α〉/d(Reα) =
[−Re(α)+ â†] |α〉 and d|α〉/d(Imα) = [−Im(α)+ iâ†] |α〉,
which follow from Eq. (A5). Note a possible confusion be-
tween the notations for the stationary states |n〉 and the

coherent state |α〉 (for example, |α〉 with α = 1 is not the
first excited level |1〉); to avoid the confusion, we can use
Greek letters for coherent states and Roman letters or in-
teger numbers for the stationary states (Fock states). For
the ground state the notations coincide, |α = 0〉 = |0〉.

If the oscillator state oscillates with frequency ω (for
example, due to drive with this frequency), xc(t) =
xc,amp cos(ωt+φ0), pc(t) = −mωxc,amp sin(ωt+φ0), then

from Eq. (A3) we find α(t) = e−i(ωt+φ0)xc,amp/2σx. In
this case it is useful to introduce the rotating frame by
defining α̃ ≡ eiωtα, so that α̃ does not change in time.
In the general case α̃ changes with time slowly, while
α(t) = e−iωtα̃(t) rapidly oscillates. The rotating frame
frequency ω can be chosen arbitrarily; in the case with a
drive, the most natural choice is the drive frequency ωd

(because then α̃ does not change in the steady state); in
the absence of the drive, a natural choice is the oscilla-
tor frequency ωr. Note that the time dependence for the
stationary states is e−inωrt|n〉 (counting the energy from
the ground state energy), so for a “non-evolving” oscilla-
tor (i.e., evolving only naturally), from Eq. (A4) we find
α(t) = α(0) e−iωrt.

Note that in the main text we always use the rotating
frame based on the drive frequency ωd and omit the tilde
sign in the notation of α in the the rotating frame. In
contrast, in this appendix we explicitly write α̃ for the
rotating frame.

So far we considered a textbook mechanical oscillator.
If we consider a microwave resonator, then the role of
x and p is played by properly normalized voltage and
current (at some point in the resonator) or by flux and
charge; the effective mass m can also be appropriately
introduced. The formalism does not change. In quantum
optics it is often preferred not to introduce coordinates
and effective mass explicitly, and instead to start with the
commutation relation [â, â†] = 1, then producing Fock
states |n〉 from vacuum |0〉 with the creation operator.

2. Some properties

1. From Eq. (A4) it is easy to see that

â |α〉 = α |α〉, (A6)

since â |n〉 =
√
n |n − 1〉 for the lowering (annihilation)

operator â = (2h̄mωr)
−1/2(ip̂ + mωrx̂) = (â†)†. The

property (A6) is sometimes used as a definition of the
coherent state |α〉. Note, however, that it does not spec-
ify the overall phase and normalization, while the overall
phase if often important in analysis (when more than one
coherent state is involved). Also note that â†|α〉 does not
have a simple formula, though 〈α|â†|α〉 = α∗ from con-
jugation of 〈α|â|α〉 = α.
2. From Eq. (A4), the probability to measure n pho-

tons in the state |α〉 is

P (n) = e−|α|
2

|α2|n/n!, (A7)
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which is the Poissonian distribution with average |α2|.
This proves that the wavefunction (A4) is normalized
and shows that the mean photon number is

n̄ = |α|2. (A8)

3. The inner product of two coherent states |α〉 and
|β〉 can be easily calculated using Eq. (A4), giving the
result [71, 81]

〈α|β〉 = e−
1
2 (|α|2+|β|2)eα

∗β = e−
1
2 |α−β|

2

e−i Im(αβ∗).
(A9)

Note that a shift of the coherent states by the same value
changes the inner product, 〈α+ γ |β + γ〉 6= 〈α|β〉, since
this changes the phase factor.

4. It is useful to introduce the (unitary) displacement

operator D̂ [71, 81],

D̂(α) ≡ exp(αâ† − α∗â), D̂(α) |0〉 = |α〉. (A10)

A composition of two displacement operators has a phase
factor [71, 81] similar to the phase factor in Eq. (A9),

D̂(α) D̂(β) = D̂(α+ β) exp[−i Im(α∗β)], (A11)

as follows from the Baker-Campbell-Hausdorff formula

eÂ+B̂ = e−c/2 eÂ eB̂ = ec/2 eB̂ eÂ for [Â, B̂] = c. Also
note the useful relations

D̂†(α) â D̂(α) = â+ α, D̂†(α) = D̂(−α), (A12)

D̂(α) = e−
1
2 |α|

2

eαâ
†
e−α

∗â. (A13)

5. Let us introduce the (Hermitian) quadrature oper-
ators x̂q and p̂q as [81]

x̂q =
â+ â†

2
=

x̂

2σx
, p̂q =

â− â†

2i
=

p̂

2σp
, [x̂q, p̂q] =

i

2
.

(A14)
Note that the quadrature operators are often defined as√

2 x̂q and
√

2 p̂q; then their commutator is i; another
possible definition [71] is 2x̂q and 2p̂q; then the commu-
tator is 2i. The definition (A14) gives simpler formulas
for the average values for the coherent states,

〈α|x̂q|α〉 = Re(α), 〈α|p̂q|α〉 = Im(α), (A15)

which follow from the relation â = x̂q+ip̂q. The variance
in this case is

〈α|x̂2
q|α〉−〈α|x̂q|α〉2 = 〈α|p̂2

q|α〉−〈α|p̂q|α〉2 =
1

4
. (A16)

The quadrature operator at an angle φ can be defined as

x̂q(φ) =
âe−iφ + â†eiφ

2
= x̂q cosφ+ p̂q sinφ. (A17)

6. An important property of a coherent state is that it
splits into two unentangled coherent states after passing
through a beam splitter, in full analogy with a classical

optical wave or microwave. Actually, so far we defined a
coherent state only for a resonator, and it is not obvious
how to introduce it for a propagating wave. We will not
discuss how to do it rigorously [58, 77, 78], just implying
that a piece of propagating wave can be described in a
way, similar to a resonator description.

There is a rather simple rigorous way to describe trans-
formation of an arbitrary quantum state passing through
a beam splitter (see, e.g., [81, 82]). The idea is essentially
to write classical field relations, but for the annihilation
operators (conjugated relations are for the creation op-
erators), then express the initial state via vacuum and
creation operators of the input arms, and then substi-
tute these input-arms operators with their expressions
via output-arms operators. This gives the resulting out-
put state.

Applying this procedure to a beam splitter with trans-
mission and reflection amplitudes (t1, t2, r1, r2) and input
state |α〉 ⊗ |0〉, we obtain the output state |t1α〉 ⊗ |r1α〉,
exactly as we would expect for a classical field. Techni-

cally, this follows from the formula |α〉 = e−
1
2 |α|

2

eαâ
†
in |0〉

[see Eq. (A5)] and relation â†in = t1â
†
out + r1b̂

†
out, with

commuting output-arms operators â†out and b̂†out, so that

eαâ
†
in = eαt1â

†
outeαr1b̂

†
out . Note that if we apply coherent

fields to both input arms, |α〉 ⊗ |β〉, then the resulting
output state is also an unentangled product of classically-
expected coherent states, |t1α+r2β〉⊗|r1α+t2β〉, without
an overall phase.

3. Driven microwave resonator with leakage

We can think about field leakage from a microwave
resonator to a transmission line through a “mirror” (cou-
pler) as transmission through a beam splitter. Therefore,
from the discussed above property, if the initial state in
the resonator is a coherent state |α〉, then it remains a co-
herent state |α(t)〉, with no overall phase and α(t) given
by the classical field evolution,

α(t) = α(0) e−iωrt e−κt/2, (A18)

where κ is the energy dissipation rate and ωr is the res-
onator frequency.

We emphasize that this property is highly unusual for
a quantum system (thus indicating that coherent states
are classical to a significant extent). Dissipation usually
leads to decoherence, so that an initially pure quantum
state becomes a mixed state. In this case we have an
exception: a pure state remains pure during the whole
evolution. This makes quantum analysis very simple for
an evolution involving coherent states. Note that Eq.
(A18) is still applicable when the energy loss rate κ has
a contribution from intrinsic energy relaxation (at zero
temperature).

Now let us for a moment neglect the energy relaxation,
and instead consider a classical drive with frequency ωd

and (complex) amplitude ε(t) (in some normalization).
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This is usually described by the Hamiltonian

Ĥ = h̄ωrâ
†â+ h̄εe−iωdtâ† + h̄ε∗eiωdtâ, (A19)

which already assumes Rotating Wave Approximation,
requiring |ωd − ωr| � ωr and sufficiently slowly chang-
ing drive ε(t). Using this Hamiltonian, we can find the
evolution of an arbitrary quantum state of the resonator
|ψ(t)〉 =

∑
n cn(t) |n〉 via the Schrödinger equation ċn =

−iωrcn − iεe−iωdt
√
n cn−1 − iε∗eiωdt

√
n+ 1 cn+1. It is

easy to see by solving this equation that if the initial
state is a coherent state, then it remains a coherent state,
though with a nontrivial overall phase ϕ(t),

|ψ(t)〉 = e−iϕ(t) |α(t)〉, (A20)

so that the evolution is described by two equations,

α̇ = −iωrα− iεe−iωdt, (A21)

ϕ̇ = Re(ε∗eiωdtα). (A22)

Now let us combine the drive ε and dissipation κ. Since
both of them keep the state coherent (with an overall
phase), their combination will also keep it coherent (with
an overall phase). Introducing the rotating frame based
on the drive frequency,

α̃(t) ≡ eiωdtα(t), (A23)

from Eqs. (A18), (A21), and (A22) we obtain

˙̃α = −i(ωr − ωd) α̃− κ

2
α̃− iε, (A24)

ϕ̇ = Re(ε∗α̃). (A25)

Equation (A24) is the standard result for the evolution
of a resonator under the drive and dissipation, while Eq.
(A25) is usually not discussed in quantum optics, even
though it is very important for quantum dynamics in-
volving more than one coherent state (for example, for
measurement of a qubit in the circuit QED setup).

Note that Eqs. (A24)–(A25) rely on the fact that for
coherent states the dissipation κ does not introduce deco-
herence and only brings the term −κα̃/2 into Eq. (A24).
We have derived this fact by considering the problem of a
coherent state passing through a beam splitter. Another
(lengthier) way to prove it, is to consider the Lindblad
equation for the density matrix and to show that (surpris-
ingly) a pure initial state remains pure if initially it was a
coherent state. One of the ways to show it, is to separate
the Lindblad evolution into “jump” and “no jump” sce-
narios (e.g., [35, 83, 84]). Then the “jump” scenario (ap-
plication of operator â) brings no evolution because of Eq.
(A6), so all the evolution comes from the “no jump” sce-
nario (essentially the Bayesian update), which keeps a co-
herent state coherent, with decreasing α(t). This is why
there is no randomness [84], normally leading to deco-
herence. Note that the derivation via the Lindblad equa-
tion cannot easily reproduce important equation (A25),
because the overall phase is lost in the density matrix
language.

𝐴d = −𝑖𝜀/ 𝜅in

𝜅in 𝜅out 𝑣 𝑡

𝐹 = 𝜅out 𝛼(𝑡) − 𝑣(𝑡)
𝛼 𝑡

𝑣add

FIG. 4: Illustration of the effect of vacuum noise. The vacuum
noise v(t) incident from the output side affects the resonator
state α(t) via the coupling κout. Therefore, v(t) contributes to
the outgoing field F twice: due to direct reflection and due to
the field leaking from the resonator later. We mostly consider
the case κout ≈ κ, κin � κ, so that we can neglect the effect of
the vacuum noise vadd(t) incident from the input side, which
adds to the drive field Ad = −iε/√κin. (The outgoing field
from the input port is not important and not shown.)

Appendix B: Derivation of phase back-action via
vacuum noise

In this appendix we derive the results for phase back-
action in the process of qubit measurement using the
picture of vacuum noise, which is incident on the res-
onator from the transmission line (Fig. 4). We assume
the “bad cavity” limit and phase-sensitive amplification.
The vacuum noise is treated in a simple classical way.

Let us start with assuming for simplicity that the res-
onator damping κ is only due to coupling with the trans-
mission line carrying the outgoing wave, κout = κ; in
particular, this requires κin � κout (later this assump-
tion will be removed). Then the vacuum noise enters the
resonator only from the output line (Fig. 4), and the wave
equations for the resonator field α and the outgoing field
F in the rotating frame based on the drive frequency ωd

are

α̇ = −i(ωr − ωd)α− κ

2
α− iε+

√
κ v(t), (B1)

F =
√
κα− v(t), (B2)

where v(t) is the vacuum noise, which is normalized in the
same way as F . In this normalization |α|2 is the average
number of photons in the resonator, while |F |2 is the
average number of propagating photons per second. Note
that the reflection coefficient in Eq. (B2) is −1, while
the transmission through the “mirror” is characterized
by the coupling

√
κ [71], as well as in Eq. (B1). The drive

term −iε can also be written via the properly normalized
incoming field Ad as −iε =

√
κinAd. Also note that for

the two qubit states we have slightly different resonator
frequencies, ωr → ωr ± χ; however, in this appendix we
will mostly use notation ωr for brevity and because the
resonator frequency shift is not important for the phase
back-action, which is our focus here.

In quantum optics the vacuum noise is treated as an
operator [31, 58, 78, 85] with correlator 〈v̂(t) v̂†(t′)〉 =
δ(t− t′), and Eqs. (B1) and (B2) are written for annihi-
lation operators in the Heisenberg representation. How-
ever, in our simple derivation we will treat the noise
v(t) classically (i.e., as a complex number) and consider
evolution of classical fields (which corresponds to the
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Schrödinger picture). It is simple to see that the pho-
ton shot noise is properly reproduced if we assume that
for any quadrature (so that vqu is real)

〈vqu(t) v(t′)qu〉 =
1

4
δ(t− t′), (B3)

which is equivalent to

〈v(t) v(t′)∗〉 =
1

2
δ(t− t′), 〈v(t) v(t′)〉 = 0, (B4)

if v(t) = vqu1(t) + ivqu2(t) is treated as a complex
number, describing both quadrature components (ob-
viously, 〈v〉 = 0). For example, this relation can be
obtained by considering a propagating wave F0 + v(t)
with constant F0. Then the fluctuating photon num-

ber
∫ t

0
|F0 + v(t′)|2 dt′ within duration t should have

the same variance 〈 |
∫ t

0
2 Re[F ∗0 v(t′)] dt′|2〉 as the mean

|F0|2t. Therefore,

〈 |
∫ t

0

vqu(t′) dt′ |2〉 =
t

4
(B5)

for the quadrature vqu along F0, and Eq. (B3) follows
from (B5). Note that Eq. (B3) can be interpreted as
following from the standard operator correlator, using
the correspondence vqu = (v̂ + v̂†)/2.

As another check of this noise formalism, let us derive
the correlator for the fluctuating number of photons in
the resonator from Eq. (B3). Using Eq. (B1), we find the
fluctuation

δα(t) =

∫ t

−∞
e−[κ/2+i(ωr−ωd)](t−t′)√κ v(t′) dt′, (B6)

due to the noise v(t). For a fixed stationary value αst, this
leads to photon number fluctuation δn = α∗stδα+αstδα

∗.
Then using Eq. (B6), performing the double-integration
using Eq. (B4), and denoting |αst|2 = n̄, we find

〈δn(t) δn(t+τ)〉 = n̄ cos[(ωr−ωd)τ ] exp
(
− κ

2
|τ |
)
, (B7)

which is the standard result for the photon number cor-
relator [58]. Note that the photon number fluctuation
decays with the rate κ/2 instead of naively expected κ.
It is also interesting to note that at time t′ only the
quadrature vqu along αste

i(ωr−ωd)(t−t′) with the fluctu-
ations (B3) contributes to the correlator (B7), while the
orthogonal quadrature does not contribute. It is equally
possible to say that the contribution comes only from
the quadrature vqu along αste

i(ωr−ωd)(t+τ−t′), while the
orthogonal quadrature does not contribute. Also note
that from Eq. (B6) we obtain

〈 |δα|2〉 = 1/2, (B8)

corresponding to the variance of 1/4 for any quadrature.
Now let us consider the qubit measurement, assuming

the “bad cavity” regime, as in Sec. III. The fluctuation
v(t) leads to the fluctuating ac Stark shift

δωq(t) = 2χ δn = 4χRe[α∗stδα(t)] (B9)

with δα(t) given by Eq. (B6), and to the fluctuating out-
going field

δF (t) = −v(t) +
√
κ δα(t). (B10)

By integrating these effects over the time period [t, t+ τ ]
with τ � κ−1, so that the exponential dependence in Eq.
(B6) has sufficient time to fully decay, we find∫ t+τ

t

δωq(t′) dt′ = 4χRe

[
α∗st

√
κ

κ/2 + i(ωr − ωd)

×
∫ t+τ

t

v(t′) dt′
]
, (B11)∫ t+τ

t

δF (t′) dt′ =
κ/2− i(ωr − ωd)

κ/2 + i(ωr − ωd)

×
∫ t+τ

t

v(t′) dt′. (B12)

We see that these fluctuating integrals are proportional to
each other. Obviously, the first integral determines the
phase back-action on the qubit state, while the second
integral is related to the measurement result. This is how
we can relate the phase back-action to the measurement
result.

Using Eq. (7) for the steady-state values α0,st and α1,st

corresponding to the qubit states |0〉 and |1〉, and assum-

ing |χ| �
√
κ2 + 4(ωr − ωd)2, we find

α1,st − α0,st = αst
−2iχ

i(ωr − ωd) + κ/2
, (B13)

and therefore from Eqs. (B11) and (B12) we obtain∫ t+τ

t

δωq(t′) dt′ = 2 Re

[
− i(α1,st − α0,st)

∗√κ

×
∫ t+τ

t

δF (t′) dt′
]
. (B14)

This relation shows that the phase back-action is deter-
mined by the output quadrature which is orthogonal to
the informational quadrature along α1,st − α0,st. Note
that the vacuum fluctuations v(t), which produce the
output fluctuations along the informational quadrature,
do not affect the qubit state, so the corresponding evo-
lution (12) of the qubit state (diagonal matrix elements)
is only due to “spooky” back-action and cannot be ex-
plained as an effect of v(t).

Let us first consider an ideal phase-sensitive amplifica-
tion of the “orthogonal” (non-informational) quadrature,
so that φd = π/2 [see Eq. (16)]. In this case we need to
associate the output noise with the effect of v(t) fluctua-
tions (no added noise due to amplifier), and therefore∫ t+τ

t
δFqu(t′) dt′√〈[∫ t+τ

t
δFqu(t′) dt′

]2〉 =
Ĩm√
D
, (B15)
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where Ĩm is the measurement result [Eq. (14)], D is its
variance, and real δFqu is the fluctuation along the mea-
sured quadrature. Note that in the left hand side the nu-
merator is for a particular realization of the noise δFqu,
while the denominator assumes averaging over all noise
realizations. Since δFqu(t) should have the usual vac-
uum noise statistics, we can use Eq. (B5), which gives

〈[
∫ t+τ
t

δFqu(t′) dt′]2〉 = τ/4, and therefore∫ t+τ

t

δFqu(t′) dt′ =
Ĩm√
D

√
τ/4. (B16)

The similar relation for the response is then

√
κ |α1,st − α0,st| τ =

∆I√
D

√
τ/4. (B17)

Finally, multiplying Eqs. (B16) and (B17) and noticing
that this product corresponds to the right hand side of
Eq. (B14) multiplied by τ/2, we obtain∫ t+τ

t

δωq(t′) dt′ =
Ĩm∆I

2D
, (B18)

which is exactly the result for phase back-action [53] pre-
sented in Sec. III A, when φd = π/2 – see Eqs. (13), (17),
and (18). The non-fluctuating part of the ac Stark shift
can be simply added.

If we consider an ideal phase-sensitive amplification
of an arbitrary quadrature, φd 6= π/2, then the deriva-

tion for the fluctuating phase shift
∫ t+τ
t

δωq(t′) dt′ is sim-
ilar, except the amplified quadrature δFqu(t) is no longer
along α1,st−α0,st, and therefore from Eq. (B14) we obtain
an extra factor sin(φd), which appears in Eq. (18) but is
absorbed by ∆I in Eq. (B18). However, it is not obvious

if Ĩm in Eq. (B15) should be counted from (I0 + I1)/2
or from ρ00I0 + ρ11I1, and correspondingly if the phase
back-action term in Eq. (13) should be exp(−iKĨmτ) or

exp{−iK[Ĩm − (ρ11 − ρ00)∆I/2]τ}. We can find the an-
swer by requiring that the phase shift due to the phase
back-action term in Eq. (13) is zero on average. Coun-
terintuitively, the phase shift of the averaged ρ10(t + τ)
in Eq. (13) is zero when the phase back-action term

is exp(−iKĨmτ), even though 〈exp(−iKĨmτ)〉 obviously
has a non-zero phase if ρ11 6= ρ00. This occurs due to a
compensating effect from the first term in Eq. (13), which
contains ρ00 and ρ11: for example, if ρ11 > ρ00, then
a positive Ĩm occurs more often, but produces smaller
|ρ10(t+τ)| than for a negative Ĩm. (This somewhat coun-
terintuitive compensation is related to the difference be-
tween the Itô and Stratonovich approaches.)

Thus, using the approach of the vacuum noise we de-
rived the phase back-action term in Eq. (13) in the case
of ideal phase-sensitive measurement. Let us briefly dis-
cuss how in this approach we can take into account non-
ideality due to additional resonator damping (e.g., be-
cause of coupling to other transmission lines) and the
loss of the microwave signal before it reaches amplifier
(which is still ideal). Then Eqs. (B1) and (B2) can be
replaced with

α̇ = −i(ωr − ωd)α− κ

2
α− iε+

√
κout v(t)

+
√
κ− κout vadd,1(t), (B19)

F =
√
κcol/κout [

√
κout α− v(t)]

+
√

1− κcol/κout vadd,2, (B20)

where
√
κ− κout vadd,1(t) is the vacuum noise entering

the resonator from other transmission lines, the ratio
κcol/κout characterizes the energy loss between the res-
onator and amplifier (which can be modeled via a beam
splitter), and because of this loss (at zero temperature)
an additional vacuum noise vadd,2 contributes to the field
F , which reaches the amplifier. The noises v, vadd,1, and
vadd,2 are uncorrelated and all satisfy Eq. (B4); then the
noise of F has the same statistics. The calculation be-
comes more complicated, but it still can be done explic-
itly. It shows that the correlation (B18) between the ac
Stark shift and the measurement result fluctuations is re-
duced by the factor

√
κcol/κ, which is the same factor as

for the reduction of ∆I. Therefore, Eq. (B18) and the
corresponding Eq. (18) remain valid. Analysis of imper-
fection due to a non-ideal amplifier can be performed as
in Ref. [73]; in this case Eqs. (13) and (18) still remain
valid.

Note that even though this approach based on vacuum
noise gives a natural description of the physical mecha-
nism responsible for the phase back-action, it still cannot
explain why in the ideal case with φd = 0 there are no
fluctuations of the photon number in the resonator. The
fact that in the ideal case only the observed quadrature
fluctuates (and the orthogonal quadrature does not fluc-
tuate) is a “spooky” property of quantum measurement
and cannot have a realistic interpretation.

Derivation of the phase back-action coefficient for the
phase-preserving measurement can be done in a similar
way. Alternatively, as discussed in Sec. III B, the results
for the phase-preserving case can be obtained from the
results for the phase-sensitive measurement.
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