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In searching for an interpretation of quantum mechanics we seem to be
faced with nothing but bad choices[1]. To avoid both the dualism of the
Copenhagen interpretation and the endless creation of inconceivably many
branches of history of the many-worlds approach, while at the same time
holding on to a realist description of the evolution of physical states from
moment to moment, we may try to modify quantum mechanics so that dur-
ing measurement the density matrix of even an isolated system undergoes a
collapse of the sort called for by the Copenhagen interpretation. The idea is
that this collapse is rapid in systems containing macroscopic elements, such
as apparatus or physicists, while the corrections to quantum mechanics are
very small in purely microscopic systems such as atoms. A collapse of the
density matrix has already been described theoretically in interesting modi-
fications of quantum mechanics[2]. Here we wish to explore the possibility of
observing small departures from quantum mechanics by exploiting the great
precision of atomic clocks. Apart from this aim, the formalism developed
here may prove useful in describing limits on the precision of atomic clocks in
ordinary quantum mechanics due to their interaction with the environment.

First, a reminder of the time-dependence to be expected both in modified
versions of quantum mechanics and in open systems. To avoid instantaneous
communication at a distance[3], the density matrix at time t′ is assumed to
depend only on the density matrix at any earlier time t, but not otherwise
on the state vector at earlier times. Following the rules for composition
of probabilities, we take this to be a linear relation. We require that this
relation preserves the trace and the Hermiticity of the density matrix, and
satisfies a condition of complete positivity[4]. It is well-known that under
these assumptions the time-dependence of the density matrix is given by a
first-order differential equation, the Lindblad equation[5]:

ρ̇(t) = −i[H, ρ(t)] +
∑

α

[

Lα ρ(t)L
†
α −

1

2
L†
α Lα ρ(t)−

1

2
ρ(t)L†

α Lα

]

. (1)

We are here considering only a Hilbert space of finite dimensionality d, which
is adequate for the application we have in mind. (We ignore the translational
degree of freedom of atoms.) In Eq. (1), H is a d× d Hermitian matrix that
can be identified with the Hamiltonian of ordinary quantum mechanics, and
the sum runs over not more than d2 − 1 matrices Lα, which represent the
departure from ordinary quantum mechanics. We use units with h̄ = 1.

The form of Eq. (1) also assumes time-translation invariance, in which
case the relation between ρ(t) and ρ(t′) depends only on t′ − t, and the
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matrices H and Lα are time-independent. This is of course not the case
throughout the history of atoms in an atomic clock, which are intermittently
exposed to external electromagnetic radiation. But atomic clocks rely on a
“Ramsey trick”[6], in which atoms are exposed to electromagnetic radiation
only in two relatively short bursts, separated by a much longer interval in
which they are free of external fields. It is this long time interval between
bursts that gives the atomic wave function a chance to get out of phase with
the electromagnetic wave, and so leads to the high precision with which
the frequency of the wave can be tuned to that of the atomic transition,
and it is also during this field-free period that the small effects due to the
corrections to ordinary quantum mechanics have a chance to build up. So
to deal with atomic clocks we shall first consider the field-free case, with
time-dependence prescribed by the time-independent equation (1), and then
return to the clocks.

We will simplify our task here by assuming (in agreement with obser-
vation) that the states |m〉 with which we have to deal are stable, aside
from radiative transitions that are slow enough to be ignored. We shall also
assume that Eq. (1) does not allow a decrease in the von Neumann entropy

−Tr
(

ρ ln ρ
)

for any ρ. It follows then that the stable states are eigenstates

of Lα, L
†
α, and H, with eigenvalues that we shall call ℓαm, ℓ∗αm, and Em.

Here is the proof[7]. If |m〉 is stable then the right-hand side of Eq. (1)
must vanish if we take ρ to be the projection operator Λm = |m〉〈m| on such
a state. Multiplying this equation on the left with Λm and taking the trace,
with a little rearrangement we have

0 = Tr

{

∑

α

[Lα,Λm]†[Lα,Λm]

}

+Tr

{

Λm

∑

α

(

L†
αLα − LαL

†
α

)

}

. (2)

The necessary and sufficient condition for the non-decrease of entropy is
the vanishing of the sum over α in the second term[8], leaving us here with
the vanishing of the first term, and hence with the vanishing of [Lα,Λm]
for all α. The adjoint shows that also [L†

α,Λm] vanishes for all α. Then
the vanishing of the right-hand side of Eq. (1) where ρ = Λm requires also
that [H,Λm] = 0. Letting these vanishing commutators act on |m〉 shows
immediately that |m〉 is an eigenstate of Lα, L

†
α, andH, as was to be proved.

Note that we have not had to assume that the discrete stable states form
a complete set. Indeed, we only need to assume stability for the two states
involved in the clock transition. To digress a bit, if we had assumed that
the stable states form a complete set, then we could have concluded from
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the above that these states would form a basis in which Lα, L
†
α, and H are

all diagonal, so that they would all commute with each other, and so energy
would be conserved — not a surprising conclusion, thought it could not have
been reached here without our further assumption of non-decreasing entropy.
The conservation of energy by the Lindblad equation might raise problems
with locality and Lorentz invariance[9], though this is uncertain[10].

In accordance with this theorem, Eq. (1) gives the density matrix the
time-dependence

ρmn(t) ∝ exp
[

− i(Em − En)t− λmnt
]

(3)

where |m〉 and |n〉 are any two stable states, and

λmn =
∑

α

[

1

2

∣

∣
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∣

∣

2

+
1

2

∣

∣
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∣

∣

∣

2

− ℓαmℓ∗αn

]

=
∑

α

[

− i Im(ℓαmℓ∗αn) +
1

2

∣

∣

∣ℓαm − ℓαn
∣

∣

∣

2

]

. (4)

We note that Reλmn ≥ 0, so all elements of the density matrix decay except
for those with Reλmn = 0, Also, λmm = 0, so the diagonal elements ρmm(t),
and typically only the diagonal elements, are time-independent.

Now let us see what this implies for the tuning of the frequency of an
electromagnetic wave to the transition frequency Ee − Eg between stable
states |g〉 and |e〉 in an atomic clock. (The labels e and g are conventional,
standing for “excited state” and “ground state,” though g and e can be any
two stable states of the atom.) Each atom is exposed twice for periods each
lasting a relatively short time τ to an oscillating external electromagnetic
field, which adds to the Hamiltonian a term H ′ exp(−iωt) + H ′† exp(iωt),
and can drive the transition g → e when the real frequency ω is tuned to
a value near Ee − Eg. We will work with an “interaction picture” density
matrix ρImn(t) ≡ exp(i(Em − En)t)ρmn(t). We assume that the exposure
period τ is short enough so that τ |λmn| ≪ 1, and hence during this period
changes in ρI arise only from the oscillating external field. We make the
usual assumptions that τ |Ee − Em| ≫ 1 for m 6= e, τ |Eg − Em| ≫ 1 for
m 6= g and τ |ω| ≫ 1, which allows us to drop rapidly oscillating terms
in the equation for ρ̇I and keep only those terms with time-dependence
proportional to exp(±i∆ωt), where ∆ω ≡ ω − Ee + Eg. We also suppose
that as usual in atomic clocks the frequency of the external field has been
tuned so that |∆ω| ≪ |H ′

eg|, and hence the frequency of Rabi oscillations is
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Ω/2 = |H ′
eg|. Under these assumptions, the density matrices at times t and

t+ τ are related by

ρI(t+ τ) = U(t+ τ, t)ρI(t)U †(t+ τ, t) , (5)

where

Uee(t+ τ, t) = Ugg(t+ τ, t) = cos(Ωτ/2) , ,

Ueg(t+ τ, t) = U∗
ge(t+ τ, t) = −iei∆ω t sin(Ωτ/2) , (6)

(We are choosing the relative phase of the states e and g so that H ′
eg is real

and positive, and hence equal to Ω/2.)
If an atom starts at t = 0 in the pure state g, then at time t = τ its

density matrix ρI(t) = U(τ, 0)ρI (0)U †(τ, 0) will have components

ρIee(τ) = sin2(Ωτ/2) , ρIgg(τ) = cos2(Ωτ/2) ,

ρIeg(τ) = ρI∗ge(τ) = ie−i∆ωτ cos(Ωτ/2) sin(Ωτ/2) , (7)

which of course still represents a pure state.
Then for a Ramsey time T ≫ τ the atom travels through field-free space,

so the only time-dependence of the density matrix ρI in this period arises
from the Lindblad term in Eq. (1). In accordance with Eq. (3), the density
matrix at the end of this period is

ρIee(τ + T ) = sin2(Ωτ/2) , ρIgg(τ) = cos2(Ωτ/2) ,

ρIeg(τ + T ) = ρI∗ge(τ + T ) = ie−i∆ωτe−λegT cos(Ωτ/2) sin(Ωτ/2) . (8)

Then in a second period of duration τ the atom is again exposed to the
same external electromagnetic field, and the density matrix is changed to

ρI(2τ + T ) = U(2τ + T, τ + T )ρI(τ + T )U †(2τ + T, τ + T ) (9)

A straightforward calculation gives the probability Pe that the atom will
wind up in the excited state:

Pe = ρIee(2τ + T ) =
1

2
sin2Ωτ

[

1 + e−ΓT cos

(

(

ω − Ee + Eg − E
)

T

)]

,

(10)
where we write λge = Γ − iE with Γ and E real, and hence according to
Eq. (4),

Γ =
1

2

∑

α

∣

∣

∣ℓαg − ℓαe
∣

∣

∣

2

]

(11)
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E = −
∑

α

Im {ℓαgℓ
∗
αe} (12)

In using atomic clocks the excitation probability Pe is measured as a function
of frequency ω by repeating the observation of the fraction of atoms excited
for various chosen frequencies ω. Then ω is tuned to maximize Pe, so that
ω will then normally be expected to equal the reference frequency Ee − Eg

within an uncertainty of order 1/T .
If there were corrections to ordinary quantum mechanics in Eq. (10) with

Γ of order 1/T or greater, the shape of the curve of Pe versus ω would be
grossly altered. For instance, for ΓT = 1, the ratio of the minimum value
of Pe to its maximum value would be 0.46 instead of zero, and the ratio
of the value of Pe where it is most rapidly varying with frequency to its
maximum value would be 0.73 instead of 0.5. Seeing such a departure from
expectations would be a good sign of a departure from ordinary quantum
mechanics. A change in the form of Pe versus ω this drastic would generally
have been seen in atomic clocks and has not been seen[11], so it seems safe to
conclude that Γ is less than the values of 1/T encountered in atomic clocks.

Unfortunately we have no idea of what target value of Γ which we should
aim at, or even how Γ might vary from one transition to another. We can
distinguish two extreme cases.

If Γ has similar values for all transitions, then we should look at clocks
for which the Ramsey time T is as long as possible. Modern atomic clocks
typically have T of the order of seconds, but a clock[12] using a microwave-
frequency transition in trapped 171Yb+ ions has operated with T > 600
seconds. Hence we can conclude that in this transition Γ < 10−18 eV. This
upper limit shows that environmental effects make it hopeless to look for
departures from quantum mechanics on macroscopic scales, where the en-
ergy of interaction with the environment is presumably always much greater
than 10−18 eV. On the other hand, this upper bound is enormous compared
with the difference between energies of discrete states of macroscopic ob-
jects that are free from all external influences. For instance, according to
quantum mechanics, the successive energy eigenstates of a pointer of mass
one gram and length one centimeter that swivels freely in two dimensions is
about 10−42 eV. Thus departures from ordinary quantum mechanics with Γ
less than the limit 10−18 eV derived from atomic clocks might still have a
powerful effect on the quantum states of macroscopic systems if they could
somehow be isolated from their environment.

If instead Γ somehow scaled with the transition frequency Ee−Eg, then
we would want to set a limit on Γ/(Ee−Eg), rather than on Γ itself. For this
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purpose it would be more useful to look at clocks for which the fractional
imprecision 1/T (Ee − Eg) is as small as possible. For optical clocks with T
of the order of a second this is 10−15, but a clock using 37Al ions achieved
a value about 3 × 10−17[13], so we can conclude that at least for these
transitions, Γ/(Ee − Eg) < 3× 10−17.

In addition to a change in the shape of the curve of Pe versus ω, Eq. (10)
also entails a shift in the frequency at the maximum value of Pe, from
Ee − Eg to Ee − Eg + E . Detecting this frequency shift is impossible in
a two-state system if we do not have independent information about the
uncorrected frequency Ee−Eg. The prospects are brighter if it is possible to
drive transitions among three different energy levels, because actual energy
differences trivially obey the relation

(E1 − E2) + (E2 − E3) + (E3 − E1) = 0

while there is no reason to expect the frequency shifts Eij to obey the cor-
responding relation

E12 + E23 + E31 = 0 .

It remains to be seen if there is a three-level system suitable for this purpose.

I am grateful for helpful conversations about atomic clocks with Mark
Raizen and David Wineland. This material is based upon work supported
by the National Science Foundation under Grant Number PHY-1620610 and
with support from The Robert A. Welch Foundation, Grant No. F-0014.
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