This is the accepted manuscript made available via CHORUS. The article has been published as:

Engineering large Stark shifts for control of individual clock state qubits

A. C. Lee, J. Smith, P. Richerme, B. Neyenhuis, P. W. Hess, J. Zhang, and C. Monroe Phys. Rev. A 94, 042308 - Published 7 October 2016

DOI: 10.1103/PhysRevA.94.042308

I. INTRODUCTION

Trapped atomic ions have emerged as one of the most promising quantum information platforms [1, 2] due to their long coherence times [3, 4], high fidelity readout [5], and high fidelity single [6-8] and two qubit [7, 8] operations that are driven by external fields. Small scale quantum algorithms have even been demonstrated as the first steps toward the goal of a fault-tolerant quantum computer $[9,10]$. These same qualities also make atomic ions an excellent platform for quantum simulation [1113], leveraging the long lifetimes and low noise to study dynamics that are classically intractable due to their exponential scaling with system size.
The pervasive challenge facing all quantum information platforms is the undesired interaction of the qubit with environment. In trapped ions, one such coupling to the environment is the modulation of the qubit energy splitting by stray magnetic fields. This can be circumvented by using levels whose energy difference is insensitive to magnetic fields to first order, allowing for coherence times exceeding 10 minutes [3, 4]. Such "clockstate" qubits are an excellent starting point for faulttolerant quantum computation and quantum simulation [14]. For example, simulations of quantum magnetism have been performed with up to 18 spins [15] and with various entangling spin-spin Hamiltonians [16-23]. However, the use of clock-state qubits by definition does not easily allow the direct generation of certain classes of Hamiltonians that are equivalent to the modulation of qubit energy splittings [24]. In quantum computing, such control is also desirable for efficiently realizing universal logic gate families such as arbitrary rotations [25].
Here we propose and demonstrate the use of a fourthorder Stark shift to achieve fast, individually addressed, single-qubit rotations in a chain of ${ }^{171} \mathrm{Yb}^{+}$ions. We experimentally realize a 10 MHz shift on the qubit splitting

[^0]with only moderate amounts of laser power. We exploit this control in a quantum system of 10 trapped ion clockstate qubits by preparing arbitrary initial product states and applying an independent programmable disordered splitting on each lattice site in a quantum simulation, all demonstrated with low cross-talk.

II. FOURTH-ORDER STARK SHIFT THEORY

The studies reported here are performed on a linear chain of ${ }^{171} \mathrm{Yb}^{+}$ions, but can be generalized to any species of clock qubits. The ions are confined using a linear radiofrequency (rf) Paul trap and the qubit is encoded in the ${ }^{2} \mathrm{~S}_{1 / 2}\left|F=0, m_{f}=0\right\rangle$ and ${ }^{2} \mathrm{~S}_{1 / 2}\left|F=1, m_{f}=0\right\rangle$ hyperfine clock states, denoted as $|0,0\rangle$ and $|1,0\rangle$ respectively, which have an unshifted splitting of $\omega_{H F} / 2 \pi=12.642821 \mathrm{GHz}$.
We irradiate the ions using an optical frequency comb generated from a mode-locked laser with a center frequency detuned by Δ from the ${ }^{2} P_{1 / 2}$ manifold and by $\omega_{F}-\Delta$ from the ${ }^{2} P_{3 / 2}$ manifold. The laser bandwidth is much smaller than the fine structure splitting ω_{F} of the P states and also the detuning Δ. However, the laser bandwidth is much larger than the qubit splitting $\omega_{H F}$ so that the laser pulses directly drive stimulated Raman processes between the qubit states while not appreciably populating the excited P states [26]. We assume that the pulse area of each laser pulse is small and has only a modest effect on the atom, and that the intensity profile for each pulse is well approximated by a hyperbolic secant envelope [26]. Under these assumptions, the k th comb tooth at frequency $k \nu_{\text {rep }}$ from the optical carrier has a resonant $S \rightarrow P$ Rabi frequency [27],

$$
\begin{equation*}
g_{k}=g_{0} \sqrt{\pi \nu_{\text {rep }} \tau} \operatorname{sech}\left(2 \pi k \nu_{\text {rep }} \tau\right) \tag{1}
\end{equation*}
$$

where τ is laser pulse duration, $g_{0}^{2}=\gamma^{2} \bar{I} / 2 I_{0}, \bar{I}$ is the time-averaged intensity of the laser pulses, I_{0} is the saturation intensity of the transition, and γ is the spontaneous decay rate. Since $\sum_{k=-\infty}^{\infty} g_{k}^{2}=g_{0}^{2}$, and assuming the parameters specified above, the second-order Stark
${ }^{78}$ shift $E_{\alpha}^{(2)}$ of state $|\alpha\rangle$ due to the frequency comb can be 79 computed for an arbitrary polarization (taking $\hbar=1$) ${ }_{80}[26,28]$:

$$
\begin{align*}
E_{00}^{(2)} & =\frac{g_{0}^{2}}{12}\left(\frac{1}{\Delta}-\frac{2}{\omega_{F}-\Delta}\right) \tag{2}\\
E_{10}^{(2)} & =\frac{g_{0}^{2}}{12}\left(\frac{1}{\Delta+\omega_{H F}}-\frac{2}{\omega_{F}-\left(\Delta+\omega_{H F}\right)}\right) .
\end{align*}
$$

$$
\begin{align*}
\mathcal{H}= & \mathcal{H}_{0}+V \\
= & \delta|1,0\rangle\langle 1,0|+\Delta|e\rangle\langle e| \tag{3}\\
& +\frac{\Gamma^{0}}{2}|0,0\rangle\langle e|+\frac{\Gamma^{1}}{2}|1,0\rangle\langle e|+\text { h.c. }
\end{align*}
$$

117

 $\left.{ }_{118} \omega_{1}\right), \Gamma^{i}=g_{0} C\left(\hat{\epsilon}^{i}\right)$ is the resonant Rabi frequency from ${ }_{119}$ beam i with a dipole coupling matrix element $C\left(\hat{\epsilon}^{i}\right)$ for ${ }_{120}$ polarization $\hat{\epsilon}^{i}$. The fourth-order correction $E_{n}^{(4)}$ to the ${ }_{121}$ ground state energy levels, from perturbation theory, has

FIG. 1. Schematic representation of the electron energy levels of ${ }^{171} \mathrm{Yb}^{+}$. We encode the qubit in the ground state hyperfine clock states $|0,0\rangle$ and $|1,0\rangle$. When two phase-coherent colors of light are applied to the atom which have a beatnote approximately equal to the qubit splitting, there is an effective fourth-order differential light shift which can be much larger than the second-order differential Stark shift.
${ }_{22}$ the following form:

$$
\begin{align*}
E_{n}^{(4)}= & \sum_{j, l, m \neq n} \frac{V_{n, m} V_{m, l} V_{l, j} V_{j, n}}{E_{n, m} E_{n, l} E_{n, j}}-\frac{\left|V_{n, j}\right|^{2}}{E_{n, j}} \frac{\left|V_{n, m}\right|^{2}}{\left(E_{n, m}\right)^{2}} \tag{4}\\
& -2 V_{n, n} \frac{V_{n, m} V_{m, l} V_{l, n}}{\left(E_{n, l}\right)^{2} E_{n, m}}+V_{n, n}^{2} \frac{\left|V_{n, m}\right|^{2}}{\left(E_{n, m}\right)^{3}}
\end{align*}
$$

${ }_{123}$ Here j, l, m, and n each represent different energy levels, $V_{a, b}=\langle a| V|b\rangle, E_{a, b}=E_{a}^{(0)}-E_{b}^{(0)}$ is the unperturbed energy difference between the states $|a\rangle$ and $|b\rangle$. Applying this to the Hamiltonian above, the last two terms are zero ${ }_{27}$ since V has no diagonal terms leaving the fourth-order ${ }_{128}$ Stark shifts of the qubit levels,

$$
\begin{align*}
& E_{00}^{(4)}=-\frac{|\Omega|^{2}}{4 \delta} \\
& E_{10}^{(4)}=\frac{|\Omega|^{2}}{4 \delta} \tag{5}
\end{align*}
$$

129 130 1 13 132 The above derivation is valid for any three level sys${ }_{133}$ tem. We now include the more complete case in ${ }^{171} \mathrm{Yb}^{+}$ ${ }_{134}$ where all excited states with major contributions, namely 135 the ${ }^{2} P_{1 / 2}$ and ${ }^{2} P_{3 / 2}$ manifolds, are considered. Calculat${ }_{136}$ ing the fourth-order Stark shift on any state $|n\rangle$ reduces

FIG. 2. Diagram of optics that image 355 nm light onto ion chain with $<3 \mu \mathrm{~m}$ spot size, giving rise to controllable and individual-addressed Stark shifts on the qubits. This optical system utilizes a NA 0.23 objective lens for state detection of the ions at 369 nm . Since the AOD is not imaged, deflections at the AOD correspond to displacement at the ions. This maps RF drive frequency to ion position, enabling control of the horizontal position of the beam. 145 states $|a\rangle \neq|n\rangle$,

$$
\begin{equation*}
E_{n}^{(4)}=\sum_{a \neq n} \frac{\Omega_{n, a}^{2}}{4 \delta_{n, a}} \tag{6}
\end{equation*}
$$

${ }_{146}$ where $\Omega_{n, a}$ is the two-photon Rabi frequency between ${ }_{17}|n\rangle$ and $|a\rangle, \delta_{n, a}=\omega_{a}-\left(\omega_{0}-\omega_{1}\right)$, and $\omega_{a}=E_{a}^{(0)}-$ ${ }_{148} E_{n}^{(0)}$. Computing all of the relevant Rabi frequencies $\Omega_{n, a}$ ${ }_{149}$ under the same assumptions as in Eq. 2 [28], we find

$$
\begin{align*}
\Omega_{00,10} & =\left(\epsilon_{-}^{0} \epsilon_{-}^{1 *}-\epsilon_{+}^{0} \epsilon_{+}^{1 *}\right) \Omega_{0} \\
\Omega_{00,1-1} & =-\left(\epsilon_{-}^{0} \epsilon_{\pi}^{1 *}+\epsilon_{\pi}^{0} \epsilon_{+}^{1 *}\right) \Omega_{0} \\
\Omega_{00,11} & =\left(\epsilon_{+}^{0} \epsilon_{\pi}^{1 *}+\epsilon_{\pi}^{0} \epsilon_{-}^{1 *}\right) \Omega_{0} \tag{7}\\
\Omega_{10,1-1} & =\left(\epsilon_{-}^{0} \epsilon_{\pi}^{1 *}+\epsilon_{\pi}^{0} \epsilon_{+}^{1 *}\right) \Omega_{0} \\
\Omega_{10,11} & =\left(\epsilon_{+}^{0} \epsilon_{\pi}^{1 *}+\epsilon_{\pi}^{0} \epsilon_{-}^{1 *}\right) \Omega_{0} .
\end{align*}
$$ Eq. 7, we see that if $\hat{\epsilon}=\hat{\sigma}_{ \pm}$, the Rabi frequency $\Omega_{00,10}$ maximized and equal to Ω_{0}. If instead $\hat{\epsilon}=\hat{\beta} \equiv$ ${ }_{153} 1 / 2 \hat{\sigma}_{-}+1 / \sqrt{2} \hat{\pi}+1 / 2 \hat{\sigma}_{+}$, which corresponds to a cir154 cularly polarized input beam, then $\Omega_{00,10}=0$ while all 155 other Rabi frequencies are equal to $\Omega_{0} / \sqrt{2}$. It should be 156 noted that a linear polarization from a single beam can${ }_{157}$ not drive Raman transitions between any of the ${ }^{171} \mathrm{Yb}^{+}$ 158 hyperfine ground states. These polarizations are the two 159 which provide the largest Rabi frequencies, while all oth${ }_{160}$ ers have smaller effective Rabi rates, so we dwell on these 161 two cases. An important note is that in the case of $\hat{\epsilon}=\hat{\beta}$,

${ }_{162} E_{10}^{(4)}=0$ because the shifts from $|1,1\rangle$ and $|1,-1\rangle$ are 163 equal and cancel each other.
164 We now compute the differential fourth-order Stark 165 shift on the qubit states $|1,0\rangle$ and $|0,0\rangle, \delta \omega^{(4)}=E_{10}^{(4)}-$ ${ }_{166} E_{00}^{(4)}$,

$$
\delta \omega^{(4)}= \begin{cases}\frac{\Omega_{0}^{2}}{2 \delta_{00,10}} & \text { when } \hat{\epsilon}=\hat{\sigma}_{ \pm} \tag{8}\\ \frac{\Omega_{0}^{2}}{8}\left(\frac{1}{\delta_{00,11}}+\frac{1}{\delta_{00,1-1}}\right) & \text { when } \hat{\epsilon}=\hat{\beta}\end{cases}
$$

${ }_{167}$ Finally, we generalize to incorporate all possible pairs 168 of comb teeth. The two-photon Rabi frequency for any 169 two comb teeth k_{0} and k_{1}, where $k_{1}-k_{0}=l$ is $\Omega_{n}=$ ${ }_{170} g_{k_{0}} g_{k_{0}+l} / 2 \Delta \approx \Omega_{0} \operatorname{sech}\left(\pi l \nu_{\text {rep }} \tau\right)$ [27]. Let j be defined 171 such that $\left|\omega_{a}-2 \pi j \nu_{r e p}\right|$ is minimized, assuming that it ${ }_{172}$ is nonzero. If we now plug this into Eq. 6 summing over 173 all comb teeth, we find

$$
\begin{align*}
E_{n}^{(4)} & =\sum_{a \neq n} \frac{\Omega_{n, a}^{2}}{4} \sum_{k=-\infty}^{\infty} \frac{\operatorname{sech}^{2}\left((j+k) \pi \nu_{r e p} \tau\right)}{\delta_{n, a}-k\left(2 \pi \nu_{r e p}\right)} \\
& =\sum_{a \neq n} \mathcal{C}_{n, a} \frac{\Omega_{n, a}^{2}}{4 \delta_{n, a}} \tag{9}
\end{align*}
$$

174 where $\delta_{n, a}=\omega_{a}-j\left(2 \pi \nu_{\text {rep }}\right)$, and

$$
\begin{equation*}
\mathcal{C}_{n, a}=\sum_{k=-\infty}^{\infty} \frac{\operatorname{sech}^{2}\left((j+k) \pi \nu_{r e p} \tau\right)}{1-k\left(2 \pi \nu_{r e p}\right) / \delta_{n, a}} \tag{10}
\end{equation*}
$$

175 Because the denominator in Eq. 10 grows rapidly with ${ }_{176} k$, only the closest few beatnotes are important, and as ${ }_{177}$ long as $2 \pi \nu_{\text {rep }} \gg \omega_{Z e e}$, then $E_{10}^{(4)}$ remains zero for $\hat{\epsilon}=\hat{\beta}$. ${ }_{178}$ The differential fourth-order Stark shift then becomes

$$
\delta \omega^{(4)}= \begin{cases}\mathcal{C}_{00,10} \frac{\Omega_{0}^{2}}{2 \delta_{00,10}} & \text { when } \hat{\epsilon}=\hat{\sigma}_{ \pm} \tag{11}\\ \frac{\Omega_{0}^{2}}{8}\left(\frac{\mathcal{C}_{00,11}}{\delta_{00,11}}+\frac{\mathcal{C}_{00,1-1}}{\delta_{00,1-1}}\right) & \text { when } \hat{\epsilon}=\hat{\beta}\end{cases}
$$

79 Assuming the same parameters as with the second-order ${ }_{180}$ Stark shift (20 mW of time-averaged power focused down

$$
181
$$

3

4
to a $3 \mu \mathrm{~m}$ waist) and with $\nu_{\text {rep }}=120 \mathrm{MHz}$ and $\tau=14$ ps, we find that the fourth-order shift is

$$
\delta \omega^{(4)} / 2 \pi= \begin{cases}247 \mathrm{kHz} & \text { when } \hat{\epsilon}=\hat{\sigma}_{ \pm} \tag{12}\\ 132 \mathrm{kHz} & \text { when } \hat{\epsilon}=\hat{\beta}\end{cases}
$$

applied shift below 10 Hz . Since the differential fourthorder shift can easily be made large as shown above, it is a practical means to control a large number of qubits.

The optical access of our current vacuum chamber restricts the polarization of the Stark shifting beam since the magnetic field is orthogonal to all viewports, prohibiting the use of pure $\sigma_{ \pm}$light. However, as discussed earlier, the differential fourth-order Stark shift has two possible polarizations with large shifts for a single beam: the first is pure $\sigma_{ \pm}$, the second is $\hat{\epsilon}=\hat{\beta} \equiv$ $1 / 2 \hat{\sigma}_{-}+1 / \sqrt{2} \hat{\pi}+1 / 2 \hat{\sigma}_{+}$. We use the $\hat{\beta}$ polarization which slightly reduces the maximum shifts applicable, but does not require pure $\sigma_{ \pm}$.
The small spot size required to individually apply a shift to each qubit is achieved by using the imaging objective designed for qubit state readout. Since the cycling transition of ${ }^{171} \mathrm{Yb}^{+}$is 369 nm and the center wavelength of the modelocked laser is 355 nm , we use a Semrock dichroic beam combiner (LP02-355RU-25) for separating the 355 nm laser from the resonant light at 369 nm (Fig. 2). Guided by simulations of the optical system in the commercial ray-tracing software, Zemax [30], we focus the 355 nm light down to a less than $3 \mu \mathrm{~m}$ horizontal waist using an objective lens with a 0.23 numerical aperture.

In order to address each ion in a chain of up to 10 sites, we use an acousto-optical defelector (AOD, Brimrose CQD-225-150-355). Since the AOD is not imaged, it maps the rf drive frequency to ion position and the rf power of that drive frequency to the applied intensity. The rf control is implemented using an arbitrary waveform generator (AWG, Agilent M8109A), because

III. EXPERIMENTAL SETUP

The laser used to generate the fourth-order Stark shift is a mode-locked, tripled, ND: YVO_{4} [29], at 355 nm with a repetition rate of $\nu_{\text {rep }}=120 \mathrm{MHz}$, a maximum average power of $\bar{P}=4 \mathrm{~W}$, and a pulse duration of $\tau \approx 14 \mathrm{ps}$, giving a bandwidth of about 70 GHz . These parameters are well-suited for the ${ }^{171} \mathrm{Yb}^{+}$system since the laser bandwidth covers the qubit splitting but does not give rise to appreciable spontaneous emission from the excited states]. 2
with the AWG. The AWG also allows the application of many frequencies to the AOD, which will Stark shift multiple ions simultaneously. Additionally, the AWG gives arbitrary amplitude control of each frequency, providing time-dependent amplitude modulation of the four photon Stark shift.

Due to the quadratic dependence of the differential fourth-order Stark shift on intensity, when we divide the optical power across N ions, each ion's fourth-order Stark shift is diminished by a factor N^{2},

$$
\begin{equation*}
\delta \omega^{(4)}(\text { ion })=\max \left(\delta \omega^{(4)}\right) / N^{2} \tag{13}
\end{equation*}
$$

${ }_{251}$ In order to recover a linear dependence, we "raster", or ${ }^{52}$ rapidly sweep, the beam position from site to site across the chain. If this rastering occurs much faster than the dynamics of the system, then the effective fourth-order 5 shift can be safely time-averaged, yielding

$$
\begin{equation*}
\delta \omega^{(4)}(\text { ion })=\max \left(\delta \omega^{(4)}\right) \frac{m t_{0}}{T} \tag{14}
\end{equation*}
$$

where m is the number of raster cycles in the total elapsed time T and t_{0} is the time the light is applied to each ion in
a single cycle. In order for the raster to be fast enough to justify averaging the Stark shift, the length of each raster cycle, $N t_{0}$, must be small compared to the total elapsed time $T=N m t_{0}$. We assume that any time where the beam is not hitting any of the ions during a raster cycle is small compared compared to the raster cycle duration and can be neglected. Substituting into Eq. 14,

$$
\begin{equation*}
\delta \omega^{(4)}(\text { ion })=\max \left(\delta \omega^{(4)}\right) \frac{1}{N} \tag{15}
\end{equation*}
$$

which recovers a linear dependence on the system size. In Fig. 3, we show a diagram of an example raster sequence. The limitation on this technique is how small t_{0} can be made. In our case, t_{0} is limited by the rise time of the AOD, which is approximately 50 ns , which is still fast compared to $N / \delta \omega^{(4)}$ and very fast when compared to a mechanical deflector rise time.

IV. EXPERIMENTAL DEMONSTRATION

Using Ramsey spectroscopy [31], we measure the total Stark shift on the qubit splitting from the applied light. A quadratic dependence on the intensity distinguishes the fourth-order Stark shift from the typical linear dependence of the second-order AC Stark shift (Eq. 11). By measuring the total shift as a function of applied time-averaged optical power, the data in Fig. 4a demonstrates that the observed shift is consistent with the \bar{I}^{2} dependence of the fourth-order Stark shift.

By translating the ion through the beam, we measure the horizontal beam waist by fitting the resulting Stark shift to the square of a Gaussian distribution (Fig. 4b):

$$
\begin{equation*}
\delta \omega^{(4)}(\Delta x)=\delta \omega^{(4)}(0)\left(e^{-2 \Delta x^{2} / \sigma^{2}}\right)^{2} \tag{16}
\end{equation*}
$$

We measure the horizontal waist to be $\sigma=2.68 \pm 0.03$ $\mu \mathrm{m}$. This small waist allows for independent control of qubits. In Fig. 5a, we show how qubit 5 can be driven in a ten ion system with only minimal crosstalk of approximately 2% on the adjacent spins (ions 4 and 6). In this configuration, the ions are separated by 2.76 and $2.64 \mu \mathrm{~m}$ respectively. By increasing the distance between ions, we can decrease the crosstalk on adjacent spins. For example, in a system of two spins separated by $7 \mu \mathrm{~m}$, we individually drive each ion with the cross-talk $\leq 2 \times 10^{-5}$ over a time $t=30 \times 2 \pi / \delta \omega^{(4)}$.

As indicated above, the rf drive frequency maps to position at the ion chain, while the small spot size allows for individual control of the ions. In Fig. 5b, we show this mapping in a chain of ten ions by scanning the drive frequency of the AOD while fixing the rf power and time. The difference in the applied fourth-order Stark shift of each ion is due to the rf bandwidth of the AOD, since the diffraction efficiency is lower at the extremes of the bandwidth. In the current optical setup, a change of 10 MHz to the drive frequency corresponds to a displacement of approximately $3.4 \mu \mathrm{~m}$ along the ion chain.

FIG. 4. Measured fourth-order Stark shift as a function of optical power with fit residuals (a). We fit the measured light shift as a function of optical power to Eq. 11 for $\hat{\epsilon}=\hat{\beta}$ taking into account an astigmatism of the imaging optics resulting in the vertical waist being ~ 1.5 times the horizontal and find very good agreement showing that the light shift arises from the fourth-order Stark shift. Measurement of the beam waist at the ion with fit residuals (b). By translating the ion through the beam with a fixed applied optical power of 40 mW , we extract the horizontal optical waist at the ion. We found this to be $2.68 \mu \mathrm{~m}$.

This control enables the preparation of arbitrary, highfidelity product states when the individual addressing beam is used in conjunction with global qubit operations from the Raman beams. In Fig. 6, we illustrate a pulse sequence used to generate a product state. This method, effectively a Ramsey sequence, is used to prepare a spatially-alternating spin state, which is the most difficult state to produce since it is the most susceptible to crosstalk. We observe a fidelity of $87 \pm 1 \%$ for the desired state, which includes all state preparation and measurement (SPAM) errors. This fidelity is consistent with a 2% error of the π-pulses on five of the ions arising from the intensity noise and the small inter-ion crosstalk

FIG. 5. Observed crosstalk of beam applied to one ion (a). By applying light to only ion 5 in a chain of 10 , we measure the crosstalk on the nearest neighbors, ion 4 and 6 , to be only 2%, which is consistent with our measured horizontal beam waist and the ion separation. Solid line is a fit to an exponential decaying oscillation with decay parameter $\tau=133 \mu \mathrm{~s}$, which is a 2% error per π-pulse. Individual ion signal as the beam is swept over a chain of ten ions (b). By scanning the AOD drive frequency for a fixed power and duration, we map the fourth-order Stark shift as a function of drive frequency. This corresponds to a displacement of beam position at the ion chain. The effective scanning range of the AOD is approximately $30 \mu \mathrm{~m}$.
of the individual addressing beam, and some residual infidelity stemming from the off-resonant coupling of the ground states and the ion detection error.
Two features of the experimental noise should be noted. The first stems from the quadratic nature of the fourth-order light shift. This quadratic dependence on the intensity doubles the fractional uncertainty in the light shift relative to small amplitude noise in the laser intensity. The second arises from the off-resonant coupling of levels in the ground state manifold. This off-resonant coupling leads to effective Rabi dynamics that cause unwanted qubit evolution with probability $\sim \frac{1}{2} \Omega_{n, a}^{2} /\left(\delta_{n, a}^{2}+\Omega_{n, a}^{2}\right)$, which can be viewed as qubit state decoherence or leakage to other states. In the experiment, light shifts of order 5 MHz are expected to cause such unwanted evolution with a probability of about 20%. For this reason, during coherent operations we restrict the shift size to $<300 \mathrm{kHz}$, where this probability is less

FIG. 6. Pulse sequence for preparing a string of 10 ions in a staggered spin configuration. All 10 ions are prepared in $|0,0\rangle$ and then a global $\pi / 2$ pulse is applied. Depending on the state being prepared, some number of the ions have a π phase shift applied, creating the desired configuration. A final global $\pi / 2$ pulse projects the configuration back into qubit basis, completing the effective Ramsey sequence.
than 2.5%.

V. CONCLUSION

The freedom and control afforded by an individually addressed, Stark-shifting beam opens many possibilities that were previously inaccessible to clock state qubits. One such new application is that we can now apply site dependent transverse magnetic fields to an interacting Ising spin system [32]. Since the strength of each field is controlled by the rf amplitude from the AWG, we are able to quickly generate hundreds of different random instances of individual ion fields in a reproducible way. Furthermore, this technique enables dynamic individual control, enabling quantum simulations of interesting systems such as loops with non-zero magnetic flux [33].

The primary limitation in the current apparatus is the intensity applied to each ion, especially those on the edge of the chain due to the bandwidth of the AOD. The max${ }_{55}$ imum intensity on each ion is simply

$$
\begin{equation*}
I_{i o n}=\frac{2 \pi \bar{P}(\mathrm{NA})^{2}}{\lambda^{2}} D E_{\nu} \tag{17}
\end{equation*}
$$

36 where \bar{P} is the time-averaged power into the AOD, NA is the objective numerical aperture, λ is the wavelength of the light, $D E_{\nu}$ is the diffraction efficiency of the AOD at the drive frequency, ν, corresponding to the ion position. By enlarging the NA of the objective lens, the intensity applied to each ion would greatly increase while simultaneously lowering the inter-ion crosstalk. Further, improving the diffraction efficiency and bandwidth of the

AOD will allow more ions to be addressed. By imple- 370 quency comb. We show that by focusing this light, it can menting changes on both of these elements, we should be able to address $20+$ ions without difficulty.
In this work we demonstrate that a large Stark shift can be generated on a clock state qubit with modest laser powers via a fourth-order light shift using an optical fre-
be used to rotate individual qubits with low crosstalk, 32 create arbitrary product states, and generate site-specific terms in a model Hamiltonian. These new tools are im374 portant additions to the quantum toolbox and may be 5 integral to future developments in quantum information.
[1] R. Blatt and D. Wineland, Nature 453, 1008 (2008).
[2] C. Monroe and J. Kim, Science 339, 1164 (2013).
[3] J. J. Bollinger, D. J. Heinzen, W. M. Itano, S Gilbert, and D. J. Wineland, IEEE Transactions on Instrumentation and Measurement 40, 126 (1991).
[4] P. Fisk, M. Sellars, M. Lawn, and C. Coles, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 44, 344 (1997).
[5] R. Noek, G. Vrijsen, D. Gaultney, E. Mount, T. Kim, P. Maunz, and J. Kim, Opt. Lett. 38, 4735 (2013).
[6] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill, D. Leibfried, and D. J. Wineland, ${ }^{33}$ Phys. Rev. A 84, 030303(R) (2011).
[7] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, ${ }^{43}$ and D. M. Lucas, "Laser-driven quantum logic gates with ${ }_{435}$ precision beyond the fault-tolerant threshold," (2015), 436 arXiv:1512.04600.
[8] J. P. Gaebler, T. R. Tan, Y. W. Y. Lin, R. Bowler, A. C. ${ }^{43}$ Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, "High-fidelity universal gate set for ${ }^{9} b e^{+}$ ion qubits," (2016), arXiv:1604.00032.
[9] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Science 351, 1068 (2016).
[10] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, "Demonstration of a programmable quantum computer module," (2016), arXiv:1603.04512.
[11] K. Molmer and A. Sorensen, Phys. Rev. Lett. 82, 1835 (1999).
[12] K. Kim, S. Korenblit, R. Islam, E. E. Edwards, M.-S. Chang, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. J. Wang, J. K. Freericks, and C. Monroe, New J. Physics 13, 105003 (2011).
[13] R. Blatt and C. F. Roos, Nature Physics 8, 277 (2012).
[14] Nature Physics, Insight Issue: "Quantum Simulation" 8, 264 (2012).
[15] C. Senko, J. Smith, P. Richerme, A. Lee, W. C. Campbell, and C. Monroe, Science 345, 430 (2014).
[16] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. J. Wang, J. K. Freericks, and C. Monroe, Nature Communications 2, 377 (2011).
[17] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, Commun 6, (2015).
[24] P. J. Lee, K.-A. Brickman, L. Deslauriers, P. C. Haljan, L.-M. Duan, and C. Monroe, Journal of Optics B 7, S371 (2005).
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, New York, NY, USA, 2011).
[26] W. C. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. Lett. 105, 090502 (2010).
[27] J. Mizrahi, B. Neyenhuis, K. G. Johnson, W. C. Campbell, C. Senko, D. Hayes, and C. Monroe, Applied Physics B 114, 45 (2013).
[28] D. J. Wineland, M. Barrett, J. Britton, J. Chiaverini, B. DeMarco, W. M. Itano, B. Jelenkovic, C. Langer, D. Leibfried, V. Meyer, T. Rosenband, and T. Schaetz, Philosophical Transactions of the Royal Society A 361, 1349 (2003).
[29] Coherent, "Paladin compact 355-4000," (2008).
[30] Zemax LLC, "Zemax (version 13.2)," (2013).
[31] N. F. Ramsey, Rev. Mod. Phys. 62, 541 (1990).
[32] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat Phys advance online publication, (2016).
[33] T. Graß, C. Muschik, A. Celi, R. W. Chhajlany, and M. Lewenstein, Phys. Rev. A 91, 063612 (2015).

[^0]: * Present address: Lockheed Martin Corporation, Littleton, CO 80127, USA

