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Transversal Clifford gates on folded surface codes

Jonathan E. Moussa∗
Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with
complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders
to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the
number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color
codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties.
However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford
gates on folded surface codes. We achieve and improve this result by constructing two families of folded surface
codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. The
specific application of these codes to universal quantum computation based on qubit fusion is also discussed.

PACS numbers: 03.67.Ac,03.67.Lx,03.67.Pp

I. INTRODUCTION

The science of quantum error correction is maturing, with
much of its development now shifting from general theory and
properties of quantum codes to focused studies of the logical
operation, decoding, and performance of specific codes and
code families of particular importance. With severe geometric
restrictions expected of the layouts and interactions of qubits,
special attention is directed at topological codes in two spatial
dimensions that require only nearest-neighbor gate operations
between qubits on a regular lattice. The simplest families of
these codes are surface codes [1] and color codes [2]. Surface
codes are especially well understood, with resource estimates
for the operation of quantum computers based on them [3].

Surface codes are popular because of their simple structure
and favorable attributes. Data and ancilla qubits are arranged
in a checkerboard pattern on a square lattice. A surface code
is maintained by repeatedly measuring the Pauli operators that
generate its stabilizer group to detect errors. All ancilla qubits
are simultaneously initialized, then entangled with their four
neighboring data qubits, and finally measured. The low depth
of this error detection circuit combined with efficient decoding
of errors based on minimum weight perfect matching results
in high error thresholds for faulty gate operations [4]. Logical
operations on a surface code are decomposed into Clifford and
T gates, which are more difficult to implement than the error
detection cycle. Established implementations [5] require code
deformation for Hadamard (H) and CNOT gates and resource
states for phase (S ) gates. Magic state distillation [6] is used to
implement T gates, which has a very high resource overhead.
Much research is now devoted to reducing these overheads.

Color codes were developed to simplify logical operations
with strongly transversal single-qubit Clifford gates [2]. These
logical gates are implemented by applying the same physical
gate to every data qubit in the code. Another benefit is that
fewer data qubits are needed to implement a logical qubit with
distance D in a planar color code ( 1

2 D2 + D − 1
2 ) relative to a
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planar surface code (D2) [7]. However, some stabilizer group
generators of color codes have higher weight than in surface
codes, which causes deeper error detection circuits and ancilla
qubits that must interact with more than four neighboring data
qubits. The higher difficulty of detecting and decoding errors
causes lower error thresholds for color codes compared with
surface codes [8]. Experimental comparison of surface [9] and
color [10] codes is at an early stage. With similar error rates,
surface codes will reach their threshold before color codes.

A formal equivalence between surface and color codes has
been established recently [11]. A color code on a triangle can
be transformed into a surface code on a square by combining
local unitary operations with addition and removal of qubits
and a final global unfolding operation. The practical value of
such a transformation is unclear. Changes to the weight and
locality of stabilizer generators and the number of data qubits
will alter code performance, which restricts the mapping of
useful properties between surface and color codes. However,
the transversal single-qubit Clifford gates of color codes must
inevitably map to local unitaries on folded surface codes. The
details of this mapping have not yet been elucidated.

In this paper, we construct folded versions of two standard
families of surface codes that are square or diamond segments
of the toric code [12]. Surprisingly, both code families admit
transversal implementations of single-qubit Clifford gates, but
at the cost of being reduced to the same low code efficiency of
2D2 − 2D + 1 data qubits per logical qubit for distance D. We
present this result for qudits rather than just qubits to extend
the recent construction of transversal Clifford gates for qudit
color codes in two spatial dimensions [13]. To simplify this
presentation, we consider the specific case of D = 5 in detail
and explain the straightforward extension to other D value.

The paper is organized as follows. A preliminary overview
of quantum error correction with an emphasis on qudits and
code symmetries is presented in Sec. II. The construction of
folded surface codes and the qualitative effects of folding on
the detection and decoding of errors are discussed in Sec. III.
The application of the folded cone code to universal quantum
computation based on qubit fusion is considered in Sec. IV.
We conclude with the open problems that must be solved for
these ideas to attain their full potential in Sec. V.
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II. PRELIMINARIES

The concepts and notation used in this paper closely follow
the standards of quantum information theory [14] with a few
notable exceptions. Several results are presented generally for
qudits in d dimensions, rather than specifically for the d = 2
qubit case. The purpose of this general presentation is to build
a topological quantum error correction foundation compatible
with the recently proposed concept of qubit fusion [15], which
combines Clifford gates on qubits and d = 4 qudits to form a
universal gate set. To construct surface codes with transversal
Clifford gates, we identify enabling code symmetries that are
compatible with modified versions of the surface codes.

A. Qudit notation

We define qudit notation with some purposeful ambiguity.
Qudit Pauli and Clifford operators are defined for an arbitrary
dimension d, but we omit a specification of d on their labels.
Unless specified further, all qudit equations are valid for all d.
In all quantum circuits, qudit wires are labeled with d. Qubit
wires are unlabeled, and d = 4 qudit wires are labeled with a
slash to signify their equivalence to a pair of qubit wires.

While not unique, there is a conventional generalization of
qubits to qudits. Every qudit has a set of computational basis
states |x〉 for integers x from 0 to d − 1. We assume the ability
to prepare physical qudits in |0〉 and perform measurements in
their computational basis. The qudit Pauli group is generated
by {ω1/2, X,Z}, with generators defined as

ω = exp(2πi/d), (1)

X =

d−1∑
x=0

|(x + 1) mod d〉〈x|, (2)

Z =

d−1∑
x=0

ωx|x〉〈x|. (3)

While not a useful concept for d > 2, the qudit generalization
of the Pauli Y is Y = −ω−1/2XZ rather than Y = ω1/2XZ. The
single-qudit Clifford group is generated up to a phase by [16]

H =

d−1∑
x=0

d−1∑
y=0

ωxy

√
d
|x〉〈y|, (4)

S =

d−1∑
x=0

ω(x−d−2)x/2|x〉〈x|, (5)

and Z. For d = 2 only, Z and S are dependent, with Z = S 2.
The multi-qudit Clifford group is generated up to a phase by
including a controlled-X gate between all pairs of qudits [16],

CX =

d−1∑
x=0

d−1∑
y=0

|x〉〈x| ⊗ |(x + y) mod d〉〈y|, (6)

where an Xn operation on the second qudit is controlled by the
value n of the first qudit.

The conjugation of qudit Pauli operators by qudit Clifford
operators has a description that is independent of d and can be
decomposed into elementary conjugations of Pauli generators
by Clifford generators. The essential conjugation rules are

ZXZ† = ωX

HXH† = Z

HZH† = X†

S XS † = −ω−1/2XZ

S ZS † = Z

CX(X ⊗ I)CX† = X ⊗ X

CX(I ⊗ X)CX† = I ⊗ X

CX(Z ⊗ I)CX† = Z ⊗ I

CX(I ⊗ Z)CX† = Z† ⊗ Z. (7)

To achieve this d independence, we use a nonstandard choice
of S in Eq. (5). It is related to the standard choice [16] by

S standard =

{
Z1+d/2S , d even
Z(1+d)/2S , d odd . (8)

The difference between Eq. (7) and qubit-specific rules is the
distinction between operators and their Hermitian conjugates.
All of these operators are Hermitian in the qubit case, making
this distinction unnecessary.

While qudits are not as frequently studied as qubits, many
standard results for qubits have a straightforward extension to
qudits. For example, qudit stabilizer circuits are composed of
qudit state preparation and measurement in the computational
basis and qudit Clifford gates. Just as in the qubit case, qudit
stabilizer circuits can be efficiently classically simulated [17].
Stabilizer codes have also been extended to qudits [18]. When
combined, these two results facilitate the computational study
of quantum error correction on qudits.

B. Qubit fusion

Qudits are of limited interest relative to qubits because most
experimental efforts are focused on the fabrication of physical
qubits. The Hilbert space of dlog2 de qubits is large enough to
embed a d-dimensional qudit, but it might be difficult to build
effective qudit Pauli and Clifford gates from qubit gates on the
underlying physical qubits. One example of an embedding is
a d = 4 qudit on a pair of qubits, which was recently studied
in terms of quantum circuits [15]. The qubit fusion gate,

F =

1∑
x=0

1∑
y=0

|x + 2y〉〈x| ⊗ 〈y|, (9)

and its Hermitian conjugate, the qudit fission gate F†, are used
to convert between two qubit wires and a qudit wire in circuit
diagrams as depicted in Fig. 1. The combination of F and F†

gates with hybrid stabilizer circuits on both qubits and qudits
is surprisingly useful for universal quantum computation.
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(c)
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FIG. 1. Quantum circuits for qubit fusion (F) and qudit fission (F†)
[15] that convert between a qubit pair and a four-dimensional qudit.
(a) Qudit Pauli gates implemented using only qubit Clifford gates.
(b) Qudit Clifford gates implemented using qubit Clifford gates and
several non-Clifford gates (highlighted). (c) Partial qubit fusion and
qudit fission gates with a quantum wire replaced by a classical wire,
which can be implemented as hybrid stabilizer circuits (not shown).
(d) Full qubit fusion and qudit fission gates implemented as hybrid
stabilizer circuits that consume a resource state |F〉 (highlighted).

At the physical level, F and F† gates exist only as notation
and are not actually physical operations. As shown in Fig. 1,
this notation reveals an implementation of qudit Pauli gates in
terms of Clifford gates on the underlying qubits. In contrast,
all qudit Clifford gates require a standard non-Clifford gate on
one or more qubits. These gates include the T , controlled-S ,
and controlled-controlled-X (Toffoli) gates,

T =

1∑
x=0

(
1 + i
√

2

)x

|x〉〈x|, (10)

CS =

1∑
x=0

1∑
y=0

ixy|x〉〈x| ⊗ |y〉〈y|, (11)

CCX =

1∑
x=0

1∑
y=0

1∑
z=0

|x〉〈x| ⊗ |y〉〈y| ⊗ |(z + xy) mod 2〉〈z|. (12)

Thus implementations of Pauli and Clifford gates on physical
qudits can be reduced to well-known few-qubit gates.

Hybrid stabilizer circuits merge disjoint stabilizer circuits
on qubits and qudits with hybrid Clifford gates between qubits
and qudits. The natural generalization of the Z, S , H, and CX
gates that generate the Clifford group is to define controlled-X
gates between qubits (b) and qudits (d) as

CbXd =

1∑
x=0

3∑
y=0

|x〉〈x| ⊗ |(y + 2x) mod 4〉〈y|, (13)

CdXb =

3∑
x=0

1∑
y=0

|x〉〈x| ⊗ |(y + x) mod 2〉〈y|. (14)

Since F and F† gates transform qudit Clifford gates into qubit
non-Clifford gates, they cannot be implemented using hybrid
stabilizer circuits. However, we can still implement partial F
and F† gates in Fig. 1c using hybrid stabilizer circuits [15].

At the logical level, the non-Clifford nature of the F and F†

gates facilitates universal quantum computation. The standard
recipe for universality is to insert T gates into qubit stabilizer
circuits, which are implemented using gate teleportation and
resource states. Alternatively, we can insert F and F† gates
into hybrid stabilizer circuits to achieve universality. This can
also be implemented with a qudit nonstabilizer resource state,

|F〉 =
|0〉 + |1〉
√

2
= F

(
|0〉 + |1〉
√

2
⊗ |0〉

)
, (15)

and gate teleportation as depicted in Fig. 1d. |F〉 is simply an
F gate applied to a 2-qubit stabilizer state, and it is distillable
from noisy F gates [15] analogous to magic state distillation
for T gates [6]. Qubit fusion offers two possible advantages
over magic state distillation. First, distillation of |F〉 can take
advantage of more general stabilizer codes on both qubits and
qudits in the search for more efficient distillation techniques.
Second, it might be possible to directly implement logical F
and F† gates as a code conversion between logical qubits and
qudits. In either case, the practical utility of qubit fusion relies
on the benefits of logical F and F† gates to overcome the cost
of hybrid quantum error correction on qubits and qudits.
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FIG. 2. X-type and Z-type generators of the stabilizer group for qudit surface codes. (a) Vertices denote X or X† on the connected edges, set
by direction (in or out). (b) Faces denote Z or Z† on the surrounding edges, set by orientation (clockwise or counterclockwise). The complete
set of stabilizer generators is defined by a directed graph with qudits on its edges. Two examples are the distance-5 (c) square and (d) diamond
surface codes. Logical operators X and Z of these codes are depicted as strings of X and Z operators next to the qudits that they act on.

C. Surface codes

Surface codes are an important idea in physics that serve as
a nexus between topologically protected phases of matter and
quantum error correction. They are also ideally suited to the
technological limitations of practical quantum computing on
a two-dimensional lattice of qubits with physical error rates
much larger than the logical error rates necessary for useful
computation [19]. We briefly overview surface codes as they
have developed historically, from a curiosity in topological
physics to a practical design for quantum error correction.

The original topological code construction [20] considered
qudits and qudit operations with a general group structure but
was restricted to a torus without boundaries. It was followed
by a planar construction with boundaries for qubits [1], which
first defined the modern surface code. General qudit boundary
constructions are a more recent development [21]. We show
two examples of distance-5 surface codes in Fig. 2 specific to
the qudit Pauli group in Sec. II A. The standard notation uses a
directed planar graph on a finite surface to define a consistent
set of qudits (graph edges), X-type stabilizer generators (graph
vertices), and Z-type stabilizer generators (graph faces). We
also use a more recent notation [22] that represents stabilizer
generators as shaded tiles with qudits on their vertices.

The surface code construction guarantees that all stabilizer
generators commute with each other, with X-type strings that
join vertex-terminated “smooth” boundaries, and with Z-type
strings that join face-terminated “rough” boundaries. There is
one string of each type, X and Z, for each example in Fig. 2.
For each vertex v, there is a generator Gv that detects an error
Ev, which is a Z-type string that joins an edge containing v to
a rough boundary. For each face f , there is a generator G f
that detects an error E f , which is an X-type string that joins
an edge of f to a smooth boundary. All of these operator pairs
have commutation relations like X and Z in Eqs. (2) and (3)
and commute with other pairs. These operators generate the
combined Pauli group of all the qudits in the surface code.

The examples in Fig. 2 generalize to arbitrary distance D.
The square contains 2D2 − 2D + 1 qudits, D2 −D vertices and
faces, and logical strings X and Z of length D. The diamond
contains D2 qudits and also has logical strings with length D.
For odd D, there are (D2 − 1)/2 vertices and faces. For even
D, the symmetry of the boundaries must be lowered, and we
consider the case with D2/2 − 1 vertices and D2/2 faces. The
number of qudits minus the number of vertices plus faces is
one in each case, which enables one logical qudit. There exists
a unitary transformation Us that transforms each (Xn,Zn) pair
of physical qudit operators to a distinct operator pair from one
of the following types: (Ev,Gv), (E f ,G f ), or (X,Z). Us can
be implemented as a depth-O(D2) stabilizer circuit [25].

The surface code stabilizer generators define a novel phase
of matter as the ground-state subspace of a Hamiltonian,

Hs =
∑
v∈V

(2 −Gv −G†v) +
∑
f∈F

(2 −G f −G†f ), (16)

for the set of vertices V and faces F of the surface code graph.
By simultaneously diagonalizing the stabilizer generators and
Z, we define the d zero-energy ground states of Hs as

Gv|n〉 = |n〉 ∀v ∈ V , (17)
G f |n〉 = |n〉 ∀ f ∈ F , (18)

Z|n〉 = ωn|n〉, (19)

for 0 ≤ n ≤ d − 1. For quantum computation applications, we
would apply Hs to preserve an arbitrary zero-energy state |Ψ〉.
The 4-spin interactions in Hs are hard to implement directly,
but Hs can be implemented as the low-energy effective model
of a Hamiltonian with only 2-spin interactions [23]. While Hs
will have imperfections, its ground-state degeneracy is robust
to small pertubations. However, |Ψ〉 is not stable with respect
to local thermal processes. Low-energy excited states such as
Ev|Ψ〉 can hop between neighboring vertices at no energy cost
and return to a zero-energy state as Z|Ψ〉 instead of |Ψ〉.
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FIG. 3. Two syndrome measurement circuits to measure (a) X-type
and (b) Z-type stabilizer generators of a qudit surface code using an
ancilla qudit (black circle), 1-qudit operations, and nearest-neighbor
2-qudit gates. Stabilizer generators on edges that have fewer qudits
simply omit CX gates that have a missing qudit. These circuits are
designed to run simultaneously on all data and ancilla qudits using a
qudit ordering depicted by the segmented arrows to avoid collisions
and misorderings of 2-qudit gates. They can produce “hook” errors
depicted in gray, whereby an ancilla error between the second and
third CX gate spreads to two data qudits. With these qudit orderings
adapted from recent work on qubits [24], we only spread hook errors
perpendicular to the direction of logical Pauli strings on the diamond
surface code in Fig. 2d to limit their contribution to logical errors.

The thermal instability of Hamiltonian-based passive error
correction is resolved by circuit-based active error correction
[25]. Stabilizer generators are repeatedly measured, and their
“syndrome” measurement outcomes enable the identification
and correction of physical qudit errors. With the “data” qudits
shown in Fig. 2 interleaved with “ancilla” qudits, a stabilizer
generator can be measured using only 1-qudit operations and
nearest-neighbor 2-qudit gates as shown in Fig. 3. Assuming
that physical qudit errors are weakly correlated in both space
and time, the occurrence of logical Pauli errors with the form
X

m
Z

n
can be inferred statistically from a history of syndrome

measurements. Decoding logical errors is straightforward for
concatenated low-distance codes [26]. Optimal decoding of a
high-distance surface code is more difficult [27], but efficient
heuristic decoders perform well in practice such as minimum
weight perfect matching [28] for qubits and renormalization
group decoders for qudits [29]. With the possibility of errors
in syndrome measurements, decoding requires the past O(D)
rounds of measurements to decode a distance-D code. Even if
there are no errors on any data qudits, a majority vote for each
syndrome measurement is necessary to suppress measurement
errors from a high physical rate ε to a low logical rate εO(D).

Once successful error correction has been established, the
next important component of quantum computation is logical
state preparation and measurement. We assume the ability to
prepare physical qudits in their zero state, which produces the
joint physical zero state |0〉 defined by stabilizer conditions

Zn|0〉 = |0〉. (20)

Our goal is to prepare the logical zero state |0〉 defined by Eqs.
(17), (18), and (19). In principle, we can transform between
these two states and stabilizer conditions by applying Us to |0〉
as |0〉 = Us|0〉. In practice, Us is a high-depth stabilizer circuit
that is avoided by exploiting active error correction. We first
prepare |0〉 and then measure the stabilizer generators of the
surface code. In the absence of errors, Eqs. (18) and (19) are
satisfied by |0〉, and all measurement outcomes for G f and Z
are one. Eq. (17) is not satisfied by |0〉, and the measurement
outcomes for Gv are random. However, |0〉 is projected into a
simultaneous eigenstate of all Gv, which can be transformed
to |0〉 by applying Ev to switch to the ω0 eigenstate of each
Gv. To measure Z destructively in the absence of errors, we
measure each Zn and reconstruct the Z measurement outcome
from a product of Zn measurement outcomes. These methods
for logical state preparation and measurement are sensitive to
physical qudit errors and can be incorporated into active error
correction as boundary conditions for decoding [25].

To fully enable quantum computation, we must implement
a universal set of logical gates on a surface code. In the qubit
case, this has been achieved [5] by combining a limited set of
logical Clifford gates with resource state distillation and gate
teleportation. This framework has not yet been generalized to
qudits, but existing results indirectly suggest that it is possible.
The transversal Clifford gates of qubit color codes [2] have a
straightforward generalization to qudit color codes [13]. The
use of magic state distillation to prepare a qubit non-Clifford
gate [6] has also been generalized to qudits [30], but only for
prime dimension d. The efficiency of a distillation protocol is
roughly determined by the ratio of input states to output states.
For quadratic error reduction, the best practical qubit protocol
is 5-to-1 [31] and the best known qudit protocol is (d−1)-to-1
for prime d ≥ 5 [30]. Thus, d = 5 qudits are capable of more
efficient magic state distillation than qubits until the regime of
asymptotic 3-to-1 [32] and 2-to-1 [33] multi-qubit protocols.
Magic state distillation is not yet developed for general d.

D. Code symmetries

Certain symmetries of quantum error correcting codes can
simplify the implementation of logical gates. We consider the
case of logical Clifford gates on the qudit Steane code, where
there is high symmetry and simple gate implementations. The
development of folded surface codes in Sec. III follows from
this example by identifying the reduced symmetries of these
codes and adapting the gate implementations from the Steane
code. We are guided by a formal equivalence between folded
surface codes and color codes for qubits [11]. The distance-3
color code is the Steane code, which is depicted in Fig. 4.
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FIG. 4. Distance-3 qudit code that generalizes the Steane code [13].
Data qudits are partitioned into two types (black and gray) as vertices
of a bipartite graph with edges corresponding to edges of the shaded
tiles. Each tile defines one X-type and one Z-type stabilizer generator
on its qudit vertices. We label the generators with a notation similar
to Fig. 2. The logical Pauli and Clifford gates are “star transversal”
and decompose into single-qudit gates that depend on qudit type.

Among logical gates, Clifford gates are particularly simple
because they can be implemented as unitary stabilizer circuits.
Just as conjugation by physical Clifford operators transforms
between physical Pauli operators as in Eq. (7), we expect that
conjugation by logical Clifford operators transforms between
logical Pauli operators in some sense. However, we only care
about the action of logical Pauli operators on logical states and
not the operators themselves, which expands the concept of a
logical Clifford operator relative to the physical case. We can
multiply a logical Pauli operator P by a product of stabilizer
generators and its action on a logical state |Ψ〉 will not change
because of Eqs. (17) and (18). If we define a stabilizer group
S from the products of stabilizer generators, then the products
of generators with P form the coset PS. Conjugation by any
logical Clifford operator U must then transform elements of
PS to QS for some other logical Pauli operator Q to have the
action UPU

†
|Ψ〉 = Q|Ψ〉. These conditions reduce to

UPU
†
∈ LS (21)

UGU
†
∈ S (22)

for all logical Pauli generators P of the logical Pauli group L
and for all stabilizer generators G of the stabilizer group S.

The qubit Steane code has self-dual symmetry, which pairs
every X-type stabilizer generator with a Z-type generator that
results from a uniform X ↔ Z substitution. The logical Pauli
generators XL and ZL are similarly paired. For qudits, this is
complicated by “star bipartition” structure [13], where qudits
are separated into two sets as vertices of a bipartite graph. A
pair of generators is defined by X ↔ Z substitution on one set
of qudits and X ↔ Z† on the other. If X ↔ Z substitution is
used for all qudits, commutation between X-type and Z-type
stabilizer generators produces an ω4 phase factor on the same
tile and ω2 between tiles. The star bipartition produces pairs
of ω and ω−1 to guarantee that stabilizers commute.

The self-dual symmetry of the qudit Steane code facilitates
transversal logical Clifford gates, which are shown in Fig. 4.
The H gate satisfies Eq. (21) by exchanging X and Z,

HXH
†

= Z

HZH
†

= X
†
, (23)

and satisfies Eq. (22) by exchanging Gv and G f on a tile,

HGvH
†

= G f

HG f H
†

= G†v . (24)

Similarly, the S gate cancels pairs of ω−1/2 and ω1/2 phases to
produce the correct phase for its logical action in Eq. (21),

S XS
†

= −ω−1/2XZ

S ZS
†

= Z, (25)

and mix Gv and G f on a tile with no phase as in Eq. (22),

S GvS
†

= GvG f

S G f S
†

= G f . (26)

Without the star bipartition structure, the conjugation of Gv

by S would produce an ω2 phase from a conjugation of four
X by four S . This multiplicity of four in the weight of X-type
stabilizers is referred to as “doubly-even” code structure [34].
Doubly-even self-dual qubit codes have strongly transversal S
gates since ω2 = 1, but this does not generalize to qudits.

For a pair of Steane codes, we can construct logical 2-qudit
Clifford gates that do not need complete self-dual symmetry.
We add a label on all operators to distinguish between codes.
The first gate is a “mirror” gate M that combines H1, H2, and
a strongly transversal qudit swap gate between the codes. It
acts like H in Eqs. (23) and (24),

MX1M
†

= Z2

MZ1M
†

= X
†

2

MGv,1M
†

= G f ,2

MG f ,1M
†

= G†v,2. (27)

The second gate is the star transversal controlled-Z gate CZ
from Z in Fig. 4. It acts like S in Eqs. (25) and (26),

CZ X1CZ
†

= X1Z2

CZ Z1CZ
†

= Z1

CZGv,1CZ
†

= Gv,1G f ,2

CZG f ,1CZ
†

= G f ,1. (28)

Eqs. (27) and (28) pair an X-type operator on one code with a
Z-type operator on the other, rather than in the same code.
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III. FOLDED SURFACE CODES

The concept of a folded surface code originates from recent
studies of the relationship between surface and color codes of
finite extent [11]. A logical qubit encoded in a color code can
be re-encoded in a folded surface code through a local unitary
transformation involving ancilla qubits. Limitations on color
code construction and the transformation process restrict the
types of surface codes that can be produced. For example, the
standard surface code in Sec. II C with four edges per vertex
and per face is unattainable from known color codes. We take
a complementary approach of folding standard surface codes
to gain some of the properties of color codes rather than fully
transforming to a color code. This inverse approach has fewer
constraints, and it can be adapted to construct folded versions
of both the square and diamond surface codes in Fig. 2.

The property of color codes that we seek to adapt to folded
surface codes is the transversality of logical Clifford gates. As
in the Steane code example from Sec. II D, qudit color codes
have transversal Clifford gates because of self-dual symmetry
and star bipartition structure. Each tile of a color code such as
in Fig. 4 corresponds to both an X-type and Z-type stabilizer
generator, which are mixed when conjugated by the logical H
or S gate as in Eqs. (24) and (26). Each tile of a surface code
such as in Fig. 2 only corresponds to one type, either X or Z,
of stabilizer generator, and any star transversal H and S gates
do not preserve the stabilizer group. The premise of folding a
surface code is to pair an X-type generator in one layer with a
Z-type generator in the other layer. For qudits along the fold,
there will be partial overlap of X-type and Z-type generators.
Logical Pauli operators must also pair, an X-type string on one
layer with a Z-type string on the other, and overlap on a fold.
We refer to this relaxation of self-dual symmetry with qudits
partitioned into two layers and a fold as “mirror-dual”.

The star bipartition structure of qudit color codes naturally
generalizes to qudit surface codes with mirror-dual symmetry.
When the directed graph that defines a surface code is folded,
the subgraph on one layer is dual to the subgraph on the other
layer. The fold qudits and overlapping pairs of qudits between
layers are grouped into two types based on the direction of the
cross product between the overlapping edges of the subgraphs.
This version of star bipartition structure is more general than
the color code version. The graph with qudits as vertices and
tile edges as edges does not need to be bipartite and no longer
defines the qudit type. Also, X-type stabilizer generators of a
surface code contain both X and X† rather than only X.

We can build logical Clifford gates on a qudit surface code
with mirror-dual symmetry by using concepts from Sec. II D.
The H gate combines Eqs. (23), (24), and (27) by performing
H and H† on fold qudits and a mirror gate on paired qudits.
The S gate combines Eqs. (25), (26), and (28) by performing
S and S † on fold qudits and CZ and CZ† on paired qudits.
The general implementation of these gates is shown in Fig. 5.
The star transversality of logical Clifford gates on qudit color
codes is relaxed, and gates can spread errors between layers of
the folded surface code within 2-qudit transversal subsystems.
This spreading of errors must be considered when studying the
fault tolerance of a folded surface code.

subsystem

f

f

t

b

t

b

FIG. 5. Transversal implementation of the H and S logical Clifford
gates for folded surface codes organized into circuits on four distinct
subsystems. These gates act differently on qudits along the fold (‘ f ’)
and pairs of qudits on the top (‘t’) and bottom (‘b’) layers. They also
act differently on the two types of qudits (in light and dark stadiums)
defined by the star bipartition. These circuits do not depend on qudit
orientation in subsystems, which can be altered by other operations.

Conceptually, a folded surface code has two layers of qudits
stacked on top of each other. Practically, we can implement a
folded code on a planar grid of qudits by partitioning it into
a grid of qudit pairs as shown in Fig. 6. Data qudit pairs and
ancilla qudit pairs are arranged in a checkerboard pattern. The
top layer of a surface code is depicted with black qudits on the
edges of a black graph, and the bottom layer is depicted with
gray qudits on the edges of a gray graph. All top and bottom
qudits are paired in a mirror-dual code, and qudits along a fold
are paired with additional ancilla qudits. For simplicity, we do
not display shaded tiles or graph edge directions as in Fig. 2.
We use a convention for the top-layer graph that vertical edges
are directed up and horizontal edges are directed right. Edge
directions of the bottom-layer graph are defined indirectly by
the direction of their cross product with overlapping directed
edges of the top-layer graph. Dark stadiums surrounding qudit
pairs denote cross products pointing out of the plane and light
stadiums denote cross products pointing into the plane.

With the same qudit partitioning as in Fig. 6, we can stack
two unfolded surface codes. This data qudit layout enables a
strongly transversal CX gate. Every Calderbank-Steane-Shor
(CSS) code possesses a strongly transversal CX gate [34], but
geometric restrictions often limit its practical implementation.
For example, conventional planar surface codes implement a
CX gate with either defect braiding [5] or lattice surgery [35].
While a transversal CX gate requires a shallower circuit than
these alternatives, O(1) versus O(D), the stacked surface codes
that enable it need deeper circuits for stabilizer measurement
as discussed in Sec. III C. Also, a transversal CX gate spreads
errors between stacked codes, which complicates decoding.
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With two virtual surface code layers, we have access to the
multi-qudit logical Clifford group. A physical qudit grid tiled
with folded surface codes enables transversal implementation
of the single-qudit logical Clifford group. We unfold and stack
pairs of surface codes to enable strongly transversal CX gates
that generate the multi-qudit logical Clifford group. This plan
requires folded forms of the square and diamond surface code
families in Fig. 2 with folding and unfolding operations. The
stacking of unfolded codes requires logical qudit movement.
We use lattice surgery [35] to expand a logical qudit over both
its initial and final locations and then contract it to fit within
its final location while preserving the code distance. With all
Clifford gates transversal, the computational bottleneck is the
movement of logical quantum information.

A. Folding the square

To impose mirror-dual symmetry on a square surface code
as in Fig. 2c, we fold it along a diagonal as shown in Fig. 6a.
The spatial layout of the code has changed, but its underlying
stabilizer structure remains unchanged. The same transversal
H and S gates are valid for both an unfolded and folded code,
but the nearest-neighbor 2-qudit gates on a folded code map
to long-range 2-qudit gates on the unfolded code.

On a virtual 2-layer lattice of qudits, we can fold a square
surface code on one layer if the other layer is not being used
to encode a logical qudit. We decompose folding operations
into a sequence of local swap operations between data qudits
and ancilla qudits. In Fig. 6b, we visualize the swap path for
the top-right data qudit. As the longest swap path, it sets the
circuit depth of a folding operation to 6D− 5 for a distance-D
square surface code. Unlike the transversal Clifford gates, the
depth of folding operations increases with code distance.

The folding operation is a logical identity, but it physically
deforms the spatial layout of a surface code. After every step
of the folding operation, there is the same surface code with a
different layout. To prevent a build-up of errors during O(D)
swap operations, we can perform one round of quantum error
correction on these partially folded surface codes. As long as
all data qudits are in a 2-qudit block intended for data qudits,
then the syndrome measurement circuits are similar to those
discussed in Sec. III C. We can reduce the number of swaps
per data qudit per round of error correction to three.

This is the first of many instances in this paper where swap
operations are prevalent. For convenience, we consider swaps
to be primitive physical operations. If swaps are implemented
using other primitive gates such as H and CX, then they will
have a significantly higher error rate than other primitives. If
swaps are distinct non-entangling physical operations such as
shuttling operations on ions [36] or electrons [37] that host a
physical qudit, then they may have an error rate that is more
comparable to other primitives. Folding operations use swaps
between data qudits and inactive ancilla qudits, which can be
achieved with standard teleportation circuits that only require
one CX gate but measure the ancilla [14]. The best choice of
swap will depend on the details of a physical implementation
of qudits and the primitive gates that are available.
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FIG. 6. Distance-5 version of the folded square surface code. The
planar layout of the folded code (a) pairs each qudit on the top layer
(black) with a qudit on the bottom layer (gray) but qudits along the
fold are unpaired. The folding operation (b) moves qudits with local
swaps through a sequence of partially folded surface codes. As an
illustrative example, we show the swap path for the top-right qudit
decomposed into 6-swap segments defined in the inset.
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B. Extending the diamond

Because the diamond surface code has chiral edges, it is not
possible to impose mirror-dual symmetry by folding. Instead,
we can create a mirror-dual copy of the diamond surface code
and connect two edges to create one logical qudit. Effectively,
this a surface code on a cone that is folded and flattened. Two
distance-5 examples of extended diamond surface codes with
mirror-dual symmetry are shown in Fig. 7.

The minimal extension of the diamond surface code into a
cone is shown in Fig. 7a. In general, it increases the number
of data qudits in a distance-D code from D2 to 2D2 − 2D + 1,
which is equivalent to the square surface code. Unfortunately,
the cone and diamond do not have the same spatial footprint
because of a distorted edge, which complicates the packing of
multiple logical qudits into a large grid of physical qudits. A
more significant problem is that the stabilizer groups of a cone
and diamond do not commute, which complicates conversion
between the two codes. We can convert while preserving code
distance using code deformation [38], but a simpler approach
such as lattice surgery [35] is desirable.

A less efficient extension of the diamond surface code into
a cone is shown in Fig. 7b. It uses 2D2 − 1 physical qudits to
encode a logical qudit with distance D. Stabilizer generators
of the diamond can all be extended into stabilizer generators
of the cone, which enables simple code conversion between a
diamond and cone using lattice surgery. These diamonds and
cones have different spatial footprints, but we can pack logical
qudits to merge subsystems containing one fold qudit between
neighboring folded codes. The two cones in Fig. 7 then have
different code efficiencies but the same packing efficiency.

The basic idea of lattice surgery [35] is to switch between
distance-D codes instantaneously and apply D rounds of error
correction for fault tolerance. The conversion from a diamond
to a cone is shown in Fig. 7c. Physical qudits are prepared in
specific states to enable deterministic measurement outcomes
for approximately half of the new stabilizer generators in the
absence of errors. The new stabilizer generators with random
measurement outcomes cannot detect errors when we switch
codes, and we choose them to prevent undetected errors from
reducing the effective code distance. To convert from a cone
to a diamond, we measure excess physical qudits of the cone
in the basis that they were prepared in. With this information,
we can relate the syndrome measurements between the cone
and diamond to detect errors at their code boundary.

C. Syndrome measurements

Just as with a color code, a folded surface code simplifies
logical Clifford gates but complicates syndrome measurement
circuits relative to a conventional surface code. However, we
can use the arbitrary orientation of qudit pairs in transversal
subsystems to simplify syndrome measurements by allowing
circuits to change qudit orientation. This requires additional
bookkeeping on the state of a logical qudit. We discuss a few
detailed examples of syndrome measurement circuits and then
overview the general features of the error correction cycle.
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FIG. 7. Distance-5 version of the folded cone surface codes. The
most efficient construction (a) has a distorted edge to guarantee that
stabilizer generators on the edge and tip of the cone commute. A less
efficient construction (b) corrects the edge distortion and generates a
stabilizer group that can be reduced to the smaller stabilizer group of
a distance-5 diamond surface code. This compatibility enables code
conversion between a diamond and cone (c) by preparing each qudit
of one layer (|+〉 = H|0〉) and then switching between codes.
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If we can implement a folded surface code on two layers of
physical qudits, then the syndrome measurement circuits are
identical to a conventional surface code as in Fig. 3. With a
planar layout, these circuits require 2-qudit gates on pairs of
qudits that are not nearest neighbors. To reduce the circuits to
only nearest-neighbor 2-qudit gates, we need additional swap
operations. We can limit this overhead to one round of swap
operations if we alternate the orientations of top and bottom
qudits between rows as shown for two examples in Fig. 8. A
syndrome measurement circuit changes the orientation of all
qudit pairs, but requires a specific initial orientation to work
correctly. The syndrome measurement circuit for the alternate
orientation is the original circuit with the CX gates applied in
the reverse order. The error correction cycle switches between
applying CX gates from left to right and from right to left.

The simultaneous measurement of stabilizer generators is a
nontrivial scheduling problem. The circuits in Fig. 3 function
correctly in the interior of a folded surface code but must be
altered to function near a fold. Because overlapping stabilizer
generators on the top and bottom layers interact with a qudit
along a fold on opposite sides of the pairwise swap step, the
corresponding ancilla qudits can interact with a fold qudit if
the fold qudit swaps with the additional ancilla qudit during
the pairwise swap step. All relevant ancilla qudits are able to
perform a CX gate with the fold qudit without increasing the
depth of the measurement circuits. However, the X-type and
Z-type stabilizer generators that overlap along a fold have an
incorrectly ordered CX gate in their measurement circuit that
induces an extra CX gate between their corresponding ancilla
qudits [5]. Because these ancilla qudits are nearest neighbors,
a local CX† gate can remove these unwanted CX gates.

For a gate-based error model that accounts for the spread of
Pauli errors within syndrome measurement circuits, increased
circuit depth and complexity results in increased diversity and
rates of physical errors. The unfolded syndrome measurement
circuits in Fig. 3 produce “hook” errors, which are spatially
correlated pairs of Pauli errors. The folded circuits in Fig. 8
additionally spread errors between layers during the pairwise
swap operation. However, these swaps act within transversal
subsystems and do not spread errors between subsystems. To
simplify decoding, we can consider a folded surface code of
qudits to be an unfolded surface code of qudit pairs. When an
error spreads between layers, we can interpret it as a change
of error type rather than a change in error location.

D. Resource estimates

For folded surface codes to become useful in practice, they
must be able to reduce the resource requirements of quantum
computation in some parameter regime. We consider the well
understood case of qubits and compare with known resource
estimates of unfolded surface codes [35] and color codes [39].
Our goal is to highlight the balance between space (number of
qubits) and time (circuit depth) resources and the distinction
between physical and logical overhead. We do not perform a
detailed quantitative assessment and argue that it is premature
without constraints provided by a mature qubit technology.
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FIG. 8. Two syndrome measurement circuits to measure stabilizer
generator pairs of a folded qudit surface code that are adapted from
the circuits in Fig. 3. Every X-type stabilizer generator on one layer
is paired with a Z-type stabilizer generator on the other layer, either
with the X-type generator on the (a) top or (b) bottom layer. A single
global pairwise swap operation is needed to implement these circuits
using only nearest-neighbor 2-qudit gates. From input to output, the
data qudits are swapped between the top and bottom layers. These
circuits can be adapted to an alternate data qudit layout with top and
bottom layers switched by reversing the time order of CX gates.

The reason to design new codes is to reduce the spacetime
volume of quantum computations, but the relative value that
we assign to space and time depends on details. If space is the
dominant constraint because of high manufacturing costs for
qubits or spatial limits imposed by the limited size of vacuum
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chambers or dilution refrigerators, then the number of qubits
is the design metric that we should minimize. If time is the
dominant constraint because we seek to reduce the length of
quantum computations at any expense, then the circuit depth
is the design metric that we should minimize. Practically, the
space and time requirements of logical qubit operations both
depend on code distance D. For two-dimensional topological
codes of interest in this paper, a logical qubit requires an area
containing O(D2) physical qubits and time for O(D) rounds of
error correction to operate a logical qubit reliably. Codes have
a physical overhead that sets the prefactors of these costs per
logical operation, and a logical overhead corresponding to the
number of elementary logical operations that are required to
perform specific logical tasks.

To better compare the surface and color codes, we adapt the
most efficient 4.8.8 color code [7] to the virtual 2-layer lattice
of qubits in Fig. 9a. If we collapse the octagons to rectangles
and snake the planar color code through both layers, then we
can construct the stabilizer generators of the color code from
products of stabilizer generators of two stacked surface codes.
In this configuration, the color code uses both layers, but only
one quarter of the surface area of a diamond surface code with
the same code distance. Circuits similar to those in Sec. III C
can measure the stabilizer generators of a color code. For the
generators that combine two surface code generators, we can
run two measurement circuits and omit the intermediate qubit
measurement. The error correction cycle of a color code thus
requires twice as much time as a surface code. By this simple
analysis, a 4.8.8 color code and a diamond surface code of the
same distance occupy the same spacetime volume and offer a
factor of two tradeoff between space and time.

Color codes and folded surface codes both have transversal
implementations of the single-qubit Clifford group that reduce
their logical overhead relative to standard surface codes. The
transversal X, Z, H, and S gates can be implemented between
syndrome measurements to generate any of the 24 elements in
the single-qubit Clifford group with a negligible cost relative
to quantum error correction. On a standard surface code, the X
and Z gates are transversal, and the H gate is transversal up to
a geometric rotation of the logical qubit [35]. These generate
8 elements of the Clifford group transversally up to rotations,
but 12 elements require one S gate and 4 elements require two
S gates. The standard implementation of a logical S gate on a
surface code requires two logical ancilla qubits, one prepared
in a stabilizer resource state [5] and the other used for logical
CX gates [35]. The total spacetime volume of this logical S
gate is ≈ 72D3 qubit-rounds [39], which overwhelms the cost
of other single-qubit Clifford gates in resource estimates.

Folded surface codes also have an advantage over standard
surface codes for the packing and movement of logical qubits
on a grid of physics qubits. With a free virtual layer of qubits,
we can move logical qubits by extension and contraction but
utilize only half of the data qubits as persistent logical qubits
as shown in Fig. 9b. The same operation on one layer utilizes
only a quarter of the data qubits [35] in Fig. 9c. However, a
two-step movement operation in Fig. 9d can also utilize half
of the data qubits. This is another design choice with a factor
of two tradeoff between space and time.
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FIG. 9. Examples of the spacetime tradeoffs in logical qubit design.
(a) A distance-5 4.8.8 color code adapted to a virtual 2-layer qubit
lattice with black (gray) qubits on the top (bottom) layer. It is more
space-efficient but less time-efficient than the diamond surface code
in Fig. 7. Movement of a source logical qubit (S) to a destination (D)
by code deformation on a lattice of diamond surface codes with (b)
two virtual layers, which has the time efficiency of (c) a quarter-filled
layer, and the space efficiency of (d) a half-filled layer.
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We are considering resource estimates as a function of code
distance, but a more fair comparison is between codes of equal
logical error rate. The standard empirical scaling of the logical
error rate εL with physical error rate εP and code distance D is

εL ≈ ε0 (εP/εT )b(D+1)/2c (29)

for some offset ε0 and error threshold εT . With a depolarizing
error channel applied to every gate, εT ≈ 0.01 for the surface
code and εT ≈ 0.001 for the color code [7]. This difference is
caused by deeper syndrome measurement circuits and harder
decoding problems for color codes. If εP is between these εT
values for some qubit technology, then only the surface code
is viable. If εP � εT , then the distance tradeoff of two codes
with equivalent εL described by {ε0, εT ,D} and {ε′0, ε

′
T ,D

′} is

D
D′
≈ 1 +

ln εT − ln ε′T
ln εP

+ O
(

1
D

)
+ O

( ln εT

ln εP

)2 , (30)

and differences in thresholds have a small effect. Overall, the
design space increases as the physical error rate decreases.

Beyond a simplistic physical error rate that assumes errors
on qubits to be uniform and independent, there are numerous
plausible scenarios that might distort resource estimation. For
example, if state preparation and measurement operations are
significantly slower than unitary gates, then the differences in
circuit depth between syndrome measurement circuits of the
surface and color codes might have a weak effect on the total
time and accumulated error of an error correction cycle. The
larger code capacity error thresholds become relevant if error
accumulates mostly during measurement operations. Another
possible scenario is a prevalence of spatially correlated errors
from control crosstalk. Such errors might reduce the effective
distance of a topological code to a ratio between the physical
length of the code and an error correlation length. The higher
code efficiency of the color code relative to the surface code
might then be negated by its spatial compactness. We will not
know what errors are practically relevant until a mature qubit
technology has been subject to thorough characterization.

IV. UNIVERSAL QUANTUM COMPUTATION

We now consider a topological implementation of the qubit
fusion concept from Sec. II B with folded surface codes as a
method for universal quantum computation. The basic idea is
to encode a four-dimensional logical Hilbert space as either
one folded qudit surface code or a stack of two folded qubit
surface codes. With two codes, we are able to circumvent two
important no-go theorems, that no single code can have a set
of gates that are both transversal and universal [40] and that
no topological stabilizer code in two spatial dimensions can
topologically protect a non-Clifford gate [41]. The two codes
combined have transversal implementations of both qubit and
qudit Clifford gates, which form a universal gate set. The hard
operation is converting between a qudit surface code and two
qubit surface codes, which either requires the distillation of a
logical resource state |F〉 or a new code conversion method.
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FIG. 10. Universal quantum computation on a planar qubit lattice.
(a) A stacked pair of four-dimensional qudit surface codes on a planar
qudit lattice (left) can be implemented on a planar qubit lattice (right)
by embedding each qudit in a pair of physical qubits. This layout of
data and ancilla qubits in 2-by-2 clusters also can be operated as four
stacked qubit surface codes. (b) 1-qudit Clifford gates in Fig. 1 can
be implemented with nearest-neighbor 2-qubit gates, but the CX gate
is more complicated. We decompose CX gates into H and CZ gates
(inset), and implement CZ gates with nearest-neighbor 2-qubit gates
that depend on the relative orientations of qubit pairs in every qudit.
These implementations further simplify if qubits are not returned to
their initial orientation. (c) Four virtual layers of surface codes have
space to fold one qudit or two qubits (left), use a resource state for
code conversion (center), or store two qudits or four qubits (right).
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We operate pairs of physical qubits as qudits to implement
folded qudit surface codes on a qubit grid as shown in Fig. 10.
The 2-qudit subsystems are now 4-qubit subsystems arranged
in a square, which enables a virtual 4-layer qubit lattice. We
can use all of the qudit results from Sec. III by implementing
qudit operations on neighboring qubit pairs in Fig. 10b. This
qudit-in-qubit embedding has also been proposed recently for
Hamiltonian-based topological quantum computation [42] to
implement a Z4 quantum double model [20]. In this language,
we are implementing a Z4 × Z4 quantum double model (the
folded qudit surface code) and a Z2 × Z2 × Z2 × Z2 quantum
double model (the stacked pair of folded qubit surface codes)
with nontrivial boundary conditions [21].

Quantum error correction has been studied extensively for
qubit surface codes and many of these results can be adapted
to qudit surface codes. The most important result is that the
most likely error can be computed efficiently using minimum
weight perfect matching with an error model of independent
X and Z Pauli errors [25]. This result also holds for the d = 4
qudit surface code with an error model of independent X, X2,
Z, and Z2 errors defined by applying four error channels,

EX(ρ) = (1 − εP)ρ + εPXρX†

EX2 (ρ) = (1 − εP)ρ + εPX2ρX2

EZ(ρ) = (1 − εP)ρ + εPZρZ†

EZ2 (ρ) = (1 − εP)ρ + εPZ2ρZ2. (31)

This simple model factors the decoding problem by error type.
The parities of X and Z syndrome measurements are sensitive
only to Z and X errors respectively, which enables them to be
corrected separately from Z2 and X2 errors. Error thresholds
are identical to the qubit surface code in a code capacity model
with errors applied between perfect rounds of error correction
(εT ≈ 0.1) and in a phenomenological model that adds errors
to syndrome measurements (εT ≈ 0.03) [43]. Both thresholds
are bulk properties and are not altered by boundary conditions
of folded surface codes. Other error models have surface code
thresholds that increase with qudit dimension [44, 45]. This is
consistent with our result because qubits and qudits have the
same threshold but the error probability on a qudit (≈ 4εP) is
higher than on a qubit (≈ 2εP) in our error model. For a more
realistic gate-based error model, thresholds will be lower for
a folded qudit surface code than for an unfolded qubit surface
code because of deeper syndrome measurement circuits.

The virtual 4-layer qubit lattice has several possible modes
of operation. In a “memory” mode, we store a 16-dimensional
logical Hilbert space as four qubits, two qudits, or two qubits
and a qudit in a stack of surface codes. We can apply strongly
transversal CX gates to any pair of these stacked codes. In a
“computation” mode, we can apply transversal Clifford gates
to stacked pairs of folded qubit surface codes or folded qudit
surface codes. This provides transversal access to the 11,520
elements of the 2-qubit Clifford group or the 768 elements of
the 1-qudit Clifford group. In a “conversion” mode, we switch
between a pair of qubit surface codes and a qudit surface code
by consuming an |F〉 on a stacked qudit surface code to apply
an operation in Fig. 1d. They can both be performed in place
because partial qudit fission is transversal on surface codes.

With a steady supply of |F〉 resources to consume, a stack
of surface codes on a virtual 4-layer qubit lattice is a compact
“quantum logic unit”. Universal quantum computation within
a 4-dimensional logical Hilbert space is performed by cycling
between two logical qubits and one logical qudit to interleave
qubit and qudit Clifford gates. A unitary operation performed
in this manner must be compiled into a Clifford+F circuit. A
more conventional Clifford+T quantum logic unit computing
on two logical qubits can be implemented in the same amount
of space with a supply of conventional magic state resources.
The relative value of Clifford+T and Clifford+F architectures
depends on compiler efficiency and the cost of resource state
preparation. An F gate can effectively apply more than one T
gate [15], and a careful valuation will require the T -gate count
and depth [46] for all elements of the 1-qudit Clifford group.
Only one protocol [15] has been identified for |F〉 distillation
so far, and more research is needed to reach the same level of
maturity as conventional magic state distillation.

A possible alternative to |F〉 distillation is code conversion
between two stacked qubit surface codes and a qudit surface
code. While such an operation has not yet been demonstrated,
there are many similarities between the codes that hint at its
feasibility. First, we label qubit stabilizer generators by layer
and separate qudit stabilizer generators into X, X2, Z, and Z2

types. For an embedding consistent with Fig. 1, X2-type and
Z1-type qubit generators are equivalent to X2-type and Z2-type
qudit generators, and Z2-type qubit generators commute with
Z-type qudit generators. Thus these codes share half of their
generators, and three-quarters of their generators are mutually
commuting. As a result, the X2-type and Z1-type qubit logical
strings are equivalent to the X2-type and Z2-type qudit logical
strings. With all of these similarities between codes, it is the
X1-type qubit generators and the X-type qudit generators that
are the primary source of difficulty in code conversion.

In addition to computational advantages, the virtual 4-layer
qubit lattice benefits logical data movement over a lattice of
stacked surface codes. The lattice needs two empty layers to
accommodate the simultaneous folding of all surface codes.
With one empty layer as in Fig. 9b, movement paths cannot
overlap. With two empty layers, we can overlap any pair of
movement paths by assigning them locally to different layers.
This flexibility only applies to the movement of logical qubits,
since logical qudits occupy two layers simultaneously. Qudit
movement is still useful to stack qudits for strongly transversal
CX gates that directly implement Toffoli gates as in Fig. 1b.
This is useful for performing classical reversible logic, which
is prevalent in the oracle functions of quantum algorithms.

V. CONCLUSION

The main technical result of this paper is a construction of
folded surface codes with transversal Clifford gates that is an
alternative to a mapping from color codes [11]. We embed a
virtual multi-layer lattice of qubits on a physical planar lattice
of qubits by clustering data and ancilla qubits. This expands
the design space of topologically protected logical qubits and
enables new tradeoffs between space and time resources.



14

We combine folded surface codes on a virtual 4-layer qubit
lattice with code conversion between a logical qubit pair and a
logical qudit [15] to form a framework for universal quantum
computation in two spatial dimensions. Abstractly, it protects
two distinct forms of topological order with Abelian anyons
rather than topological order with non-Abelian anyons, which
is generally believed to be necessary for topological quantum
computation in two spatial dimensions [20]. This framework
still lacks efficient operations to switch orders either directly
with code conversion or indirectly with resource distillation.
We are following a “keystone” design principle whereby the
most essential part is missing, and its future development is
motivated by a compelling but incomplete design. To compete
with existing quantum computing proposals [3], we will need
basic principles for converting between qubit and qudit error
correcting codes, more efficient protocols for |F〉 distillation,
efficient hybrid stabilizer simulations of qubits and qudits and

their interconversion, efficient compilation of operations into
Clifford+F gates, and efficient scheduling of operations with
geometric constraints of a virtual 4-layer lattice. Ultimately,
universal quantum computation is likely to coalesce around a
universal gate set optimized for a planar lattice of qubits.
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