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In recent years, several measures have been proposed for characterizing the coherence of a given quantum
state. We derive several results that illuminate how these measures behave when restricted to pure states. No-
tably, we present an explicit characterization of the closest incoherent state to a given pure state under the trace
distance measure of coherence. We then use this result to show that the states maximizing the trace distance of
coherence are exactly the maximally coherent states. We define the trace distance of entanglement and show that
it coincides with the trace distance of coherence for pure states. Finally, we give an alternate proof to a recent
result that the ℓ1 measure of coherence of a pure state is never smaller than its relative entropy of coherence.
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I. I. INTRODUCTION

One of the major goals in quantum information theory is to
find effective ways of quantifying the amount of “quantum-
ness” within a given system—that is, how much the system
differs from any possible classical mechanical description of
it. How this quantification is carried out varies heavily de-
pending on context, however, as some quantum states might
be useful for one quantum information processing task, yet
useless for another.

When multiple quantum systems interact with each other,
the resource of interest is typically entanglement, the quan-
tification of which has been well-investigated over the past
two decades [1–8]. However, when there is no interaction be-
tween different systems, the resource of interest is instead co-

herence, or the amount that a state is in a superposition of a
given set of mutually orthogonal states. With roots in quantum
optics [9, 10], coherence is an essential operational resource
in quantum information processing, and has been shown to be
intimately related to entanglement [11, 12]; in fact, it has been
shown that one can measure coherence via entanglement [13].

Despite its usefulness, an effort to formalize the quantifi-
cation of coherence has only begun somewhat more recently
[14]. The defining properties of a proper coherence measure
were identified in [15]; for example, a state ρ should have zero
coherence under the proposed measure if and only if ρ is inco-

herent (i.e., it is diagonal in the pre-specified orthogonal basis,
which we will always take to be the standard basis {|i〉}ni=1),
since such states are exactly the ones that represent classical
mixtures of the given basis states. We denote the set of all
n×n matrices by Mn, the set of density matrices by Dn, and
the set of incoherent states by In, or simply M, D, and I if
the dimension is irrelevant or clear from context.

The two most widely-known coherence measures are the
ℓ1-norm of coherence, defined as the sum of the absolute val-
ues of the off-diagonal entries of the density matrix:

Cℓ1(ρ) :=
∑

i6=j

|ρij |,

and the relative entropy of coherence [14]:

Cr(ρ) := S(ρdiag)− S(ρ),

where S(·) is the von Neumann entropy and ρdiag is the state
obtained from ρ by deleting all off-diagonal entries. Some
other coherence measures that have been proposed recently
include the trace distance of coherence [16], which is the trace
norm distance to the closest incoherent state:

Ctr (ρ) := min
δ∈I

‖ρ− δ‖tr = min
δ∈I

n
∑

i=1

|λi(ρ− δ)|,

where λi(ρ − δ) are the eigenvalues of the matrix ρ − δ and
‖ · ‖tr is the trace norm, and the robustness of coherence [17]:

CR(ρ) := min
τ∈D

{

s ≥ 0
∣

∣

∣

ρ+ sτ

1 + s
∈ I
}

.

The ℓ1-norm of coherence, relative entropy of coherence,
and robustness of coherence have all been shown to be proper
coherence measures, and it has been shown that the trace dis-
tance of coherence is a proper measure of coherence when
restricted to qubit states or X states [16]. Although the gen-
eral case remains open, this partial result helps validate the
fact that the trace distance is commonly used as a coherence
measure. Additionally, simple formulas are known for all of
these measures of coherence when restricted to pure states,
except for the trace distance of coherence. Indeed, the ℓ1-
norm of coherence and the relative entropy of coherence are
defined via explicit formulas, and the robustness of coherence
of a pure state simply equals its ℓ1-norm of coherence [17].
However, it was noted in [16] that it seems comparably diffi-
cult to compute the trace distance of coherence of a pure state,
and evidence was given to suggest that a simple closed-form
formula might not exist.

In this work, we investigate how these measures of coher-
ence behave on pure states. In Section II, we use approxi-
mation theory to give characterizations of the best incoherent
states for a given state with respect to the trace norm distance
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and the spectral norm distance. One can use the results to
check whether an incoherent state is the best approximation
for the given state in finitely many steps. In Section III, we
give an “almost formula” for the trace distance of coherence
of a pure state. In particular, we show that it is given by one of
n different formulas (depending on the state), and which for-
mula is the correct one can be determined simply by checking
log2(n) inequalities. Furthermore, one can construct the inco-
herent state nearest to the given pure state under the trace norm
(and operator norm). We also present examples and MATLAB
code to demonstrate the efficacy of our method both analyti-
cally and numerically. In Section IV, we prove that the states
maximizing the trace distance of coherence are exactly the
maximally coherent states—another property that has already
been known to hold for the other three measures of coherence.
In Section V, we show that many measures of entanglement
and coherence coincide, including the trace distance of coher-
ence and the analogous trace distance of entanglement, which
we define herein. In Section VI, we give an alternate proof to
a recent result [16] that says that the ℓ1 measure of coherence
of a pure state is not smaller than its relative entropy of coher-
ence. Concluding remarks and open questions are discussed
in Section VII. Finally, some results for the mixed state case
are given in the Appendix.

II. II. CHARACTERIZATION OF NEAREST

INCOHERENT STATES

In this section we present some results that allow us to give
computable criterion to check whether an incoherent state δ is
nearest to a given state ρ. The results will also be used to con-
struct the nearest incoherent state for a given pure state with
respect to the trace distance by an efficient algorithm (Theo-
rem 1), and to prove that maximally coherent states ρ yield
the maximum value of Ctr (ρ) (Theorem 2).

Suppose ||| · ||| is a norm on a inner product space V with
inner product 〈u, v〉. Its dual norm is defined and denoted by

|||v|||∗ ≡ sup{|〈v|w〉| : w ∈ V, |||w||| ≤ 1}.

Using the Hahn-Banach separation theorem, one can derive
the following result in approximation theory; for example, see
[18].

Proposition 1. Suppose W is a closed convex set in a finite

dimensional normed space (V, ||| · |||), and v ∈ V −W . Then

w ∈ W is the best approximation of v if and only if there is

a linear functional f with |||f |||∗ ≤ 1 such that f(v − w) =
|||v −w||| and f(z) ≥ 0 for all z ∈ V such that w − z ∈W .

We will use the standard inner product 〈A,B〉 = tr (AB†)
for matrices A,B ∈ Mn. Thus, every linear functional on
Mn will be of the form X 7→ 〈X,A〉 for a matrix A ∈ Mn.
It is well known that the trace norm ‖ · ‖tr and the operator
norm ‖ · ‖ on Mn are dual to each other. Each of their norm
balls can be written as the convex hull of their extreme points,

namely,

Btr = {A ∈ Mn : ‖A‖tr ≤ 1}
= conv {µ|u〉〈u| : µ ∈ C, |µ| = 1,

|u〉 ∈ C
n, 〈u|u〉 = 1}, and

B = {A ∈ Mn : ‖A‖ ≤ 1}
= conv {A ∈ Mn : A is unitary}.

Here is another simple observation which is useful for our dis-
cussion.

Lemma 1. Suppose D = diag (d1, . . . , dn) ∈ I. Then

F = {F ∈ Mn : D − F ∈ I}

= {diag (f1, . . . , fn) :
n
∑

j=1

fj = 0, dj ≥ fj, j = 1 . . . , n}

is a convex set. A matrix F ∈ S is an extreme point if and only

if there is at most one strict inequality among the inequalities

dj ≥ fj for j = 1, . . . , n. Consequently, there are at most n
extreme points for the set F .

Proof. Note that F can be viewed as a compact convex set
in Rn consisting of vectors (f1, . . . , fn) governed by one
equality

∑n

j=1 fj = 0, and n inequalities dj ≥ fj with
j = 1, . . . , n. In Rn, one requires n linearly independent
equations from the governing equalities and inequalities to de-
termine an extreme point. The results follows. �

By Proposition 1 and the facts about Btr and B, we have
the following result for pure states (unit vectors).

Proposition 2. Let |x〉 ∈ Cn be a unit vector and δ ∈ I. Then

|x〉〈x| − δ ∈ Dn − I has exactly one positive eigenvalue λ1
with a unique rank one eigenprojection |v〉〈v| ∈ Dn such that

‖|x〉〈x| − δ‖tr = 2‖|x〉〈x| − δ‖ = 2λ1.

Let D ∈ I and F = {F ∈ Mn : D−F ∈ I}. The following

conditions are equivalent.

(a) ‖|x〉〈x| −D‖tr = min{‖|x〉〈x| − δ‖tr : δ ∈ I}.

(b) ‖|x〉〈x| −D‖ = min{‖|x〉〈x| − δ‖ : δ ∈ I}.

(c) For every (extreme) element F in F , 〈v|F |v〉 ≥ 0.

Proof. Note that if |x〉〈x| is not a diagonal matrix, then
|x〉〈x| − δ has eigenvalues λ1 > 0 ≥ λ2 ≥ · · · ≥ λn by
Weyl’s inequality. Because tr (|x〉〈x| − δ) =

∑n

j=1 λj = 0,
we have ‖|x〉〈x| − δ‖ = λ1 and ‖|x〉〈x| − δ‖tr = λ1 −
∑n

j=2 λj = 2λ1 So, the first assertion, and the equivalence of
(a) and (b) follow. In particular, the same matrixD minimizes
the trace norm and the operator norm.

A matrix D ∈ I is best approximation of |x〉〈x| with re-
spect to the ‖ · ‖tr if and only if there is an element H
in the dual norm ball of ‖ · ‖tr , i.e., ‖H‖ ≤ 1, such that
tr (|x〉〈x|−D)H = ‖|x〉〈x|−D‖tr = 2λ1 and tr (HF ) ≥ 0
for any F such that D − F ∈ I. Because |x〉〈x| − D has
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eigenvalues λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn and ‖H‖ ≤ 1, we see
that

H = |v〉〈v| − (In − |v〉〈v|) = 2|v〉〈v| − I.

Consequently, for any F ∈ F ,

0 ≤ tr (HF ) = tr ((2|v〉〈v| − I)F )

= 2tr (|v〉〈v|F ) − trF

= 2tr (|v〉〈v|F ) = 2〈v|F |v〉.

Thus, conditions (a) and (c) are equivalent. By standard re-
sults in convex analysis, 〈v|F |v〉 ≥ 0 for every element F in
F if and only if 〈v|F |v〉 ≥ 0 for every extreme element F in
F . �

By Proposition 2 (c) and Lemma 1, one can easily check
whether a given D ∈ I is nearest to a given pure state |x〉〈x|
in finitely many steps.

III. III. THE TRACE DISTANCE OF COHERENCE OF A

PURE STATE

We now present a characterization of Ctr (|x〉〈x|), where
|x〉 ∈ C

n is an arbitrary pure state. Note that there is a diago-
nal unitary U and a permutation matrix P such that PU |x〉 is
a unit vector having non-negative entries x1 ≥ · · · ≥ xn ≥ 0
in descending order. We then have

‖|x〉〈x| − δ‖tr = ‖PU(|x〉〈x| − δ)U †P t‖tr

for any δ ∈ I. So, we may replace |x〉 by PU |x〉. Without
loss of generality, we will use this simplification to find the
best approximation for |x〉 = (x1, . . . , xn)

t with x1 ≥ · · · ≥
xn ≥ 0, but we note that it straightforwardly applies to the
general setting of an arbitrary unit vector in Cn.

With this modification, we have the following.

Theorem 1. Suppose |x〉 = (x1, . . . , xn)
t is a unit vector

with entries x1 ≥ · · · ≥ xn ≥ 0. Let sℓ =
∑ℓ

j=1 xj , mℓ =
∑n

j=ℓ+1 x
2
j , and pℓ = s2ℓ −1− ℓmℓ for ℓ ∈ {1, . . . , n}. There

is a maximum integer k ∈ {1, . . . , n} satisfying

xk > qk :=
1

2ksk

(

pk +
√

p2k + 4kmks2k

)

. (1)

The unique best approximation of |x〉〈x| in I with re-

spect to the trace norm (and the operator norm) is D =
diag (d1, . . . , dk, 0, . . . , 0) ∈ I with

dj =
xj − qk
sk − kqk

for 1 ≤ j ≤ k.

Furthermore,

Ctr (|x〉〈x|) = ‖|x〉〈x| −D‖tr = 2(qksk +mk),

and ‖|x〉〈x| −D‖ = qksk +mk.

Proof: We may assume that xn > 0, and use continuity for
the general case.

First, we prove that there exists a density matrix D =
diag (d1, . . . , dk, 0, . . . , 0) such that |x〉〈x|−D has an eigen-
vector |v〉 = (qk, . . . , qk, xk+1, . . . , xn)

t corresponding to
its largest eigenvalue (we will later show that this D is the
same one from the statement of the theorem). To this end, let
d1, . . . , dk, q, µ > 0 be variables satisfying the matrix equa-
tion

(|x〉〈x|−D)|v〉 = µ|v〉 with |v〉 = (q, . . . , q, xk+1, . . . , xn)
t.

Then |x〉〈x||v〉 = D|v〉 + µ|v〉. Because 〈x|v〉 = qsk +mk,
we have

(qsk +mk)(x1, . . . , xk, xk+1, . . . , xn)
t

= (d1q + µq, . . . , dkq + µq, µxk+1, . . . , µxn)
t.

Summing up the first k entries of the vectors on the left and
right sides, we have

(qsk +mk)sk = kµq + q

k
∑

j=1

dj = kµq + q. (2)

Comparing the last n− k entries of the vectors on both sides,
we have

qsk +mk = µ. (3)

Substituting (3) into (2) to eliminate µ, we have

fk(q) := kskq
2 − q(s2k − 1− kmk)− skmk = 0. (4)

Letting qk be the larger zero of fk(q), we have

qk =
1

2ksk

(

pk +
√

p2k + 4kmks2k

)

> 0,

where pk = s2k − 1− kmk. Note that

q1 =

(

√

1− x21 + x21 − 1

)

/x1 < x1,

so there indeed exists a largest integer k ∈ {1, . . . , n} such
that xk > qk. From this point forward, we fix k at this largest
possible value, and we note that sk = x1 + · · ·+xk ≥ kxk ≥
kqk. Define

dj := (xj − qk)/(sk − kqk) > 0 for j = 1, . . . , k.

By our construction, we have

(|x〉〈x| −D)|v〉 = µ|v〉.

Furthermore, by (3) we have

‖|x〉〈x| −D‖ = µ = qksk +mk and

‖|x〉〈x| −D‖tr = 2µ = 2(qksk +mk).
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Next, we will prove that qk ≥ xk+1 if k < n. To this end, let
fk(q) be the polynomial defined by (4). Then

fk+1(xk+1)

= (k + 1)sk+1x
2
k+1 − xk+1[s

2
k+1 − 1− (k + 1)mk+1]

−sk+1mk+1

= kskx
2
k+1 + kx3k+1 + sk+1x

2
k+1

− xk+1[s
2
k + 2xk+1sk − 1− k(mk − x2k+1)−mk+1]

−(sk + xk+1)(mk − x2k+1)

= kskx
2
k+1 − xk+1(s

2
k − 1− kmk)− skmk

+sk+1x
2
k+1 − 2sk+1x

2
k+1 + xk+1(mk − x2k+1)

−xk+1mk + sk+1x
2
k+1 + x3k+1

= kskx
2
k+1 − xk+1(s

2
k − 1− kmk)− skmk

= fk(xk+1).

The product of the roots of the quadratic fk(q) equals
−skmk, which is negative, so they have opposite signs. As
a result, for any positive number µ, fk(µ) ≤ 0 if and only if
µ ≤ qk. Since we chose k so that xk+1 ≤ qk+1 (recall that k is
the largest subscript so that xk > qk), we have fk+1(xk+1) ≤
0. It follows that fk(xk+1) = fk+1(xk+1) ≤ 0 as well, i.e.,
xk+1 ≤ qk as desired.

Finally, we will show that D is the (unique) best approxi-
mation of |x〉〈x| in I by establishing the following.

Claim. Let F = {F ∈ Mn : D−F ∈ I}. Then 〈v|F |v〉 ≥ 0
for any F ∈ F .

First, note that if D = diag (d1, . . . , dk, 0, . . . , 0) and if
F ∈ F , then fk+1, . . . , fn ≤ 0. Hence

〈v|F |v〉 = 〈v|diag (f1, . . . , fn)|v〉

=

k
∑

j=1

fjq
2
k +

n
∑

j=k+1

fjx
2
j

= −
n
∑

j=k+1

fjq
2
k +

n
∑

j=k+1

fjx
2
j

=
n
∑

j=k+1

fj(x
2
j − q2k) ≥ 0,

because we already showed that qk ≥ xk+1 ≥ · · · ≥ xn. By
Proposition 2, D is the best approximation element in In of
|x〉〈x| with respect to the operator norm and the trace norm.
This completes the proof of the claim.

To prove the uniqueness ofD and k, supposeD1 is another
element in I such that ‖|x〉〈x| −D‖ = ‖|x〉〈x| −D1‖. Then

‖|x〉〈x| −D‖ = min
δ∈I

‖|x〉〈x| − δ‖

≤ ‖|x〉〈x| − (D +D1)/2‖
≤ ‖(|x〉〈x| −D)/2‖+ ‖(|x〉〈x| −D1)/2‖.

By [19, Proposition 1.2], there are unitary matrices V1, V2 ∈
Mn such that V †

1 (|x〉〈x| −D)V2 = [µ]⊕ Y and

V †
1 (|x〉〈x| −D1)V2 = [µ]⊕ Z,

where Y, Z ∈ Mn−1 are negative semidefinite matrices, and
‖|x〉〈x| − D1‖ = ‖|x〉〈x| − D‖ = µ is the largest eigen-
value of |x〉〈x| − D with eigenvector |v〉 as defined before.
Hence, if |u〉 is the first column of V2 and |ũ〉 is the first col-
umn of V1, then (|x〉〈x| − D)|u〉 = µ|ũ〉. It follows that
|u〉 = ξ|v〉 for some ξ ∈ C and |ũ〉 = ξ|v〉. Consequently,
(|x〉〈x| − D1)|v〉 = µ|v〉, and D|v〉 = D1|v〉 implying that
D = D1 as |v〉 has positive entries. This contradicts the
assumption that D 6= D1. By Proposition 2, we see that
D ∈ I attains minδ∈I ‖|x〉〈x| − δ‖ if and only if D attains
minδ∈I ‖|x〉〈x| − δ‖tr . Thus, D is the unique element in I
attaining Ctr (|x〉〈x|).

Because k is the rank of the unique best approximation of
D in I (with respect to the operator norm), we see that k is
unique, which completes the proof of the theorem. (Alterna-
tively, if there is another k̃ satisfying (1), then one can use the
construction in our proof to get D̃ of rank k̃ that best approx-
imates |x〉〈x|, which is a contradiction.) �

Before proceeding, we note that the k = 1 and k = n cases
of Theorem 1 actually simplify significantly:

Corollary 1. Using the notation of Theorem 1, we have the

following.

1. The best incoherent approximation of |x〉〈x| is a rank

one matrix, which must equal diag (1, 0, . . . , 0), if and

only if x1m2 ≥ 2x2m1.

2. The best incoherent approximation of |x〉〈x| is

an invertible matrix, which must equal D =
diag (d1, . . . , dn) ∈ I with

dj =
1

n
[1− sn(sn − nxj)] > 0 for j = 1, . . . , n,

if and only if 1 > sn(sn − nxn).

Proof. To prove statement 1, we note that k = 1 if and only if
x2 ≤ q2. This is equivalent to 0 ≥ f2(x2), where f2(q) is the
quadratic defined in (4), as shown in the proof of Theorem 1.
Explicitly, we have

0 ≥ 2s2x
2
2 − x2(s

2
2 − 1− 2m2)− s2m2

= 2(x1 + x2)x
2
2 − x2[(x1 + x2)

2 − 1] + 2x2m2 − s2m2

= x2[2(x1 + x2)x2 − (x21 + x22 + 2x1x2 − 1)]

+x2m2 − x1m2

= x2[2x
2
2 + (1− x21 − x22)] + x2(1 − x21 − x22)− x1m2

= 2x2m1 − x1m2.

To prove statement 2, note that qn = 1
nsn

(s2n − 1), and the
stated inequality is equivalent to dj > 0 for all j, which is to
say that D is positive definite. �

Although Theorem 1 appears somewhat technical at first
glance, it is very simple to use both numerically and analyti-
cally. On the numerical side, it provides an extremely fast al-
gorithm for computing Ctr (|x〉〈x|). Although it might seem
somewhat time-consuming at first to find the value of k de-
scribed by the theorem, the proof of the theorem showed that
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if qk < xk then qj < xj for all j < k. Thus we can search for
k via binary search, which requires only log2(n) steps, rather
than searching through all n possible values of k. MATLAB
code that implements this algorithm is available for down-
load from [20], which is able to computeCtr (|x〉〈x|) for pure
states |x〉 ∈ C1,000,000 in under one second on a standard lap-
top computer. We contrast this with the naive semidefinite
program for computingCtr (|x〉〈x|) [16], which can only rea-
sonably handle states in C100 or so.

Theorem 1 can also be used to analytically compute
Ctr (|x〉〈x|) for arbitrary pure states as well, as we now
demonstrate with some examples.

Example 1. As a simple example, consider the qutrit pure

state |x〉 = (2/3, 2/3, 1/3), which was investigated in [16].

A direct calculation reveals that

q1 =
1

6

(

3
√
5− 5

)

≈ 0.2847,

q2 =
1

48

(

3
√
17 + 5

)

≈ 0.3619, and

q3 =
16

45
≈ 0.3556.

Thus k = 2 (since q1 < x1 and q2 < x2, but q3 ≥ x3),

which then gives Ctr (|x〉〈x|) = 1
6

(

3 +
√
17
)

and D =
diag(1/2, 1/2, 0), verifying that the state D found in [16] is

indeed optimal.

Example 2. As another example, consider an arbitrary qubit

pure state |x〉 = (x1, x2) ∈ C
2. Then

q2 =
|x1x2|

|x1|+ |x2|
≤ min{|x1|, |x2|},

with equality if and only if either x1 = 0 or x2 = 0. If

x1, x2 6= 0 then k = 2 and we then have Ctr (|x〉〈x|) =
2|x1x2| and D = diag(|x〉〈x|), which agrees with the for-

mula for qubit states found in [16]. If x1 = 0 or x2 = 0 then

k = 1 and it is straightforward to check that we get the same

formula.

IV. IV. MAXIMALLY COHERENT STATES UNDER THE

TRACE NORM OF COHERENCE

We recall [15] that a pure state |x〉 ∈ Cn is called maxi-

mally coherent if all of its entries have equal absolute value:
|x1| = · · · = |xn| = 1/

√
n. Recently it has been suggested

that the maximum value of a proper measure of coherence
should be attained exactly by the maximally coherent states
[21], and this property is known to hold for the relative en-
tropy of coherence (this is straightforward to prove, see [15]
for example), the ℓ1-norm of coherence [22, Theorem 2], and
the robustness of coherence [17]. We now show that this same
property also holds for the trace distance of coherence, which
provides further evidence that it is indeed a proper measure of
coherence.

Theorem 2. For all (potentially mixed) states ρ ∈ Dn, we

have Ctr (ρ) ≤ 2 − 2/n. Furthermore, equality holds if and

only if ρ = |x〉〈x|, where |x〉 is a maximally coherent state.

We note that, while the upper bound in Theorem 2 is well-
known (see [23, Theorem 2.1]), the “iff” statement for equal-
ity was not.

Proof. Let ρ be a general mixed state with spectral decompo-
sition

∑n

j=1 pj |xj〉〈xj | such that p1 ≥ · · · ≥ pk > 1/n ≥
pk+1 ≥ · · · ≥ pn. Then

min
δ∈I

‖ρ− δ‖tr ≤ ‖ρ− I/n‖tr

=
k
∑

j=1

(pj − 1/n) +
n
∑

j=k+1

(1/n− pj)

= 2
k
∑

j=1

(pj − 1/n)

≤ 2(1− k/n)

≤ 2(1− 1/n),

where the second equality holds because tr (ρ − I/n) = 0.
If the equality minδ∈I ‖ρ − δ‖tr = 2(1 − 1/n) holds, then
k = 1 so that ρ = |x〉〈x| has rank one, and D = I/n satisfies
Ctr (|x〉〈x|) = ‖|x〉〈x|−D‖tr . We may replace |x〉 by PU |x〉
as in Section II and so we assume without loss of generality
that |x〉 = (x1, . . . , xn)

t with x1 ≥ · · · ≥ xn ≥ 0. By
Corollary 1 (2), we see that d1 = · · · = dn so that sn −
nx1 = · · · = sn − nxn. Thus, x1 = · · · = xn. The desired
conclusion follows. �

V. V. COHERENCE AND ENTANGLEMENT MEASURES

In this section, we show that a wide variety of measures
of coherence coincide exactly with an analogous measure of
entanglement when restricted to pure states. The motivating
example for this result is that it (in conjunction with Theo-
rem 1) gives an “almost-formula” on pure states for what we
call the trace distance of entanglement:

Etr (ρ) := min
σ∈S

‖ρ− σ‖tr ,

where S is the set of separable states in a bipartite Hilbert
space.

Throughout this section, we suppose without loss of gener-
ality that the state |v〉 ∈ Cn ⊗Cn has Schmidt decomposition
|v〉 =

∑n
j=1 λj |j〉 ⊗ |j〉, which is justified by multiplying |v〉

by some local unitaries and noting that all quantities we con-
sider are invariant under local unitaries.

Theorem 3. Let |v〉 ∈ Cn ⊗ Cn be a pure state with

Schmidt coefficients λ1, λ2, . . . , λn, and define |λ〉 :=
(λ1, λ2, . . . , λn) to be the vector containing those Schmidt co-

efficients. Then Etr (|v〉〈v|) = Ctr (|λ〉〈λ|).

We note that Theorem 3 is rather remarkable for the fact
that it shows that computing Etr (|v〉〈v|) is roughly as diffi-
cult as computing the Schmidt coefficients of |v〉 (and in par-
ticular, is thus computable in polynomial time). This was not
obvious a priori, as optimizations over the set of separable
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states are typically NP-hard [24], and in practice they are usu-
ally approximated by semidefinite programs that make use of
symmetric extensions [25].

Before proving this theorem, we present the lemma that is
at its heart and does most of the heavy lifting.

Lemma 2. Let σ ∈ Mn ⊗ Mn be a real-valued state with

positive partial transpose. Then there exists a quantum chan-

nel Φ : Mn ⊗ Mn → Mn (which depends on σ) such that

Φ(σ) is incoherent (i.e., diagonal), and Φ(|v〉〈v|) = |λ〉〈λ|
for all pure states |v〉 ∈ Cn ⊗ Cn of the form |v〉 =
∑n

j=1 λj |j〉 ⊗ |j〉 (and |λ〉 is as defined in Theorem 3).

Proof. The channel Φ that works will be constructed as the
composition of two simpler channels. To begin, we consider
the diagonal twirling channel Ψ : Mn ⊗Mn → Mn ⊗Mn

defined by

Ψ(ρ) =

∫

U∈D(U)

(U ⊗ U)ρ(U ⊗ U)† dU,

where D(U) is the set of diagonal unitary matrices, U repre-
sents the complex conjugate of the unitaryU , and we integrate
with respect to the usual Haar measure. Then if ρij,kℓ denotes
the coefficient of the basis matrix |i〉〈j| ⊗ |k〉〈ℓ| in a density
matrix ρ, we have the following:
Claim 1:

Ψ(ρ) =

n
∑

i,j=1

ρii,jj |i〉〈i| ⊗ |j〉〈j|+
n
∑

i6=j=1

ρij,ij |i〉〈j| ⊗ |i〉〈j|,

and
Claim 2: If σ has positive partial transpose then so doesΨ(σ).

Claim 2 follows simply from the fact that conjugation by
eachU⊗U does not change whether or not a state has positive
partial transpose, so integrating over these states also gives a
PPT state by convexity.

To see why Claim 1 holds, we explicitly compute the coef-
ficient ψij,kℓ of |i〉〈j| ⊗ |k〉〈ℓ| in Ψ(ρ):

ψij,kℓ =

∫∫∫∫

U(1)

zizℓzjzkρij,kℓ dzi dzj dzk dzk

=











ρij,kℓ, if (i, ℓ) = (j, k)

ρij,kℓ, if (i, ℓ) = (k, j)

0, otherwise
,

where the first two cases follow simply from the fact that
zizℓzjzk = |zi|2|zℓ|2 = 1 if (i, ℓ) = (j, k) or (i, ℓ) = (k, j),
and the third case follows from invariance of the Haar measure
and the fact that

∫

U(1) zi dzi = 0.
Before proceeding, we note that Claim 1 implies in partic-

ular that Ψ(|v〉〈v|) = |v〉〈v| (recall that we are assuming that
|v〉 =∑n

j=1 λj |j〉 ⊗ |j〉), and Claim 2 implies that the matrix

n
∑

i,j=1

σii,jj |i〉〈i| ⊗ |j〉〈j|+
n
∑

i6=j=1

σij,ij |i〉〈j| ⊗ |i〉〈j|

has positive partial transpose. By computing the partial trans-
pose of this matrix, we thus see that every 2× 2 matrix of the
form

[

σii,jj σij,ij
σji,ji σjj,ii

]

must be positive semidefinite. We thus conclude that

|σij,ij | ≤
√
σii,jjσjj,ii ≤

1

2
(σii,jj + σjj,ii)

for all i 6= j. We define c :=
√

2|σij,ij |
σii,jj+σjj,ii

, which is thus a

real number between 0 and 1, and s := σij,ij/|σij,ij |, which is
the sign of σij,ij (recall that we are assuming σ is real-valued,
so σij,ij is a real number).

Now that we have established all of the properties of Ψ that
we need, we introduce one more channel that will be used
to finish the proof. This channel, which we denote by Ωσ :
Mn ⊗ Mn → Mn, depends on σ and is defined via the
following set of 1 + 2n(n− 1) Kraus operators:

E+ :=

n
∑

j=1

|j〉(〈j| ⊗ 〈j|)

Eij :=
c√
2
(|i〉 − s|j〉)(〈i| ⊗ 〈j|) for all 1 ≤ i 6= j ≤ n

Fij :=
√

1− c2|i〉(〈i| ⊗ 〈j|) for all 1 ≤ i 6= j ≤ n.

To see that Ωσ(|v〉〈v|) = |λ〉〈λ|, we compute

Ωσ(|v〉〈v|)
= E+|v〉〈v|E†

+ +
∑

i6=j

Eij |v〉〈v|E†
ij +

∑

i6=j

Fij |v〉〈v|F †
ij

=

n
∑

i,j=1

λiλj |i〉〈j|+ 0 + 0

= |λ〉〈λ|.

To see that Ωσ(Ψ(σ)) is incoherent, we verify that

Ωσ(Ψ(σ))

= E+Ψ(σ)E†
+ +

∑

i6=j

EijΨ(σ)E†
ij +

∑

i6=j

FijΨ(σ)F †
ij

=

n
∑

i,j=1

σij,ij |i〉〈j|+ (1 − c2)

n
∑

i6=j=1

σii,jj |i〉〈i|

+
c2

2

n
∑

i6=j=1

σii,jj(|i〉 − s|j〉)(〈i| − s〈j|)

=

n
∑

i=1



σii,ii + (c2 + (1− c2))
∑

j 6=i

σii,jj



 |i〉〈i|

+

n
∑

i=16=j

(

σij,ij −
sc2

2
(σii,jj + σjj,ii)

)

|i〉〈j|,

=

n
∑

i=1





n
∑

j=1

σii,jj



 |i〉〈i|,
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which is incoherent.
Finally, we must verify that Ωσ is a quantum channel. It is

completely positive by construction (any map defined in terms
of Kraus operators is), so we just need to verify that it is trace-
preserving (i.e., the fact that Ω†

σ(I) = I). To this end, we
compute

Ω†
σ(I) = E†

+E+ +
∑

i6=j

E†
ijEij +

∑

i6=j

F †
ijFij

=

n
∑

i=1

|i〉〈i| ⊗ |i〉〈i|

+(c2 + (1− c2))

n
∑

i6=j=1

|i〉〈i| ⊗ |j〉〈j|

= I.

We have thus shown that Ωσ(Ψ(σ)) is incoherent, and
Ωσ(Ψ(|v〉〈v|)) = Ωσ(|v〉〈v|) = |λ〉〈λ| for all pure states of
the form |v〉 =∑n

j=1 λj |j〉⊗ |j〉, so the channel Φ := Ωσ ◦Ψ
is the one described by the lemma. �

Proof of Theorem 3. We start by proving that Etr (|v〉〈v|) ≤
Ctr (|λ〉〈λ|). To this end, let δ∗ = diag(δ∗1 , . . . , δ

∗
n) ∈ I be

an incoherent state that attains the minimum in Ctr (|λ〉〈λ|):

Ctr (|λ〉〈λ|) = min
δ∈I

‖|λ〉〈λ| − δ‖tr = ‖|λ〉〈λ| − δ∗‖tr .

Then consider the separable state

σ∗ =

n
∑

i=1

δ∗i |i〉〈i| ⊗ |i〉〈i|.

A calculation then reveals that

Etr (|v〉〈v|)
= min

σ∈S
‖|v〉〈v| − σ‖tr

≤ ‖|v〉〈v| − σ∗‖tr

=

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

λiλj |i〉〈j| ⊗ |i〉〈j| −
n
∑

i=1

δ∗i |i〉〈i| ⊗ |i〉〈i|

∥

∥

∥

∥

∥

∥

tr

.

We recognize that the matrix on the far right above is ex-
actly the same as the matrix

n
∑

i,j=1

λiλj |i〉〈j| −
n
∑

i=1

δ∗i |i〉〈i| = ρ̃− δ∗,

but with some extra rows and columns of zeroes. Since those
rows and columns of zeroes do not affect the trace norm, it
follows that Etr (|v〉〈v|) ≤ ‖|λ〉〈λ| − δ∗‖tr = Ctr (|λ〉〈λ|),
as desired.

Next, we prove the inequality that Ctr (|λ〉〈λ|) ≤
Etr (|v〉〈v|) in a very similar manner. To this end, let σ∗ ∈ S
be a separable (and hence PPT) state that attains the minimum
in Etr (|v〉〈v|):

Etr (|v〉〈v|) = min
σ∈S

‖|v〉〈v| − σ‖tr = ‖|v〉〈v| − σ∗‖tr .

Note that we can assume without loss of generality that σ∗ has
all real entries, since

∥

∥|v〉〈v| − 1

2
(σ∗ + (σ∗)T )

∥

∥

tr
≤ ‖|v〉〈v| − σ∗‖tr

by the triangle inequality, and the separable state 1
2 (σ

∗ +

(σ∗)T ) has all real entries.
Then let Φ : Mn ⊗Mn → Mn be the channel described

by Lemma 2 and let δ∗ := Φ(σ∗) (which is an incoherent
state). Observe that

Ctr (|λ〉〈λ|) = min
δ∈I

‖|λ〉〈λ| − δ‖tr
≤ ‖|λ〉〈λ| − δ∗‖tr
= ‖Φ(|v〉〈v| − σ∗)‖tr
≤ ‖|v〉〈v| − σ∗‖tr
= Etr (|v〉〈v|),

where the final inequality comes from the fact that ‖Φ‖⋄ ≤ 1
for all quantum channels Φ, and thus Φ cannot increase the
trace norm. This completes the proof. �

The proof of one of the inequalities in Theorem 3 was quite
straightforward, while the other inequality required the use
of Lemma 2. The same technique can be used to prove that
other measures of entanglement and coherence coincide on
pure states as well. For example, for the robustness of en-

tanglement [8] RE , we could use this method to show that
RE(|v〉〈v|) = CR(|λ〉〈λ|) (however explicit formulas are al-
ready known for each of RE(|v〉〈v|) and CR(|λ〉〈λ|), so this
does not get us anything new).

However, we also note that Theorem 3 and Lemma 2 can
both be generalized slightly from pure states to real-valued
states that are maximally correlated [26]: states with the spe-
cial form ρ =

∑n

i,j=1 ρij |i〉〈j| ⊗ |i〉〈j|, which lets us show
that coherence measures and entanglement measures also co-
incide on this slightly wider class of states as well (rather than
just on pure states).

VI. VI. RELATIONSHIP BETWEEN THE ℓ1-NORM OF

COHERENCE AND THE RELATIVE ENTROPY OF

COHERENCE

Consider Proposition 5 of [16], which asserts that the ℓ1-
norm coherence of a pure state is never smaller than its rel-
ative entropy of coherence. This section is devoted to pro-
viding an alternate proof to this theorem. In particular, the
authors in [16] use the recursive property of the entropy func-
tion to show that Cℓ1 ≥ Cr for all pure states. Our proof,
on the other hand, relies on showing that a function remains
non-negative upon small perturbations of the components of
its input. Much detail is given, with the hope of better under-
standing this inequality.

Before proceeding, recall that the relative entropy of coher-
ence is defined in terms of the von Neumann entropy S(ρ) :=
−tr (ρ log2(ρ)). From now on, we will write log = log2 for
notational simplicity, since we deal with no other base.
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Theorem 4. Suppose {λi}ni=1 are such that
∑

i

λi = 1 and

λi ≥ 0 for every i. Then

−
∑

i

λi logλi ≤
(

∑

i

√

λi

)2

− 1.

Proof. In order to prove the above inequality, it suffices to
show that the function f(~λ) := (

∑

i

√
λi)

2 − 1 +
∑

i

λi logλi

is always non-negative for any probability vector ~λ.
Without loss of generality, we can assume all λi’s are

strictly positive. Otherwise, we just look at some smaller n.
Let’s consider the following perturbation:

f({λ1, · · · , λi−1, λi − ǫ, λi+1, · · · , λj−1, λj + ǫ, · · · , λn})
−f({λ1, · · · , λn})
=
(

∑

k 6=i,j

√

λk +
√

λi − ǫ+
√

λj + ǫ
)2

−
(

∑

k 6=i,j

√

λk +
√

λi +
√

λj
)2

+(λi − ǫ) log(λi − ǫ) + (λj + ǫ) log(λj + ǫ)

−λi logλi − λj logλj

=
(

2
∑

k 6=i,j

√

λk +
√

λi − ǫ+
√

λj + ǫ+
√

λi +
√

λj
)

×(
√

λi − ǫ+
√

λj + ǫ−
√

λi −
√

λj)

+λi log
(

1− ǫ

λi

)

+ λj log
(

1 +
ǫ

λj

)

+ǫ[log(λj + ǫ)− log(λi − ǫ)].

Recall that
√
1 + x = 1+ 1

2x− 1
8x

2+O(x3) and log (1 + x) =

x− x2

2 +O(x3), the above expression simplifies as



2
∑

k 6=i,j

√

λk +
√

λi
(

2− ǫ

2λi

)

+
√

λj
(

2 +
ǫ

2λj

)





×
(

−
√
λiǫ

2λi
+

√

λjǫ

2λj

)

+ ǫ(log λj − logλi) +O(ǫ2)

=

(

(

n
∑

k=1

√

λk
)

(

1
√

λj
− 1√

λi

)

+ (logλj − logλi)

)

ǫ

+O(ǫ2).

So, if
(

n
∑

k=1

√
λk
)

(

1√
λj

− 1√
λi

)

+ (log λj − logλi) < 0,

then the above perturbation will lead to a smaller value of f .
Thus, if we assume function f achieves its minimum value at
point (λ1, · · · , λn), if λi = 0 for some i, then we can look
at the same problem with n − 1 variables. So without loss of
generality, we can still assume all λi’s are strictly positive, we
must have

(

n
∑

k=1

√

λk
)

(

1
√

λj
− 1√

λi

)

+ (logλj − logλi) ≥ 0

for any 1 ≤ i, j ≤ n.
We can also consider the perturbation (λ1, · · · , λn) 7→

(λ1, · · · , λi−1, λi+ ǫ, λi+1, · · · , λj−1, λj − ǫ, λj+1, · · · , λn)
which will imply

(

n
∑

k=1

√

λk
)

(

1√
λi

− 1
√

λj

)

+ (logλi − logλj) ≥ 0

for any 1 ≤ i, j ≤ n.
By combining the above inequalities together, we will have

(

n
∑

k=1

√

λk
)

(

1
√

λj
− 1√

λi

)

+ (logλj − logλi) = 0

for any 1 ≤ i, j ≤ n.

It also implies that, log λj−log λi
1√
λj

− 1√
λi

= −
n
∑

k=1

√
λk for any 1 ≤

i 6= j ≤ n.
Note that, for any given 0 ≤ t ≤ 1, function gt(x) =

log x−log t
1√
x
− 1√

t

is a decreasing function for x ∈ (0, 1]. Hence,

if n ≥ 3 and there are at least two distinct λi and λi′ , let’s
choose j 6= i, i′, we must have gλj

(λi) 6= gλj
(λ′i). It’s a con-

tradiction. Thus, we must have n ≤ 2 or λ1 = λ2 = · · · = λn
in which case f(~λ) = n− 1 + log 1

n
= n− 1− logn, which

is always non-negative for n ∈ Z+. For the case n ≤ 2, we
have λ1 and λ2 = 1− λ1 satisfying the minimum condition:

(
√

λ1 +
√

1− λ1)(
1√
λ1

− 1√
1− λ1

)

+ log(λ1)− log(1− λ1) = 0

⇐⇒
√

1− λ1
λ1

−
√

λ1
1− λ1

+ log
λ1

1− λ1
= 0.

We also have

f({λ1, 1− λ1})
= (

√

λ1 +
√

1− λ1)
2 − 1 + λ1 logλ1 + (1− λ1) log(1− λ1)

= 2
√

λ1(1− λ1) + λ1 logλ1 + (1− λ1) log(1− λ1)

= 2
√

λ1(1− λ1) + log(1− λ1) + λ1(log λ1 − log(1− λ1))

= 2
√

λ1(1− λ1) + log(1− λ1)− λ1(

√

1− λ1
λ1

−
√

λ1
1− λ1

)

=

√

λ1
1− λ1

+ log(1 − λ1).

Let t =
√

λ1

1−λ1

, our aim is to show t − log(1 + t2) ≥ 0

under the assumption that 2 log t + 1
t
− t = 0. It is easy to

verify that it has three roots only: t1 = 0.215106, t2 = 1 and
t3 = 4.64886, and for all of them t − log(1 + t2) ≥ 0. The
result follows. �

Theorem 4 immediately implies the following result of
[16].

Corollary 2. For every pure state |x〉,

Cℓ1(|x〉〈x|) ≥ max{Cr(|x〉〈x|), 2Cr(|x〉〈x|) − 1}.
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Proof. Write |x〉 =
∑n

i=1

√
λi|i〉 for a given basis {|i〉}ni=1.

Then Cℓ1(|x〉〈x|) =
(
∑n

i=1

√
λi
)2 − 1. Recall that

the von Neumann entropy is zero for pure states, and so
Cr(|x〉〈x|) reduces to S(|x〉〈x|diag) = −

∑n

i=1 λi logλi. In
[16, Proposition 5], the authors prove that Cℓ1(|x〉〈x|) ≥
2Cr(|x〉〈x|) − 1. Theorem 4 above states that Cℓ1(|x〉〈x|) ≥
−∑n

i=1 λi log λi = Cr(|x〉〈x|). �

VII. VII. CONCLUSIONS AND DISCUSSION

In this work, we derived an explicit expression for the trace
distance of coherence of a pure state, as well as the closest
incoherent state to a given pure state with respect to the trace
distance. One natural question that arises from this work is
whether or not Theorem 1 can be used to show that the trace
distance of coherence is strongly monotonic under incoherent
quantum channels (and is thus a proper coherence measure),
at least when it is restricted to pure states. We also proved that
the states maximizing the trace distance of coherence are ex-
actly the maximally coherent states, which provides evidence
in favor of it being a proper coherence measure.

We gave an alternate proof to the recent theorem that the
ℓ1-norm of coherence is not smaller than the relative entropy
of coherence for pure states (Corollary 2). We note that it
has been conjectured that the same relationship between the
ℓ1-norm of coherence and the relative entropy of coherence
holds even for arbitrary mixed states. This conjecture is be-
yond the scope of our work; our perturbation techniques for
the case of pure states rely on the linearity of the first-order
term, which is no longer linear for the mixed state case. Per-

turbation techniques may still apply if we study higher-order
terms, however, more detailed calculation may be involved.

In a further attempt to analyze the trace measure of coher-
ence, we show that it is precisely the same quantity as the
analogous trace distance of entanglement when restricted to
pure states. In particular, this gives an efficient method of
computing the trace distance of entanglement for pure states,
and it was not obvious a priori that such a method even ex-
isted. More generally, we showed that many natural pairs of
coherence and entanglement measures share the exact same
formulas when restricted to pure states: the entanglement in
a pure state is equal to the coherence of its vector of Schmidt
coefficients, and this property generalizes slightly to the class
of real maximally correlated states.
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Appendix: Appendix:Some results for mixed states

We present some approximation result for mixed states that
might be useful for future study.

Proposition 3. Let A ∈ Dn, D ∈ I, and F = {F ∈ Mn :
D − F ∈ I. The following conditions are equivalent.

(a) ‖A−D‖tr = min{‖A− δ‖tr : δ ∈ I}.

(b) There is a Hermitian contraction H ∈ Mn such that

tr ((A − D)H) = ‖A − D‖tr and tr (FH) ≥ 0 for

every (extreme) element F in F .

Proof. By Proposition 1 and the remark after it, condition (a)
holds if and only if there is H in the dual norm ball of the
trace norm satisfying condition (b). �

We can obtain more information about the matrixH in con-
dition (b) of the above proposition using the spectral decom-
position of A − D =

∑p

j=1 µj |uj〉〈uj | −
∑q

j=1 νj |vj〉〈vj |,
where

µ1, . . . , µp, ν1, . . . , νq > 0.

Then

H =

p
∑

j=1

|uj〉〈uj | −
q
∑

j=1

|vj〉〈vj |+
n−p−q
∑

j=1

ξj |zj〉〈zj |

so that {|u1〉, . . . , |up〉, |v1〉, . . . , |vq〉, |z1〉, . . . , |zn−p−q〉} is
an orthonormal basis for Cn. Let U be the unitary matrix
whose columns are these basis vectors. Then

U †(A−D)U = X1 ⊕−X2 ⊕ 0n−p−q

for some nonnegative diagonal matrices X1 ∈ Mp, X2 ∈
Mq, and H will be of the form U †(Ip ⊕ −Iq ⊕ X3)U for
some Hermitian contraction X3 ∈ Mn−p−q .

In particular, if the best approximation element D ∈ I of
A is such that A − D is invertible, then p + q = n, and we

have a Hermitian unitary H = U †(Ip ⊕−Iq)U satisfying the
optimality condition. Suppose p + q < n and if F1, . . . , Fℓ

are the extreme points of F . Then we need to find a Hermitian
contraction X3 ∈ Mn−p−q such that −In−p−q ≤ X3 ≤
In−p−q (in the positive semidefinite ordering) and

trU †(Ip⊕−Iq⊕X3)UFj = αj+tr (X3Gj) ≥ 0, j = 1, . . . , ℓ,

where αj = tr (Ip ⊕ −Iq ⊕ 0n−p−q)U
†FjU and Gj is the

matrix obtained from U †FjU by removing its first p+ q rows
and columns. One may check the existence of X3 efficiently
by positive semidefinite programming.

Using a similar argument, we have the following.

Proposition 4. Let A ∈ Dn, D ∈ I and F = {F : D − F ∈
F}. Then the following are equivalent.

(a) ‖A−D‖ = min{‖A− δ‖ : δ ∈ I}.

(b) There is a Hermitian matrix H ∈ Mn with ‖H‖tr = 1
such that |tr ((A−D)H)| = ‖A−D‖ and tr (HF ) ≥ 0
for every (extreme) element in F .

Proof. By Proposition 1 and the remark after it, condition (a)
holds if and only if there is H with ‖H‖tr = 1 satisfying
|tr ((A − D)H)| = ‖A − D‖ and tr (HF ) ≥ 0 for every
(extreme) element in F . �

Again, one may get more information about the matrixH in
Proposition 4 (b) using the spectral decomposition of A−D.
Suppose λ1 and λn are the largest and smallest eigenvalue
of A − D with eigenprojections P1 and P2, respectively. If
‖A −D‖ = λ1 > |λn|, then H is a density matrix such that
P1 − H is positive semidefinite; if ‖A − D‖ = |λn| > λ1,
then −H is a density matrix such that P2 + H is positive
semidefinite; if ‖A−D‖ = λ1 = |λn|, thenH = rQ1− (1−
r)Q2 for some r ∈ [0, 1] and density matrices Q1, Q2 such
that P1 − Q1, P2 − Q2 are positive semidefinite. Again, one
can use positive semidefinite programming method to check
the existence of H satisfying trFH ≥ 0 for the finite set of
extreme points of the set F .


