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We investigate the possibility of distinguishing among different causal relations starting from a
limited set of marginals. Our main tool is the notion of adhesivity, that is, the extension of prob-
ability or entropies defined only on subsets of variables, which provides additional independence
constraints among them. Our results provide a criterion for recognizing which causal structures are
indistinguishable when only limited marginal information is accessible. Furthermore, the existence
of such extensions greatly simplify the characterization of a marginal scenario, a result that facili-
tates the derivation of new Bell inequalities both in the probabilistic and entropic frameworks, and
the identification of marginal scenarios where classical, quantum, and postquantum probabilities

coincide.

I. INTRODUCTION

Deciding global properties of a given object from par-
tial information is a problem often encountered in the
most diverse fields. Just to cite a few examples, one
can mention: knowledge integration of expert systems
[1], database theory [2], causal discovery [3, 4] and the
phenomenon of quantum nonlocality [5, 6]. More for-
mally, in all such applications we are facing the so-
called marginal problem: deciding whether a given set
of marginal probability distributions for some random
variables arises from a joint distribution of all these
variables. Naturally, extensions to the quantum realm
are also known: the quantum marginal problem [7] asks
whether marginal density operators describing physical
systems have a global extension, a fundamental ques-
tion in quantum information with the most diverse ap-
plications [8, 9].

The reasons for our partial/marginal knowledge of
a given system will intrinsically depend on the context
and may have a variety of fundamental or practical rea-
sons. For instance, in quantum mechanics incompatible
observables cannot be perfectly and jointly measured.
In turn, artificial intelligence systems gather informa-
tion from several sources, each providing partial (typi-
cally overlapping) information about the global system
[10].

In this paper, we will be mainly interested in the
marginal problem arising in causal discovery [3, 4]
where the aim is to decide, based on empirical observa-
tions, which underlying causal structures can explain
our data. In particular, we provide a general result
connecting the limited information available, i.e., the
marginals, and the set of causal structures that can be
distinguished on the basis of such information.

Importantly, causal discovery includes the test of lo-
cal hidden variable (LHV) models that play a funda-
mental role in the foundations of quantum mechanics,
in particular in Bell’s theorem [5] and its practical ap-

plications in the processing of information [6]. Not sur-
prisingly, given the importance and wide breadth of ap-
plications of the marginal problem within causal infer-
ence [3, 4] and related fields [11-14], several approaches
have been formulated in order to solve it. In the follow-
ing, we briefly describe some of the leading approaches.

In the absence of hidden variables —that is, all vari-
ables composing a given causal structure are empiri-
cally available— causal discovery can be faithfully per-
formed based on the set of conditional independencies
(CIs) implied by the model under test [3, 4]. How-
ever, causal models with hidden variables imply highly
non-trivial constraints on the level of the observed dis-
tributions [15-18], constituting still a very active field
of research [19—22]. In fact, from the causal perspec-
tive, Bell’s theorem can be understood as a particular
class of a causal discovery problem, where the underly-
ing causal assumptions are those of local causality and
measurement independence [23, 24]. Furthermore, as
realized by Pitowsky [25, 26], the set of probability dis-
tributions compatible with such causal assumptions de-
fines a convex set, more precisely a polytope, which
facets are exactly the famous Bell inequalities.

The problem with this probabilistic approach, the
most used in the study of Bell nonlocality, is that its
useful linear convexity property (allowing the deriva-
tion of Bell inequalities via efficient linear programs)
does not generalize to more complicated causal struc-
tures [18]. In the general case, one has to resort to alge-
braic geometry tools [27] that, at least in principle, are
able to solve the marginal problem for arbitrary causal
structures [16]. However, in practice, because of its high
computational complexity, its use in causal inference is
restricted to very few cases of interest [18, 20]. Thus,
alternative approaches have also been pursued.

Instead of looking at the constraints imposed on the
level of probabilities, Braunstein and Caves [28] asked
what are the LHV constraints on the level of the Shan-
non entropies of these probabilities, which directly lead



to the concept of entropic Bell inequalities. Apart from
its fundamental relevance from a information-theoretic
point of view [29—35], the entropic approach stands as
a meaningful alternative for the fact that it provides a
much more convenient route for the study of complex
causal network beyond LHV models [36—38] and for
extensions of causal discovery to the case of quantum
causal structures [39—44].

The entropic approach to the marginal problem and
causal discovery has received growing attention [45-
56], but still suffers from two main drawbacks. The
first stands from a computational complexity issue. The
region of compatible entropies characterizing a given
causal structure form a convex set, thus enourmously
simplying the problem as compared to the highly non-
trivial non-convex sets appearing in the algebraic ge-
ometry approach. In spite of that, the derivation of en-
tropic Bell inequalities mostly rely on the elimination
of variables from a system of linear inequalities via the
so-called Fourier-Motzkin elimination algorithim [57]
that has a double-exponential computational complex-
ity, which limits its use to very few cases of interest.
The second issue arises from the fact that this approach
relies on an outer approximation of the region defining
valid entropies for a collection of variables [58]. Finding
better approximations to the entropy cone is a very ac-
tive field of research in both classical [58] and quantum
information theory [59, 60], but to our knowledge very
scarce results [43] are known about the implications of
it for marginal problems, that is, the projection of the
entropy cone on the subspace defined by the empiri-
cally observable variables.

Within this context, the goal of this paper is to pro-
pose a new way for characterizing the correlations com-
patible with a given causal structure. With that aim, we
work out the consequences of the the so-called adhesiv-
ity property [61-63] in the context of marginal scenar-
ios, and what are its implications for the distinguisha-
bility between generic causal structures. Furthermore,
by applying the general algorithm to particular cases of
interest, we show two by-product advantages of our ap-
proach: i) it provides a faster computational algorithm
and ii) in some cases provides a better approximation
to the true marginal set of correlations characterizing a
given causal model.

II. SUMMARY OF THE RESULTS

Given the amount of preliminary notions needed to
understand our main results and the length of the as-
sociated sections, it is convenient to first give an in-
formal summary of such results. The main problem
we address is the possibility of distinguishing differ-
ent causal structures associated with a set of random

variables starting from limited information, i.e., limited
marginals of their probability distribution. In Sect. IV,
using the notion of adhesivity we identify which causal
structures are always consistent with a given marginal
scenario (Th. 2). These causal structures are defined as
Markov random fields, starting from a graph-theoretic
procedure (triangulation) applied to the marginal sce-
nario (hyper)graph.

This result is then used in Sec. VI to prove the main
theorem (Th. 4) on the relation between causal struc-
tures and marginal scenarios. In simple terms, Th. 4
identifies which causal structures can be falsified, i.e.,
proven to be inconsistent with a given set of marginals.
This identification is done on the basis of the inde-
pendence relations associated with a causal structure
and the corresponding Markov random fields associ-
ated with the marginal scenario.

An immediate application of these results is in
the characterization of which causal structures and
marginals scenarios can lead to a different set of al-
lowed correlations depending on the classical, quantum
or even post-quantum nature of the underlying pro-
cess; an important step in the generalization of Bell’s
theorem to more complex cases [41, 44] and in the un-
derstanding of quantum correlations via informational
principles such as information causality [29]. For in-
stance, as a consequence of (Th. 2) it follows that if
the marginal scenario corresponds to an acyclic hyper-
graph, every probability distribution is compatible with
a classical description, thus precluding the possibility of
observing quantum nonlocality in such cases. A similar
conclusion holds for scenarios satisfying the condition
in case i) of Th. 4.

In addition, Th. 2 is also used to improve the charac-
terization and approximation of entropy cones and cor-
relation polytopes associated with a marginal scenario,
under no assumption of a causal structure (Obs. 1),
thus facilitating the derivation of new Bell inequalities.
Th. 4 also takes into account these methods and ex-
plains when they can be applied to causal structures.

The paper is organized as follows. In Sect. I1I, we pro-
vide a detailed survey of all concepts and tools required
for the understanding of the paper. More precisely, in
Sect. III A, we describe hypergraphs and their proper-
ties; in 111 B, we have a brief account of causal structures;
in III C, we introduce the notion of a marginal scenario
and finally in Sects. III D and III E, we review the tools
provided by correlation polytopes and entropic cones,
respectively. In Sect. IV, we start describing some of
the original results in this paper, namely, which causal
relations are always consistent with a given marginal
scenario. In Sect. V, we show how the notion of adhe-
sivity can be used to compute the Bell inequalities of
a given marginal scenario using the associated minimal
hypergraph, which in some cases can greatly reduce the



computational complexity of the problem. In Sect. VI,
we prove general results concerning the indistinguisha-
bility of causal structures while in Sect. VII, we put our
general approach to analyze a few cases of interest. In
Sect. VIII, we summarize our findings and discuss in-
teresting future directions of research.

III. PRELIMINARY NOTIONS
A. Graphs and hypergraphs

A hypergraph H = (N, €) is defined by a finite set
of nodes V' = {1,...,n} and a set of (hyper)edges cor-
responding to subsets of \V, i.e,, & C 2V, A graph G is
a special case of an hypergraph where edges have car-
dinality 2, ie., G = (N, &), with |E| =2 forall E € €£.
A graph can also be directed, i.e., have directed edges
corresponding to ordered pairs (i,j) € £, denoted by an
arrow from i to j. In the following, by graph we will al-
ways mean a undirected graph, unless stated otherwise.
See Fig. 1 for examples of graphs, directed graphs, hy-
pergraphs, and additional notions discussed below.

Since we will be interested only in hypergraphs with-
out isolated nodes, we will assume that A’ = UgcgE,
when not stated otherwise, and we will sometimes de-
note the hypergraph simply by the set of edges £.

Paths, cycles, and acyclicity are fundamental notions
in graph theory. A path is a sequence of distinct nodes
Vo, ..., Uy (except possibly the first and last) connected
by edges (v, vky1) k = 0,...,n, and a closed path or
a loop is a path with first and last node coinciding,
ie, vop = v,. For directed graphs, the definition is
analogous with (vg, vx, 1) representing a directed edge.
Acyclic graphs, also called tree graphs, are graphs not con-
taining loops. A graph is connected if, for every pair of
nodes, there is a path connecting them.

A clique is a set of nodes vy, . . ., v, pairwise connected
by an edge, i.e. (vl-,v]-) e&foralli,j=1,...,ni#]j.
Given a graph G, we can construct a hypergraph from
it, called the clique hypergraph HS, with the same nodes
and hyperedges in Hcgl corresponding to cliques in G.
Similarly, a hypergraph H = (N, £) can be transformed
into a graph by constructing the 2-section [H],: we con-
nect by edges in G all nodes that are connected by at
least one hyperedge in H. Notice that given a hyper-
graph H, the clique graph of its 2-section will have, in
general, extra hyperedges with respect to H (cf. Fig. 2).

A hypergraph H = (N, &) is a partial hypergraph of
H' = (N, &) if for any E € & there exist E' € £ such
that E C E’. Equivalently, we will stay that 1 extends,
or is an extension of, H (cf. Fig. 2).

Given two disjoint subsets of nodes A, B they are said
to be separated by a subset C if for each paira € A,b € B,
all the paths from a to b pass through C, i.e., if we re-
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FIG. 1. Examples of graphs and hypergraphs. (a) A tree
graph 7 where {B,A,D} is a path. (b) A graph G where
{A,C,B, A} isaloop and {A,B,C} and {A, C, D} are cliques.
B and D are separated by {A, C}. (c) A directed graph where
{A,C, B, A} is not a directed path, because direction of (A, B)
is not respected. This graph does not contain loops i.e. it is a
directed acyclic graph (DAG). B and D are as well separated
by {A,C}, but {C} is a minimal separator. (d) A hypergraph
H where nodes B and D are separated by {A, C}.

move C, A and B are no longer connected. In addition,
C is called a minimal separator if C\ {v;} is no longer
a separator for any v; € C.

An important notion is also that of friangulated, or
chordal graphs, namely, graphs for which every cycle
v, ..., 0, of length n > 4, contains a chord, i.e., an edge
connecting (v;,v;4»). Given any graph, G, additional
edges can be added such that the obtained graph, G ! is
triangulated, and we will refer to G’ as the triangulation
of G, see, e.g., Fig. 5 (b),(c).

For hypergraphs, the generalization of the notions of
acyclicity and tree is not straightforward and several
definition have been proposed (cf. Ref. [64]). For rea-
sons that will be clear in Sect. IV, here we will focus on
the notion of a-acyclicity, developed in the framework
of database theory, which we will simply call acyclic-
ity. There are several equivalent characterizations of
this property (cf. Refs. [64, 65]), but we will focus on
three of them: a characterization via the so-called Gra-
ham algorithm, one via the running intersection property
of hyperedges, and the characterization as a clique hy-
pergraph of a chordal graph.

Graham algorithm is defined as follows. Given a hy-
pergraph described by hyperedges £ = {Ey,...,E,},
apply the following operations whenever they are pos-
sible

a) Delete a node i if it appears in exactly one hyper-
edge.

b) Delete a hyperedge E if E C E'.
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FIG. 2. Example of graphs and hypergraphs. (a) A cyclic
hypergraph H. (b) A 2-section graph G = [#] of the hyper-
graph. (c) A clique hypergraph H’ of G. Notice that H' # H.
In fact, H’ is an extension of H.

Acyclic hypergraphs are those for which Graham algo-
rithm returns the empty set. Given a hypergraph #, its
reduced hypergraph is the hypergraph obtained by apply-
ing only operation b) of the Graham algorithm.

A hypergraph has the running intersection property
if there exists an ordering of the edges, Eq, ..., E, such
that

S;:=EN(EfU...UE; 1) CE]‘, withj <i. (1)

In addition, for a connected and reduced hypergraph,
the set {S;} corresponds to the set of minimal separa-
tors of the graph, i.e., S; separates R; := E;\S; from
(E1U...UE; 1)\S;. It can be proven that the running
intersection property is equivalent to the empty set out-
put for the Graham algorithm, so it can be used as an
alternative definition of an acyclic hypergraph (see, e.g.,
[65]).

The third equivalent property is defined in terms of
graphs: a hypergraph is acyclic iff its hyperedges corre-
spond to the set of cliques of a triangulated graph (see
e.g., Ref. [65]).

In order to clarify the above notions, it is instruc-
tive to apply them to the simple example depicted in
Fig. 2. For instance, we can apply the Graham al-
gorithm to the hypergraph in Fig. 2 (a). By apply-
ing operation (a), we remove the nodes A,D,F and
we are left with the edges {{B,C},{B,E},{C,E}}. At
this point the algorithm stops, because we cannot re-
move any edge via operation (b), or any other node
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with operation (a). The hypergraph # is thus not
acyclic. We can apply the same procedure to H': by
removing the nodes A,D,F and we are left with the
edges {{B,C,E}, {B,C},{B,E},{C,E}}. We can then
continue and remove the edges {B,C},{B,E},{C,E}
via operation (b), and finally the nodes B,E,C con-
nected by a single edge {B,C,E}. The hypergraph
H' is thus acyclic. Equivalently, one can see that the
graph G, obtained as the 2-section [H], = [H']; has
as cliques exactly the hyperedges of ', but not those
of H. Finally, for the running intersection property of
H', we can choose the ordering E; = {B,C,E}, and
for Ey, E3, E4 any ordering of the remaining edges. It is
clear that any intersection of edges is contained in Ej.
One can also straightforwardly check that H does not
have the running intersection property. Similarly, one
can easily check the property of separators of the sets
Si=EN(E1U...UE;_1),i=2,3,4, for the hypergraph
H'.

B. Causal structures

For a set of random variables Xj,..., X, some ad-
ditional logical/causal constraints may apply. Usually,
these constraints correspond to nonlinear constraints
for probabilities (e.g., factorization properties) and to
linear constraints for entropies (e.g., vanishing of the
mutual information). Two common examples are given
below:

o Deterministic dependence: The variable X; is said
to be a deterministic function of X; if their
joint probability distribution satisfy P(x;, xj) =
O, F( x,,)P(xj), where the deterministic dependence
is given by x; = F(x;). Such type of constraints are
usually present in network coding [58]. While not
strictly necessary, deterministic constraints also
play an important role in the derivation of Bell
inequalities [66].

o Conditional or unconditional independence: The vari-
able X; is said to be independent of the vari-
able X;, if the joint probability distribution sat-
isfy P(x;,x;) = P(x;)P(x;). Similarly, variable X;
is said to be conditionally independent (CI) of X;
given X, if P(x;, xj,xx) = P(x;[xx) P(xj[xx) P(x),
that is, Xj screens off the correlations between the
two other variables. We will denote the two situa-
tions as (X; L X;) and (X; L X;|X}), respectively.

Upper-case letters (e.g., X) denote the random vari-
ables, and lower-case letters (e.g., x) the specific value
they assume.

As we will see next, conditional and unconditional
independence play a crucial role in the study of
Bayesian networks and Markov random fields [65], this



is why we will focus on them in the remaining of the
paper.

1. Bayesian networks

A Bayesian network (BN) is a probabilistic model for
which conditional dependencies can be represented via
a DAG. More precisely, the probability distribution fac-
torizes as

P(x1,...,xn) = [ [ P(xi|Pa;), (2)
i=1

where Pa; denotes the parents of the node i, i.e., the
nodes with arrows pointing at i. The above factoriza-
tion of the probability distribution gives rise to the local
Markov property

(X; L Nd;|Pa;), (3)

namely that X; is independent of its nondescendants Nd;,
i.e., nodes reachable from X; via a directed path, given
its parents.

X Y Z X Y VA
[ >@ >0 @< ® >0
(@) (b)

X Y A
® >@< ®
(c)

FIG. 3. Examples of different Bayesian networks. (a) A DAG
representing a Markov chain X — Y — Z implying the CI
(X L Z|Y). (b) A DAG where the variable Y is a common
parent of X and Z, once more implying the CI (X L Z|Y). (c)
A DAG where the variables X and Z have a common child Y.
In this case (X L Z), but (X £ Z[|Y).

More generally, one has the set of conditional inde-
pendence relations

Z(9) = {(Xa L Xp[Xc) [ dsepg (A : B|C)},  (4)

where dsepg (A : B|C) refers to the d-separation prop-
erties of nodes in A and B with respect to nodes in C,
namely that every path from a € A to b € B, or vice
versa, is blocked by a node in C. The path is said to be
blocked if it contains one of the following: x — ¢ — v,
Or X <~ ¢ <y, or x = z < y, for x,y,z,c in the path,
¢ € C,z ¢ C and no descendant of z is in C (cf. Ref. [3]).

Bayesian networks are of particular relevance to for-
malize causal relations. Within this context, such causal
models have been called causal Bayesian networks [3],
as opposed to traditional Bayesian networks that for-
malize conditional independence relations without hav-
ing necessarily a causal interpretation. To exemplify,
consider the three DAGs shown in Fig. 3. DAGs (a)
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and (b) clearly imply a different set of causal relations
between variables X, Y and Z: in both cases the correla-
tions between X and Z are mediated via Y but in (a) X
is a parent of Y while in (b) the reverse is true. In spite
of their clear causal differences, both causal models im-
ply the same set of CIs, namely that (X L Z|Y). That
is, every observable probability distribution p(x,y,z)
compatible with (a) is also compatible with (b), thus
both models are indistinguishable from observations
alone [67]. The DAG (c) in Fig. 3 can nonetheless be
distinguished from (a) and (b), since it implies that
(X L Z]Y) and the only CI is given by the indepen-
dence constraint (X L Z).

2. Markov random fields

Similarly to Bayesian networks, Markov random
fields (MRF) correspond to probabilistic models for
which conditional dependencies can be represented by
a graph G. In this case, the graph is undirected and it
may contain cycles. More precisely, independence rela-
tions are given by the global Markov property

(Xa L Xp|Xc) (5)

if every path from a node in A to a node in B passes
through a node in C, i.e., if C is a separator for A and B
in G, a fact denoted as sep; (A : B|C)}. We will denote
the corresponding set of independence relations as

Z(9) = {(Xa L Xp[Xc) | sepg(A: B|C)}  (6)

As opposed to Bayesian networs (cf. Eq. (2)), MRFs
do not admit a unique factorization of the probability
distribution. However, for the special case of a triangu-
lated graph, denoting with Cy,...,Cy the set of maxi-
mal cliques with the running intersection property and
S;i:=CiN(C1U...UCj_q), as in Eq. (1), one can write

k
P(Xl,..-,xn):HP(xcf)‘ (7)

—_
!
—~
=
n
~—

Bayesian networks can be described also via MRF, via
the so called moral graph (cf. Ref. [65]), however this
comes at the price of losing some of the original inde-
pendence constraints described by the DAG.

C. Marginal scenarios

In many relevant situations, one may have only par-
tial information of the distribution of the variables. This
may due to practical limitations in collecting data, e.g.,
latent variables which cannot be measured, or funda-
mental limitation, e.g., the impossibility of performing



FIG. 4. Hypergraph of the marginal scenario associated with
a Bell-CHSH experiment. The observed probabilities corre-
spond to the marginal for {Ay, By}, for x,y = 1,2.

a joint measurement of incompatible quantum observ-
ables. This is common in Bell and noncontextuality
experiments [6, 68], where one has access only to a
limited set of joint probability distributions. Also in
purely classical contexts the role of partial information
can hardly be overemphasized [3, 13]. For instance, in
the so called instrumentality tests modeling random-
ized experiments [3, 11], the effects from a drug in the
recovery of patients is allowed to depend on some un-
observed factors that are not under experimental con-
trol (social or economical background, etc).

For this reason, we introduce the the notion of
marginal scenario. Given a set of random variables
X = {Xy,..., Xy}, a marginal scenario is a collection of
subsets M = {Ml,...,MM/”}, M; C X of them repre-
senting variables that can be jointly measured, i.e., for
each M;, we have access to a probability distribution
Pyg, (xp;)- Moreover, if a set of variables are jointly mea-
surable, we require that the same holds for any subset,
ie, M e Mand M' C Mimply M’ € M. Equivalently,
one can take only the maximal subsets S € M.

A marginal scenario can be naturally considered as
an hypergraph, with M the set of hyperedges and U; M;
the set of nodes. We will adopt the maximal subsets
convention above and assume that S € M are only
maximal subsets, i.e., the hypergraph is reduced. We
will call such a hypergraph the marginal scenario hyper-
graph, or simply marginal scenario when it is clear we
are referring to the hypergraph.

It is again instructive to consider a simple example
to fix the above notions. A standard example is given
by a Bell experiment [5], in particular by the Clauser-
Horne-Shimony-Holt (CHSH) scenario [69]. Two par-
ties, Alice and Bob, perform measurements on their
part of a shared quantum system. They can perform
one of two measurements, labelled as A, A, for Alice
and By, B, for Bob. The observed probabilities will then
amount to the marginals for { Ay, B, }. The correspond-
ing marginal scenario hypergraph is depicted in Fig. 4.

D. Correlation polytopes and non-local correlations

In quantum information, one of the applications of
the concept of a marginal scenario is exactly in the
study of Bell’s theorem and quantum nonlocality [5, 6].
The simplest Bell scenario is given by two distant (ide-
ally space-like separated) parties, Alice and Bob, that at
each round of their experiment receive particles pro-
duced by a common source. Upon receiving their
shares of the physical system, they measure a given ob-
servable of it recording the measurement outcome. The
measurements choices by Alice and Bob (that are as-
sumed to be independent of how the system has been
prepared) are labeled by the variables X and Y while
their outcomes are given by A and B, respectively. Un-
der the assumption of local realism, every observable
probability distribution that can be obtained in such
experiment can be decomposed as the so called local
hidden variable (LHV) model

p(ax,by) = p(a,blx,y) ZP

where the variable A stands for a full description of the
source producing the particles and any other mecha-
nism that might affect the measurement outcomes.

As realized by Pitowski [25], the set of probability
distributions compatible with the LHV model form a
convex set of correlations, the so called correlation poly-
tope. This polytope is characterized by finitely many
extremal points, exactly those representing determin-
istic functions in the LHV decomposition (8). Equiv-
alently, this polytope is characterized by finitely many
linear inequalities, the non-trivial ones being exactly the
Bell inequalities.

Different methods to characterize such correlation
polytopes are available. Here, we will describe a partic-
ular method obtained via Fine’s theorem [66] and that
plays a fundamental role in the derivation of entropic
Bell inequalities as we will see in Sect. III E.

Fine’s theorem shows that the existence of a LHV
model of the form (8) is equivalent to the existence of
a joint probability distribution p(ay,...,am, by, ..., bm)
that marginalizes to the observed distribution p(ay, by)
with x,y =1,...,m. The existence of well defined joint
distribution over all variables implies that such distri-
bution must respect some constraints, namely, positiv-
ity and normalization. That is, p(ay,...,am, b1, ..., bm)
must lie inside a simplex polytope [70]. From this ge-
ometric perspective, the correlation polytope is noth-
ing else than the projection of the simplex polytope —
characterizing the joint distribution— to a subspace of it
that is given by the marginal scenario in question, that
is, a projection to the subspace spanned by the observ-
able components p(ay,by) with x,y = 1,...,m. Such a
projection can be obtained by eliminating, from the cor-
responding system of linear inequalities describing the

(alx, A)p(bly, A), (8)



simplex, all terms that correspond to non-observables
probabilities. This can be achieved, for example, via a
standard algorithm known as Fourier-Motzkin elimina-
tion [57]. Once removed the redundant inequalities, the
remaining set gives the facets of the correlations poly-
tope, that is, tight Bell inequalities.

Unfortunately, such a nice linear convex picture
does not hold for more complicated causal structures
[19, 21, 39, 71] that now require computationally ex-
pensive and highly intractable methods from algebraic
geometry [16] in order to deal with the non-linear con-
straints arising from such models. As mentioned before
and explained in more details in the next section, this
is one of the reasons why the entropic approach has
become a more viable option in the study of complex
causal structures. In short, polynomial constraints on
the level of probabilities are turned into simpler linear
relations in terms of entropies.

E. Entropic cone

Given a collection of n discrete random variables
X1, ..., Xy with an associated joint probability distribu-
tion P(xq,...,x,), and denoting with Xs the random
vector (X;)es, for any subset S C [n] := {1,...,n}, the
Shannon entropy H : 2"/ — R is defined as

H(S):= H(Xs) = —)_P(xs)log, P(xs).  (9)

Xs

The above entropies can be arranged in a vector
h= (nH(®),H(X1),...,H(X1,X2),...,H(Xl,...,Xn))
€ R?". The region

o] = {h € R?" [h = (H(S))gsc|n for some entropy H},

(10)
where ~ denotes the closure in R?", is known to be
a convex cone, also called the entropy cone and it has
been studied extensively in information theory [58]. A
tight and explicit description, however, has not yet been
found for n > 3, but only some outer approximations
of Frn] via polyhedral cones, i.e., cones described by a
finite system of linear inequalities Ax > b, where A is
a m x n real matrix and b a m-dimensional real vector.
The most famous outer approximation to the entropic
cone is the so-called Shannon cone Iy, defined by

h([n]\{i}) < h([n]), (112)

h(S)+h(SU{ij}) <h(SU{i}) +h(SU{j}), (11b)

h(®) =0, (110)

foralli,j € [n],i# j,and S C [n]\ {i,j}. Thatis, the

Shannon cone associated with n variables is described

by 2"~2(%) + n inequalities plus one equality constraint
(normalization).
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The above is the minimal set of inequalities that im-
plies monotonicity of entropy, i.e., H(A|B) > 0, and
the submodularity (or strong subadditivity), i.e., I(A :
B|C) := H(A,C)+ H(B,C) — H(A,B,C) —H(C) > 0,
for any disjoint subsets A, B, C C [n] (cf. Ref. [58]).

Inequalities in Eq. (11) are known as Shannon-type in-
equalities in information theory or polymatroidal axioms
in combinatorial optimization [58]. Given a finite set N
and real-valued function f : 2N — R, the pair (N, f)
is called a polymatroid if f satisfies Egs. (11) above for
[1] = Nand S, {i,j} CN.

Geometrically, the entropy cone I'y4 associated with
the marginal scenario M corresponds to the projection
of the entropic cone onto the subspace of the corre-
sponding variables. Similarly to what happens to the
projection of a simplex polytope into a correlation poly-
tope, for a polyhedral cone, such a projection can be
obtained by eliminating, from the corresponding sys-
tem of linear inequalities, all terms that correspond to
non-observables terms. After removing redundant in-
equalities, the remaining set gives facets of the entropic
cone in the observable subspace.

Conditional independence constraints arising from
BN or MRE, ie., of the form (X4 1 Xp|Xc), cor-
responds to linear constraints on the vector of en-
tropies, i.e. hyperplanes defined by the equation
I(A:B|C) =0. Linear constraints from causal struc-
tures not only reduce the dimension of the problem,
but as well, when applied to polymatriods, reduce the
number of axioms needed to describe the constrained
cone. For instance, it was shown in Ref. [72], that if
I(A : B|C) = 0, with A, B, C disjoint sets of variables,
then from the set of polymatroid axioms in Eq. (11), the
following inequalities are redundant

I(A:E|BC) >0, (12)
I(B: E|AC) >0, (13)

where E € [n] \ {A,B} NC. Hence, in this case one
can generate a compact representation of polymatroid
axioms [72].

IV. ADHESIVITY AND INDEPENDENCE
CONSTRAINTS ASSOCIATED WITH A MARGINAL
SCENARIO

The main result of this section is that when one
has only partial information about (i.e.,, only some
marginals of) a probability distribution, such marginals
are always consistent with a global distribution where
additional independence constraints are imposed. We
start introducing the notion of adhesivity and restat-
ing in our language a theorem by Vorob’ev [61] (Th. 1),
then we connect this result with the notion of marginal
scenario to prove which independence constraints are
always compatible with a set of marginals (Th. 2).



On the one hand, such additional constraints simplify
the characterization of the entropy cone and correla-
tion polytope associated with the marginal scenario. On
the other hand, this result allows us to identify which
causal structures can be distinguished when we have
access only to some restricted set of marginals.

The notion of adhesivity, albeit in different terms,
has first been introduced for probability distributions
[61, 62] and subsequently extended to entropies [63]. In
the framework of Bell and noncontextuality inequali-
ties, similar ideas have been investigated by several au-
thors [36, 49, 73—75], but never in full generality.

A. Adhesivity of probabilities

Adhesivity can be explained in simple terms as fol-
lows. Given two sets of variables X; = (X;);er and
Xj = (Xj)jej and two probability distributions p(x;)
and p’(xj) such that p and p’ coincide on the variables
Xinj, we can define a probability distribution on I U |
as

0 lf P(xfﬂ]) = 0,
P(xy)) = { p(xn)p' (x7)
p(xiny)

otherwise. (14)

One can easily check that this is a valid probability dis-
tribution on the set of variables in [ U J.

The construction in Eq. (14) implies that every
two marginals of a probability distribution are al-
ways consistent with a probability distribution con-
ditionally independent on their intersection, i.e.,
(Xpyg L Xpu | Xing) , since p(xp)p'(x))/ p(xiny) =
p(xr|xiny)p’ (x7|x17) p(x1n7). We call such an extension
of p and p’ an adhesive extension.

Similarly, two polymatroid (N,h) and (M, g) coin-
ciding on NN M are said to adhere or to have an ad-
hesive extension if there exist a polymatroid (N U M, f)
extending h, g, i.e., f(I) = h(I) for I C N, f(J) = h(])
for | € M, which is also modular on N and M, that
is, f(NUM) = f(N)+ f(M) — f(NNM) or, equiva-
lently, such that N and M are conditionally indepen-
dent on the intersection N N M. As a consequence of the
construction in Eq. (14) for probabilities, restrictions of
entropies have an adhesive extension, whereas general
polymatroids do not (cf. Ref. [63]).

This observation is at the basis of the derivation of
several non-Shannon information inequalities, i.e., infor-
mation inequalities that do not follow from Eqgs. (11) (cf.
Ref. [63]). Starting from the first non-Shannon inequal-
ity derived by Zhang and Yeung [76], infinitely many
inequalities have been derived by Matus$ [77], and sev-
eral others authors investigated the problem [78-80].

B. Marginal scenarios admitting a global extension

From the adhesivity property of probability distri-
butions, one can extend probabilities defined on a
marginal scenario to a joint probability distribution over
all variables, which satisfies extra conditional indepen-
dence constraints that depends on the marginal sce-
nario.

The theorem below has first been stated without
proof by Vorob’ev in Ref. [61], and subsequently explic-
itly proven in Ref. [62], but also independently derived
by other authors [81-83]. The original proof, however,
used a quite different terminology. It is helpful to re-
state it in the language of hypergraphs, and to present
a sketch of it, in order to understand the role of the
adhesivity property.

Theorem 1. [Vorob’ev] A set of probabilities associated
with an acyclic marginal scenario hypergraph M admits a
global extension to a single probability distribution. More-
over, the extension can be chosen as a MRF described by the
2-section graph [M];.

Sketch of the proof— Let M be the marginal scenario
hypergraph, by definition, it is a reduced hypergraph.
If M is acyclic, we can find an ordering My, ..., My
of its hyperedges respecting the running intersection
property. The construction of a global probability dis-
tribution can then be obtained by induction on 7, the
number of hyperedges. For n = 1, P(M;) is a valid
probability distribution (to simplify the notation, we
will use P(M;) as a shorthand for P(xy,), etc). We
then apply the inductive hypothesis. Let us assume
that for n —1 P(M; U...UM,_1) is a valid proba-
bility distribution extending the marginals P(M;) for
1 <i < n-—1. We want to extend it to P(M; U
...UM, _1 UM,). By the running intersection prop-
erty, My N (M1 U...UM, 1) =S, C M; for j < n.
Denoting by Py, the marginal probability distribution
on M;, we define R, := M,\ S, and

P(Rn|sn) = m/

defining 0/0 to be zero as in Eq. (14), and for the joint
distribution

P(MiU...UM,_1UM,) := P(R,|Sn)

P(MyU...UM;_1\S1|Sn)P(Sn).

(15)

(16)

By the adhesivity property, this is a valid probability
distribution, and its marginals coincide with P(M;) for
1 <i < n, soitis an extension of the marginal scenario.
In addition, it is modular over the intersection, i.e.

(Rn 1 (Ml U...u Mnfl)\sn|sn) (17)

Since M is connected and reduced, the set of minimal
separators precisely corresponds to the set S, above.



The modularities of the constructed distribution are
thus precisely those implied by the MRF defined by
M]o. O

In the next section, we will see the application of this
result to general marginal scenario, i.e., not necessarily
acyclic.

C. Maximal set of independence conditions associated
with a marginal scenario

We will now see the implications of Vorob’ev’s theo-
rem on general marginal scenarios. More precisely, we
will discuss which independence conditions, arising as
MRF conditions, are consistent with a given marginal
scenario and how to compute maximal sets of such con-
ditions.

The main result is the following.

Theorem 2. Given a joint probability distribution P on
n variables X1, ..., Xy, and a marginal scenario M, the
marginals Py, for M; € M are consistent with a probability
distribution arising from a MIRF associated with the 2-section
graph [T, where T is an acyclic hypergraph extending M.

Proof— An acyclic hypergraph 7 extending M can
always be found. It is the clique hypergraph of a tri-
angulation of the graph [M],. The marginals in M are
consistent with the marginals in 7 extracted from the
same probability distribution P. Since 7 is an acyclic
hypergraph, we can apply the construction in Th. 1 to
obtain a MRF with independence relations described by
the 2-section graph [7],. O

For any given marginal scenario M, an acyclic hy-
pergraph extending it corresponds to the clique hyper-
graph of the triangulation of the 2-section [M],, hence
the maximum set of independence constraint will cor-
respond to the triangulation with the minimum num-
ber of edges, also called the minimum triangulation. The
problem of computing the minimum triangulation is
known to be NP-hard [84]. However, it is much easier to
calculate a minimal triangulation, namely, a triangulation
such that by removing any edge the obtained graph is
no longer a chordal graph. Notice that such a minimal
triangulation is not necessarily the one with the small-
est number of edges among all possible triangulations.
Several algorithms have been developed to compute a
minimal triangulation, which run in O(n + m) steps, n
being the number of nodes and m the number of edges
of a graph [84].

In the following, we will adopt the above terminol-
ogy also for hypergraphs, namely, we will speak about
the minimum acyclic hypergraph extending M, in the
sense of the minimum triangulation, and a minimal hy-
pergraph extending M, in the sense of a minimal trian-
gulation.

V. OPTIMAL CHARACTERIZATION OF THE
MARGINAL SCENARIO FOR PROBABILITIES AND
ENTROPIES

As a consequence of the above results, the charac-
terization of a given marginal scenario M, in terms of
inequalities for the probability vector or entropy vector,
can be computed from those associated with a minimal
acyclic hypergraph extending M. This approach offers
advantages both for the probabilistic and the entropic
approach. Here, we will give a brief summary of the
two results, but later we mostly discuss the entropic
approach.

A similar approach, albeit with a different terminol-
ogy, and using a less general version of Th. 2, has been
already used in relation with Bell and noncontextual-
ity inequalities. For instance, the decomposition of the
CHSH scenario in Fig. 5 was used in the proof of the ne-
cessity and sufficiency of Bell inequalities for the exis-
tence of a LHV model by Fine [66]. Special cases of Th. 2
have been discussed in Refs. [49, 73, 74], and their ap-
plication to more general scenarios have been discussed
for probabilities [75, 85] and for entropies [36].

A. Triangulation

The first step is to compute a minimal acyclic hyper-
graph 7 extending the marginal scenario M. It can be
done as follows:

a1) Compute the 2-section graph [M],.
a2) Compute its minimal triangulation.
a3) Take as 7 the corresponding clique hypergraph.

In the following, we discuss the above procedure
with a simple example. Consider the hypergraph with
edges {{Ax, By}}xy=12 associated with a Bell experi-
ment and discussed in Sect. IIIC. One starts with the
marginal scenario hypergraph M of Fig. 5 (a) and com-
putes its 2-section [M], [cf. Fig. 5 (b)]. In this simple
case [M]; can be triangulated by adding an extra edge
connecting A; and A; [cf. Fig. 5 (c)], or equivalently,
connecting By and B;. Finally, one takes as 7 the clique
hypergraph of the triangulation [cf. Fig. 5 (d)]. The
corresponding MRF independence condition consistent
with the marginals in M is (B; L By|A1, Ap).

B. Probabilities

Once 7 has been obtained, the probabilistic inequal-
ities describing the marginals consistent with the given
scenario M (describing a correlation polytope, see Sec.
I D) can be computed as follows:



@7

(c) triangulation

FIG. 5. Procedure to compute the minimal hypergraph 7
extending the marginal scenario M for the CHSH scenario.
(a) Initial marginal scenario hypergraph corresponding to the
CHSH case. (b) 2-section [M]; of the original hypergraph. (c)
Triangulation of the 2-section graph. (d) Clique hypergraph
T of the triangulation. 7 extends M.

b1) Write down the simplex inequalities associated
with each maximal clique C;, i.e., the inequali-
ties corresponding to a classical probability on |C;|
variables (cf. Ref. [26] and Sect. IIID for further
details on the simplex polytope).

b2) Project such inequalities onto the initial marginal
scenario M (for instance, applying the Fourier-
Motzkin elimination, see Sects. III E and I D).

C. Entropies

A similar approach can be applied for deriving en-
tropic inequalities, but it only gives an outer approxi-
mation if an exact characterization of the entropy cone
is not know (cf. Eq. (19) below).

An alternative approach can be summarized as fol-
lows:

c1) Compute the independence constraints Z(7") as-
sociated with the MRF graph [Tz,

c2) Consider the Shannon cone on 7 variables I, with
the reduced set of polymatroid axioms associated

with Z(T).

c3) Use the linear constraints associated with Z(7),
i.e., the vanishing of some conditional mutual in-
formation terms, for a partial projection of the full
cone onto the marginal scenario. Then, complete
the projection with the usual Fourier-Motzkin al-
gorithm.

It is clear that the above approach can be adapted to
any type of linear constraints, including those arising
from some assumed causal structure, i.e., a BN or MRF,
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and those arising as deterministic dependence condi-
tions, corresponding to the vanishing of some condi-
tional entropy, discussed in Sect. III B.

In the next section, we will see in details what
approaches are possible for characterizing entropic
marginals.

D. Outer approximations of the entropy cone

The adhesivity property for restrictions of an entropic
polymatroid can be used to obtain outer approxima-
tions of the entropy cone as follows.

Theorem 3. Let M be the marginal scenario hypergraph
and T an acyclic hypergraph extending it. Let us denote with
7 the entropy cone intersected with the linear constraints
defined by Z(T). Then, we have that

Tpg (T7) = T (T7) (18)

where 114 denotes the projection onto the coordinates asso-
ciated with the marginal scenario M.

Proof — The result, basically, follows from the fact
that the marginals in M are consistent with the lin-
ear constraints Z(7). Given an entropic polymatroid,
it is sufficient to take the associated probability dis-
tribution and apply Th. 2. The obtained distribution
will be consistent with the MRF [T ],, hence, the associ-
ated marginal entropies will be identical to the original
ones and inside ITy(T%) by construction. The same
construction can be combined with the limits necessary
(see, e.g., Refs. [58, 86]) to obtain the closure of entropic
polymatroid I'*. [J

Inspired by the notion of adhesivity, one can also con-
sider the outer approximation

Ir CTg, (19)
k

where Cj are the hyperedges of 7 and each I'¢_is the
entropic cone associated with the variables in Cj em-
bedded in the space of all variables, i.e., the remaining
variables are constrained. However, except for the case
of entropic polymatroid arising as a restriction of a sin-
gle polymatroid and few other cases (cf. Ref. [63]), it
is not clear whether entropic polymatroid are adhesive,
hence, the inclusion in Eq. (19) may be strict.

Now if we take an outer approximation I' (e.g., the
Shannon cone) of the entropic cone I'*, and intersect it
with the linear subspaces defined by Z(7), we obtain
the cone I'; which satisfies

Mg () = Tpq (T7) CTLpg (I'7) C Ty (ﬂ Fck> :
k
(20)



In general, given a marginal scenario M there exist
several minimal acyclic hypergraphs {7;} extending it.
The inclusion in Eq. (20) is valid for each ITy (T'7),
consequently, also for the intersection

I (r*)cﬁHM (T'r).

1

(21)

As a conclusion, for each marginal scenario M, we
have three different outer approximations for ITp (I'),
namely

(i) the intersection of the projections of the full
Shannon cones I',) with modularity conditions
{Z(T;)}, namely, N; 11z (T'7;), {7i} is the set of
minimal acyclic hypergraphs extending M

(ii) the projection of the full Shannon cone, namely,
T (T),

(iii) the projection of the intersection of Shannon cones

associated with {C]Ei) }x is the set of hyperedges of
Ti ie., Ni TIpm (ﬂk FC“))’ where each I ) is seen
k k

as a cone in the space of all variables, and the

(i)

variables not appearing in C,* are unconstrained
(cf. Eq. 19).

We can then summarize the relations among the
above cones as follows

Observation 1. The above approximations satisfy the inclu-
sion relations

I (T) € (VI (T7;) € T (T) € () TTpg (ﬂrC@) :
i i kok
(22)

In general, the inclusion relations from the Observa-
tion 1 are proper. In particular, it means that the outer
approximation (;c7;) [Ta¢ (T'7;) is tighter than the pro-
jection of the Shannon cone —the most widely used
method in the literature, see for instance [58, 63, 76, 77]-
and thus may contain non-constrained non-Shannon-
type inequalities. We will provide some examples of
this in Sect. VIL

VI. INDISTINGUISHABILITY OF CAUSAL

STRUCTURES

In this section, we will investigate the role of the
above results for the case of probability distributions
and entropies, where some underlying causal structure
is assumed, i.e., some additional conditional indepen-
dence constraints are present.

The general goal is to characterize the region of
probability distributions or entropies compatible with a

11

given causal structure. Via such a characterization, for
instance via Bell inequalities, one can check whether
some observed data is consistent or inconsistent with
the assumed causal structure, thus being of fundamen-
tal importance in both quantum information and any
other field where causal discovery may play a relevant
role. Furthermore, notice that unless one is able to inter-
vene in the physical system under investigation [3], one
can never unambiguously prove what is the underlying
causal structure. Rather, based on observations alone,
one can only prove the compatibility or incompatibil-
ity of a given presumed set of causal relations. As ex-
pected, the less constraints a given causal structure im-
plies on the distributions compatible with it, the more
correlations such models can explain and the smaller is
the possibility of falsifying it.

The ideas to be discussed next apply not only to the
case of classical causal structures, but also to the quan-
tum [39, 40, 87-90] and even post-quantum [38, 41, 44]
generalizations as well. In the following, we will focus
on the classical case, that is, all nodes in the associated
Bayesian networks or MRFs represent random variables
for which a global joint probability distribution can al-
ways be assumed to exist. The case of quantum and
post-quantum theories will be briefly discussed at the
end of this section and presented in full details else-
where.

Let us consider the causal structure defined by a
graph G, which may be either a DAG corresponding
to a Bayesian network, or a graph corresponding to a
MRF. We will denote the set of independence condi-
tions associated with G as Z(G), as in Egs.(4),(6). Let
us now assume to have a fixed marginal scenario, with
M the associated hypergraph. Let {7;}; be the set of
acyclic hypergraph extending M as in Th. 1. We will
denote by Z(7;), the set of independence conditions of
the corresponding MRF defined by its 2-section [7;],.
We have the following result

Theorem 4. Given M, G and {T;};, we have three possible
cases:

(i) i such that Z(G) C Z(T;).
(i) Vi Z(T7) € Z(G).
(iii) Vi Z(G) ¢ I(T;), and 3j such that Z(T;) ¢ Z(G).

Then:

In case (i), it is impossible to falsify the causal structure
described by G. This follows since for any probability dis-
tribution P, its marginals in M are always consistent with
the causal structure described by G. Approach (c1)-(c3) of
Sect. V can be used to characterize the marginals associated
with M and G.

In case (ii), marginals associated with M can still gener-
ate correlations that are incompatible with the causal struc-
ture associated with Z(G). Approach (c1)-(c3) can be used,



but the obtained constraints are redundant with respect to
Z(G). It is, therefore, more convenient to apply approach
(c1)-(c3) directly with the conditional independence relations
Z(G).

In case (iii), the marginal correlations associated with M
can again be incompatible with the causal structure asso-
ciated with Z(G). However, the marginal scenario implies
constraints that cannot be combined with those of the causal
structure G. Hence, the approach (c1)-(c3) cannot be used
with the constraints Z(T).

Proof— In case (i), the independence constraints
of the causal structure are just a subset of the inde-
pendence constraints consistent with the marginal sce-
nario. As a consequence, given the marginal probabili-
ties { Pyt } me ., One can repeat the construction of Th. 1
and obtain a valid joint probability distribution P that
is consistent with the causal structure defined by G.

The above result implies that the approach of Sect. V,
both the constructions (b1)-(b3) for probabilities and
(c1)-(c3) for entropies, applies also to the case of a
causal structure with Z(G) C Z(T;).

In case (ii), the marginal scenario implies less con-
straints than the causal structure G, hence, it is clear
that the marginals associated with M are still able to
detect inconsistencies with the causal structure associ-
ated with Z(G).

From the point of view of the characterization, one
can still use the approach (c1)-(c3) of Sect. V. However,
it is more convenient to use in (c3) the linear constraints
implied by Z(G), since they also include those associ-
ated with Z(7;) for all i.

In case (iii), it is again clear that the marginals as-
sociated with M are still able to detect inconsistencies
with the causal structure associated with Z(G). How-
ever, the approach (c1)-(c3) of Sect. V cannot be used
as it generates constraints inconsistent with the causal
structure. The situation is clarified by the following in-
clusion relations among entropy cones in Egs. (23)-(25).
Let us denote by Lg the subspace of entropy vectors in
R?" where the linear constraints imposed by Z(G) are
satistied, and similarly for L7,. The entropy cone asso-
ciated with a given causal structure, either G or 7T;, will
be I'" N Lg,7;. We can write down the relation between
the associated entropy cones as

Ipg (T%) = (T N L), (23)
IIpq (r*ﬁLgﬂLﬁ)CHM(r*ﬂLg), (24)
Iy (7N Lg) CTIy(T%) NI (Lg)  (25)

(T* N L7;) N1 (Lg)
It is then clear that by imposing both the Z(G) and Z(T;)
conditions one obtains an inner approximation of the
entropy cone associated with the causal structure. Vice

versa, imposing the causal structure conditions after the
projection gives an outer approximation.l]
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FIG. 6. Marginal scenario hypergraph (a) and (b) its 2-section

To clarify this last part, in particular the impossibil-
ity of combining the independence relations Z(G) aris-
ing from the causal structure, with the {Z(7;)}; arising
from the marginal scenario, it is helpful to look at some
specific examples. We will discuss them in details in
Sect. VIIB.

A natural question is, then, how to extend the above
results to the case of quantum and post-quantum causal
structures. For instance, in the postquantum case if M
is an acyclic hypergraph, then by Th. 1 the observed
marginals are always consistent with a classical proba-
bility distribution. The same holds, in particular, in the
quantum case. However, the fact that different rules for
causal inference arise in the quantum and postquantum
cases (cf. [38, 40, 41, 44, 88, 90]) together with the dif-
ferent characterization of the associated entropy regions
(cf. [38, 40]) makes the above investigation more com-
plex and worth a separate discussion elsewhere [91].

VII. EXAMPLES AND COMPUTATIONAL RESULTS

In order to clarify the results and methods pre-
sented in the previous sections, we discuss examples of
marginal scenarios and causal structures, together with
some computational results.

A. Inclusions in Obs. 1

In the following, we will discuss the possible cases
presented in Obs. 1. In particular, we will see examples
of strict and non-strict inclusion for the outer approxi-
mations of the entropy cone.

1. Case: ;I (FT,.) CIly (T) CNi Ty (ﬂk Tcéi))

As already noted by Matas [63], the proper inclu-
sion N; 1Ty (T'7;) € Ia (T) means existence of non-
Shannon-type inequalities in ITy¢ (I'7;). On the other
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FIG. 7. Marginal scenario (a) and a clique hypergraph (b)

hand, the strict inclusion ITy (') € N; Ty <ﬂk FC(”)
k

is related to the non-adhesivity of general polyma-
troids.

To construct an example, is necessary to take at
least four variables [63] and our example will con-
sist of five variables. Let us consider the following
marginal scenario M = {ABC,BCD, AE, BE,CE, AD},
shown on the Fig. 6 (a). One can easily see
that 2-section of the hypergraph M is a triangu-
lated graph shown on the Fig. 6 (b) and thus there
is only one corresponding clique hypergraph 7 =
{ABCD, ABCE}. The independence constraint I(D :
E|ABC) = 0 arising from the adhesivity property, gives
rise, after projection on the set of entropies given by
{B,C,D,AD, AE,BD, BE,CD,CE,ABC,BCD}, to the
following 3 non-redundant non-Shannon-type inequal-
ities

H(E|C) + H(C|D) + H(E|B) + H(B, D) + H(A, D)
—5,H(B,C,D) — s,H(A,E) + s3H(A,B,C) >0, (26)

where the coefficient
{(1,2,1),(2,1,1),(2,2,2) }.

Another interesting aspect of this example is the re-
duction in the computational time required to compute
the projection on a usual desktop computer. More pre-
cisely, adding the linear constraint I(D : E|ABC) = 0
reduced the time of our computation for the projection
from approximately 320 to only 27 seconds.

triplet (51,52, 53) (S

2. Case: ;T pg (T7;) = TIag (T) = N Ty (ﬂk rcﬁ”)

Consider the marginal scenario M = {A;B;},Vi,j €
{1,2,3}, shown in Fig. 7 (a), corresponding to a bipar-
tite Bell scenario with three measurement settings per
party. The clique hypergraph of one of the triangula-
tions of M is shown on Fig. 7 (b).

If we consider an intersection of cones T c for
k

cliques Clil) = {A1, Ay, A3, B}, k = 1,2,3, which are
the edges of the hypergraph shown on Fig. 7 (b), we
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FIG. 8. Example of causal structures (a),(c), and marginal
scenarios (b),(d).

find that its projection on the marginal scenario M dif-
fers from the projection of the full cone such that 108

out of 217 rays of the projection I, (ﬂk FC(1)> are out-
k

side of ITy, (T'). This can be check via linear program-
ming (cf. Ref. [38] Sect. II of the supplemental material)
by simply checking whether such rays are compatible
with the basic Shannon inequalities characterizing I'.

However, if we now consider cliques of the sec-
ond possible triangulation of M, which are C,Sz) =

{Ay, B1,By, B3}, k = 1,2,3 and compute the intersec-
tion (=1 [Ty (ﬂk FC(,-)> we find, again via linear pro-
k

gramming, that all its extremal rays are inside, not only
ITpq (), but also Iy (I'7;), for all i. Hence we have
that all the outer approximations coincide.

The reasons why such an equivalence is interest-
ing is that the calculation of (;—; o [Tpq | N T C(i)> with
k

a standard Fourier-Motzkin algorithm on a standard
desktop takes few minutes, however, a direct compu-
tation of ITy (T') or ITx (T'7;) seems to be out of com-
putational reach (at least on a usual desktop computer).

B. Three cases in Theorem 4

In this subsection, we will discuss in detail and pro-
vide examples for the different cases presented in The-
orem 4.

Let us consider four random variables A, B, C, D.



1. Case (i): Ji such that Z(G) C Z(T;)

Let us consider the marginal scenario given by M =
{AB,BD, BC} and shown on Fig. 8 (b). One can easily
see that the clique hypergraph 7 of the corresponding
triangulation of 2-section graph is unique and coincides
with M. The independence constraints implied by T
are given by

(A LC|B)
(CLD|B) (27)
(D L A|B)

Consider now the two causal structures G; and G,
shown on Fig. 8 (a),(c). The corresponding indepen-
dence constrains are {(A L C|B);(C L D|B);(D L
A|B)} for Gy and {(A L C|B);(C L D|B)} for
G>. In both cases Z(G1,) C Z(7) which means that
marginal scenario M; from Fig. 8 (b) is insufficient
to distinguish causal structures G; and G,. In turn, a
marginal scenario, which would be enough to distin-
guish between these two causal structures is given by
My = {ABD, BC} and shown on Fig. 8 (d).

2. Case (ii): Vi Z(T;) C Z(G)

Consider again the causal graph G;. As we already
noted the independence constraints associated with this
graph are

(A LC|B)
(C L D|B) (28)
(D L A|B)

If we are now interested in the marginal scenario M, =
{ABD, BC}, then one can see that in that case there is
again only one possible triangulation of the 2-section
graph of M, and consequently only one correspond-
ing clique hypergraph. The set of independence con-
straints, consistent with M, is {(A L C|B);(C L
D |B)}, which is a subset of constraints from Eq. (28).
In other words, constraints coming from marginal sce-
nario Mj are redundant to those coming from the
causal structure.

3. Case (iii): Vi Z(G) ¢ Z(T;), and 3j such that Z(T;) ¢ Z(G)

The third one is, arguably, the most interesting case:
it shows that the independence constraints arising from
the marginal scenario may be “inconsistent” with those
associated with the causal structure. An example where
this problem arises is the classical case of the informa-
tion causality scenario [29]: Alice receives two indepen-
dent inputs Xy, X1, she creates a message M depending
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Xo Yo Xo@————— @Y,

@M

X, Y1 Xjee—————eY
(@) (b)

FIG. 9. Causal structure (a) and marginal scenario (b) of clas-
sical case of information causality. Xp, X; are random inputs
for Alice, Yy, Y] are guesses for Bob and M is message which
Alice sends to Bob.

on those inputs that is sent to Bob who provide guesses
Yy, Y1, respectively of Xy, X1, on the basis of the mes-
sage M.

The corresponding causal structure is shown in
Fig. 9 (a) and the marginal scenario M in Fig. 9 (b).
Once again the clique hypergraph 7 coincides with M,
hence, it is unique.

We need to show that

2(9) £ Z(T), and Z(T) & Z(9)- (29)

For showing Z(G) ¢ Z(T), we consider the condi-
tional independence between inputs X, X; and guesses
Yy, Y. Le.

{Xi LY;[M}jj—01 & Z(T)- (30)

An example in the other direction is an independence
of message M from the rest of the variables, which is
implied by 7, and is not consistent with conditional
independences Z(G).

The projection IT((I'N Lg) gives rise to the following
inequalities

I[(Xo:Yy) >0, Y:) >0, (31a)
H(Yo|Xo) >0, (XO\YO) >0, (31b)
(Yl\Xl) >0, H(Xl\Yl) >0, (310)

I(Xo : Yo) + 1(X1 : Y1) < H(M), (31d)

where inequalities (31a, 31b, 31c) are simply poly-
matroid axioms for the marginals {X(Yp, X;Y;} and
one obtains these 6 inequalities, if one computes
ITy (T N Ly). The last inequality Eq. (31d) is the infor-
mation causality inequality and is not implied by Z(T).
As a result of the relation from Eq. (29), one can-
not combine Z(7) and Z(G). Due to the relation from
Eq. (24) and the fact that the Shannon cone is an outer
approximation for the case of more than 3 variables,
the projection of the Shannon cone with combined con-
straints Z(7") and Z(G) in this case provides neither an
outer nor an inner approximation of ITr (I'* N Lg).



VIII. CONCLUSION

Deciding global features of a system of interest with
limited information, the so-called marginal problem,
is a task often encountered in many fundamental and
practical problems. In turn, causal discovery, the in-
ference of causal relations underlying the correlations
between observed variables, is yet another basic goal
in the most diverse fields. In this paper, we use the
notion of adhesivity to investigate marginal problems
within causal inference. In particular, we show which
causal relations are always compatible with some given
marginal information. As a consequence, we are able
to identify which causal structures, describing either a
Bayesian network or a Markov random field, can be
distinguished when only limited marginals are avail-
able. In addition, our results provide a method for a
faster characterization (in terms of Bell inequalities) of
the marginal scenarios associated with a given causal
model. This holds true for the both the probabilistic
and entropic approaches for Bell inequalities. In partic-
ular, in the entropic case our construction allows for a
more accurate characterization of allowed regions for
entropic marginals, as shown with explicit computa-
tional results.

An immediate and interesting open question is
the possible generalization of these results to the
case where the causal relations between the vari-
ables are mediated via quantum or postquantum (non-
signalling) resources. Quantum generalizations of the
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notion of a causal structure have attracted growing at-
tention [40, 41, 87—90] and we believe that our results
could constitute a viable option for the characteriza-
tion of such quantum structures. Partial results such
as, e.g., the fact that classical and postquantum correla-
tions coincide for the case of acyclic marginal scenario
hypergraphs (cf. Sect. VI), show that a similar approach
can be extended also to the quantum and postquan-
tum case. In particular, this investigation could lead
to new insights on which causal structures can demon-
strate some sort of non-locality [41, 44]. Finally, another
possibility is to try to combine the notion of adhesivity
and the algebraic geometry tools [16] required to char-
acterize the set of compatible probabilities associated
with complex causal structures [20-22].
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