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Master equation for high-precision spectroscopy

Andreas Alexander Buchheit∗ and Giovanna Morigi
Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany

The progress in high-precision spectroscopy requires one to verify the accuracy of theoretical
models such as the master equation describing spontaneous emission of atoms. For this purpose,
we apply the coarse-graining method to derive a master equation of an atom interacting with
the modes of the electromagnetic field. This master equation naturally includes terms due to
quantum interference in the decay channels and fulfills the requirements of the Lindblad theorem
without the need of phenomenological assumptions. We then consider the spectroscopy of the 2S-4P
line of atomic Hydrogen and show that these interference terms, typically neglected, significantly
contribute to the photon count signal. These results can be important in understanding spectroscopic
measurements performed in recent experiments for testing the validity of quantum electrodynamics.

PACS numbers: 03.65.Yz,02.50.Ga,42.62.Fi,32.70.Jz

I. INTRODUCTION

For many decades the spectroscopic properties of laser-
driven atoms have been successfully modeled by a Born-
Markov master equation for the electronic degrees of free-
dom, where spontaneous decay is described by a Liouvil-
lian term and the frequency shifts induced by the cou-
pling with the field are included as corrections to the
Hamiltonian [1–4]. The resulting Optical Bloch Equa-
tions (OBE), namely, the equations of motion for the
density-matrix elements, are by now a tool which is rou-
tinely employed to interpret the experimental curves [5].

Recent spectroscopic measurements, pushing the pre-
cision to the limits, reported discrepancies with the pre-
dictions of the OBE, which, if verified, could have con-
sequences on the validity of quantum electrodynamics
[6, 7]. It has been conjectured that these discrepancies
could emerge from contributions to the OBE, which have
been identified in the original derivations starting from
a fully quantized description of the modes of the elec-
tromagnetic field [2] but have been neglected so far [8].
These terms describe interference between decay chan-
nels and are usually referred to as cross-damping terms
[9, 10]. They are important in order to correctly repro-
duce radiation damping in a harmonic oscillator [11] but
are typically discarded in the OBE used for atomic spec-
troscopy, since they were assumed to be negligible. For
anharmonic spectra, moreover, their inclusion in the mas-
ter equation used in atomic spectroscopy [2, 4, 12, 13]
leads to a form which does not fulfil the requirements
of the Lindblad theorem [3], unless additional assump-
tions are made [10]. For closed level structures it was
argued that these terms could give rise to ”steady-state
quantum beats” [14] and in general to interference ef-
fects in the radiative emission of parallel quantum dipoles
[15–18]. Studies which analysed the effects of the cross-
damping terms for spectroscopy used phenomenological
models [8] or derived scattering amplitudes [19–21], ar-
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guing that cross-damping could be responsible for sys-
tematic shifts of the order of kHz in the spectroscopy
of atomic Hydrogen. This situation motivates a system-
atic theoretical derivation, which delivers a valid master
equation and which can thus allow one to quantitatively
predict whether and how such interference terms affect
the spectroscopic measurements.

In this work we derive a master equation for the elec-
tronic bound states of an atom coupled to the quantum
electromagnetic field by applying the coarse-graining pro-
cedure developed in Refs. [22–24], with some appropriate
modifications. Differing from previous treatments [2, 10],
the coarse-graining approach allows us to consistently in-
clude terms due to the interference in the radiative pro-
cesses of atomic transitions: These terms preserve the
Lindblad form and their coefficients do not depend on
the particular choice of the coarse-graining time step,
provided this is chosen within the range of validity of
the Born-Markov approximation. However, the coarse-
graining procedure as in Ref. [24] delivers an involved
form of the master equation, where the physical origin
of the individual terms is non evident and where the co-
efficients are transcendental functions of the atomic pa-
rameters. Here, by an appropriate modification of the
derivation we find a simpler form which can be set in con-
nection to and compared with master equations applied
so far for atomic spectroscopy. This allows us to quantify
the contribution of the cross-damping interference in the
spectroscopic measurements, as we show below for the
specific case of the 2S-4P transition in atomic Hydrogen,
a case in point for the proton size puzzle [6].

This article is organized as follows. In Sec. II we in-
troduce the Hamiltonian and derive a master equation
in Lindblad form using a modified coarse-graining proce-
dure. We discuss the resulting cross-damping and cross-
shift terms and set them into connection with previous
results in the literature. In Sec. III we provide a concrete
case study by applying the master equation we derive to
2S-4P spectrosopy in atomic Hydrogen, while in Sec. IV
we calibrate the coarse-graining time. The conclusions
are drawn in Sec. V, while the Appendix complements
the discussion in Sec. III.
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II. DERIVATION OF THE MASTER EQUATION

In order to clarify the origin of the cross interference
terms and the problem with their systematic treatment
in the literature, we report the derivation of the coarse-
grained master equation as in Refs. [22–24]. We aim at
deriving the master equation for the reduced density ma-
trix ρ̂(t) at time t of a valence electron of mass m bound
to an atom and coupled to the modes of the electromag-
netic field (EMF).

In this treatment, we assume the electronic energies to
be discrete and thus neglect the continuum spectrum of
ionization. We furthermore restrict ourselves to a finite
number of N levels assuming that the occupation of the
remaining states is negligible at all times. This is reason-
able for sufficiently weak exciting fields [12]. Moreover
we neglect the center-of-mass motion of the atom and
associated effects like the Doppler shift [5].

A. System model and Hamiltonian

We first consider the density matrix χ̂(t) of the com-
posite atom and EMF system, from which the operator
ρ̂(t) is obtained after tracing χ̂(t) over the EMF degrees
of freedom, ρ̂(t) = TrR{χ̂(t)}. The density matrix χ̂(t)
undergoes a coherent dynamics determined by the Hamil-
tonian

Ĥ = ĤA + ĤR + V̂ , (1)

according to the von-Neumann equation

∂tχ̂ = [Ĥ, χ̂]/i~ , (2)

with ~ the reduced Planck constant. Here, ĤA is the
atomic part of the Hamiltonian and satisfies the eigen-
value equation

ĤA|n〉 := En|n〉 ,

with |n〉 the eigenstates of ĤA, representing the bound
states of the valence electron, and En their associated
energies. The free evolution of the quantized electromag-
netic field (EMF) is described by Hamiltonian

ĤR =
∑
λ

~ωλâ†λâλ ,

with the annihilation and creation operators âλ and â†λ of

a photon in the field mode at frequency ωλ, wave vector ~k

and transverse polarization ~eµ(~k) ⊥ ~kλ with µ ∈ {−1, 1}
(λ := (~k, µ), ωλ = c|~k|) [12] (we drop the energy of the

vacuum state). Here, [âλ, â
†
λ′ ] = δλ,λ′ . Moreover, the

sum in ĤR is restricted to modes with ωλ < ωcut, with
ωcut ∼ mc2/~ the cutoff frequency, m the electronic mass,
and c the speed of light.

The interaction between the electromagnetic field and
the electronic transitions of the atom in the long-
wavelength approximation is given in the dipole repre-
sentation and can be cast in the form

V̂ = ~
∑
i

(Γ̂†i σ̂i + Γ̂iσ̂
†
i ) , (3)

where σ̂i = |i1〉〈i2| projects a state i2 to a lower lying
state i1, coupled by a dipolar transition with moment

~di = 〈i1| ~̂d|i2〉 and frequency ωi = (Ei2 − Ei1)/~. More-
over,

Γ̂i =
∑
λ

(
gλi âλ + ḡλ

∗

i â†λ

)
, (4)

where gλi := −i
√

2πωλ
~V

~d∗i ·~eλ and ḡλi := −i
√

2πωλ
~V

~di ·~eλ are

the coupling strength and V is the quantization volume.
The long-wavelength approximation limits the validity of
Eq. (3) to low-lying atomic states, where the size of the
bound electron wave packet is smaller than the optical
wavelength.

B. Derivation of the Liouville Equation

We now cast the dynamics in the interaction pic-
ture with respect to the unperturbed Hamiltonian Ĥ0 =
ĤA + ĤR. In particular, given X̂(t) an operator in the

laboratory frame, we denote by X̃(t) the corresponding
operator in interaction picture, such that

X̃(t) = ÛI(t)X̂(t)Û†I (t) , (5)

with ÛI(t) = exp
(

iĤ0t/~
)

. In the interaction picture

the formal time evolution of the density matrix χ̃(t′) for
times t′ > t reads

χ̃(t′) = Ũ(t, t′)χ̃(t)Ũ†(t, t′) ,

where

Ũ(t, t′) = T exp

(
−i

∫ t′

t

dτ Ṽ (τ)

)
is the time evolution operator in interaction picture and
T denotes the time ordering.

For t′ = t + ∆t, with ∆t > 0 and sufficiently small,
we expand the right-hand side to second order in the
interaction Ṽ , assuming that the coupling between atom
and field is weak. We take the partial trace over the
EMF-modes of the resulting equation and get

ρ̃(t+ ∆t) = ρ̃(t) + ∆tLρ̃(t) ,

where

Lρ̃(t) =
1

i~

[
ṼR(t), ρ̃(t)

]
+

1

i~

[
H̃S(t), ρ̃(t)

]
+ LD(t)ρ̃(t) ,

(6)



3

with ṼR(t) and H̃S(t) Hermitian operators, and LD(t) a
superoperator of Lindblad form [3], whose detailed forms
are given in what follows.

So far, Eq. (6) provides a valid description of the dy-
namics only in the interval [t, t+ ∆t] and only when the
time step ∆t is sufficiently short so to warrant the va-
lidity of perturbation theory. Moreover, we have ass-
sumed that at the initial time t the density matrix is

χ̃(t) = ρ̃(t) ⊗ R(t), with R(t) the reservoir density ma-
trix. Specifically,

ṼR(t) = TrR

{
R(t)

∫ t+∆t

t

dτ Ṽ (τ)/∆t

}
(7)

and

H̃S(t) = − i

2~∆t

∫ t+∆t

t

dτ1

∫ t+∆t

t

dτ2θ(τ1 − τ2)TrR

{[
Ṽ (τ1), Ṽ (τ2)

]
R(t)

}
, (8)

LD(t)ρ̃(t) =
1

2~2∆t

∫ t+∆t

t

dτ1

∫ t+∆t

t

dτ2TrR

{
2Ṽ (τ1)(ρ̃(t)⊗R(t))Ṽ (τ2)− [Ṽ (τ1)Ṽ (τ2), ρ̃(t)⊗R(t)]+

}
, (9)

with θ(t) Heaviside’s function and [, ]+ the anticommutator.
We now assume that the bath is at equilibrium and its correlation time τR is orders of magnitude smaller than

the typical time scale τA of the atom, which allows us to perform the Markov approximation. In this specific limit
Eq. (6) can be cast in the form of a differential equation, which is valid at all times t′ > t, provided that the time
step ∆t determining the coarse-graining of the time evolution can be chosen to be ∆t = τc with τR � τc � τA
[13, 23]. For this system this inequality is fulfilled since it is reasonable to assume that the EMF is in a thermal state
R(t) = R0 = exp(−HR/kBT )/Z with temperature T ∼ 300K and the partition function Z = Tr{exp(−HR/kBT )},
giving τR ' ~/(kBT ) ∼ 10−13sec [13]. Then,

∂t′ ρ̃(t′) ≡ (ρ̃(t′ + τc)− ρ̃(t′))/τc = L(t′)ρ̃(t′) , (10)

with L(t) in Eq. (6). This equation is valid for any coarse-grained time t′ > t [12, 25].
We now determine the explicit form of the dissipator using Eq. (3) in Eq. (9):

LD(t)ρ̃(t) =
1

2τc

∑
i,j

∫ t+τc

t

dτ1

∫ t+τc

t

dτ2

[
C(τ1 − τ2)

{
~di · ~dj [σ̃j(t2)ρ̃(t), σ̃i(τ1)] + ~d∗i · ~dj [σ̃j(τ2)ρ̃(t), σ̃†i (τ1)]

}

+C(τ1 − τ2)

{
~d∗i · dj [σ̃

†
j (τ2)ρ̃(t), σ̃i(τ1)] + ~di · ~dj [σ̃†j (τ2)ρ̃(t), σ̃†i (τ1)]

}
+ H.c.

]
. (11)

Here we have introduced the correlation function

C(τ) = 2/(3π~c3)

∫ ωcut

0

dω ω3
(

[1 + n(ω, T )] e−iωτ + n(ω, T )eiωτ
)
, (12)

where n(ω, T ) is the mean photon number at frequency ω, and is negligible for optical frequencies and room tem-

perature. We note that the products ~d∗i · ~dj and ~di · ~dj are real, since the elements of each dipole moment are real

in the spherical basis. The terms proportional to ~d∗i · ~dj give the main contribution whereas the nonsecular terms

proportional to ~di · ~dj are oscillating at sums of transition frequencies in the interaction picture and lead to corrections
that are of the same order of magnitude as the error of the perturbative expansion itself [26, 27]. We thus drop the
nonsecular terms containing σ̂iσ̂j and retain the secular terms, casting the dissipator in the form

LD =
1

2τc

∑
i,j

∫ t+τc

t

dτ1

∫ t+τc

t

dτ2 ~d
∗
i · ~dj

[
C(τ1 − τ2)eiωi(τ1−t)e−iωj(τ2−t)

{[
σ̃j(t)ρ̃(t), σ̃†i (t)

]
+
[
σ̃j(t), ρ̃(t)σ̃†i (t)

]}

+C(τ1 − τ2)e−iωi(τ1−t)eiωj(τ2−t)
{[

σ̃†j (t)ρ̃(t), σ̃i(t)
]

+
[
σ̃†j (t), ρ̃(t)σ̃i(t)

]}]
, (13)

where we used that σ̃†j (τ1) = eiωj(τ1−t)σ̃†j (t). The final master equation is then found by evaluating the coefficients,

thus performing the integral. In the present form, however, the coefficients in Eq. (13) are transcendental functions of
the atomic parameters, and cannot be simply compared with the master equations used so far in the literature [2, 10].
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Before proceeding, it is now useful to discuss the master equation for spectroscopy as in Refs. [2, 9, 10], when one

includes terms scaling with σ̂†i σ̂j (for i 6= j), which we denote by cross interference terms. Its structure is similar to
the one of Eq. (6), however the dissipator reads [2, 9, 10]:

LF
Dρ̂(t) =

∑
i,j

(1 + n(ωj , T ))

(
γF
ij

2

[
σ̂j ρ̂(t), σ̂†i

]
+
γF∗
ji

2

[
σ̂j , ρ̂(t)σ̂†i

])
+
∑
i,j

n(ωj , T )

(
γF∗
ij

2

[
σ̂†j ρ̂(t), σ̂i

]
+
γF
ji

2

[
σ̂†j , ρ̂(t)σ̂i

])
.

(14)

This equation is obtained by integrating Eq. (9) after performing the limit τR/τc → 0 and τA/τc →∞ as illustrated
in Fig. 1 (a). The crucial point is in the damping coefficient,

γF
ij =

4

3

~d∗i · ~dj
~c3

ω3
j ,

which is not symmetric under exchange of the transition indices i and j, unless they are equal. In the literature the
Lindblad form is usually restored by assuming that these terms are relevant only when ωi ' ωj and then replacing ωj
by
√
ωiωj both in γF

ij and in the photon numbers [10], as well as replacing the corresponding terms in ĤS . Even though
plausible, this procedure is arbitrary and does not allow one to estimate the error made in performing this step. In
the next section, we show that these problems can be consistently solved by suitably performing the coarse-graining
within the range of validity of the Born-Markov approximation.

C. Modified coarse-graining procedure

In order to determine the coefficients of Eq. (13) and cast them in a compact form we first observe that the
integration regions of Eqs. (8) and (9) are symmetric under the exchange of the variables τ1 and τ2. We preserve this
symmetry by making the change of variables τ ′1 = τ1 − τ2 and τ ′2 = τ1 + τ2 − 2t in the double integral of Eqs. (8)-(9),
and then by extending the integration area to the intervals −τc ≤ τ ′1 ≤ τc, 0 < τ ′2 < 2τc, as shown in Fig. 1 (b). In
the new integration region, the time difference τ ′1 enters in physical quantities which decay with the bath correlation
time τR, whereas the contribution of the τ ′2 integral can be associated with τA. The error performed in this operation
is of the order of τR/τc and thus within the range of validity of the derivation.

Using the modified integration region in Eq. (13) we obtain

LDρ̃(t) =
∑
i,j

~d∗i · ~dj

(
G (ωij) Θij(τc)

( [
σ̃j(t)ρ̃(t), σ̃†i (t)

]
+
[
σ̃j(t), ρ̃(t)σ̃†i (t)

] )
(15)

+G(−ωij)Θ∗ij(τc)
( [
σ̃†j (t)ρ̃(t), σ̃i(t)

]
+
[
σ̃†j (t), ρ̃(t)σ̃i(t)

] ))
,

with

ωij := (ωi + ωj)/2 (16)

and the Fourier transform of the correlation function:

G(ω) :=
1

2

∫ ∞
−∞

dτ C(τ)eiωτ , (17)

where the integration limits have been sent to infinity
using that τc � τR. Moreover, we have introduced the
function

Θij(τc) := exp
(
i(ωi−ωj)τc/2

)
sinc

(
(ωi−ωj)τc/2

)
. (18)

Specifically,

G (ωij) =
2

3

1

~c3
[1 + n(ωij , T )]ω3

ij , (19a)

G (−ωij) =
2

3

1

~c3
n(ωij , T )ω3

ij . (19b)

In order to eliminate the fast oscillations in Θij , which
are an artifact of the choice of the integration over the
step τc, we integrate this function over a distribution
of coarse graining times using a gaussian distribution
f(τc, τ

′
c) := N exp(−τ ′2c /τ

2
c ) with a width of τc and where

N is defined so that
∫∞

0
dτ ′c f(τc, τ

′
c) = 1. This integra-

tion smoothens the integration step and is in the spirit of
the statistical meaning of the coarse graining procedure.
We have checked various weighting functions and verified
the convergence. After this step, we replace the function
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(b)

(a)

FIG. 1. Time integration regions used to evaluate Eqs. (8)-
(9). The blue rectangle is the region with both τ1 and τ2
integrated over [t, t + τc]. (a) Integration region leading to
Eq. (14) after extending the integration over τ1 to (−∞,∞),
corresponding to the limit τc/τR → ∞, while shrinking the
integration interval over τ2, corresponding to τc/τA → 0 (see
arrows). (b) New integration region: The yellow box indicates
the region with τ ′1 = τ1−τ2 ∈ [−τc, τc] and τ ′2 = τ1 +τ2−2t ∈
[0, 2τc], which preserves the symmetries of the cross-damping
coefficients, thus warranting the Lindblad form. The blue and
yellow integration regions are equivalent, being the correlation
function in the integrand different from zero only within the
red small stripe of width ∼ 2τR � τc.

Θij(τc) with

Θij(τc)→ Fc(ωi − ωj) :=

∫ ∞
0

dτ ′c Θij(τ
′
c)f(τc, τ

′
c). (20)

D. Cross-damping and cross-shift terms

When moving back to the Schrödinger picture this pro-
cedure leads to a dissipator of the form as in Eq. (14),

however with the replacement

γFij → γij =
4

3

~d∗i · ~dj
~c3

Fc(ωi − ωj)ω3
ij , (21)

and

n(ωj , T )→ n(ωij , T ) .

We remark that the fact that the frequencies here ap-
pear in the symmetric form of their arithmetic average
is the result of the new integration procedure. Equa-
tion (21) agrees with the result of Ref. [10] in zeroth or-
der in the parameter (ωi−ωj)/(2ωi), while in first order
its form is reminiscent to the one derived in Ref. [28].
For τR � τc � τA, using Eq. (21) in Eq. (14) results
in a dissipator with Lindblad form whose predictions can
be compared with the one of the master equation, where
the cross-damping terms are neglected. Using this proce-
dure, moreover, the other terms due to cross-interference
can be cast in terms of a self-Hamiltonian, which reads

ĤS = −~
∑
i,j

[ (
∆−ij + ∆T

ij

)
σ̂†i σ̂j +

(
∆+
ij −∆T

ij

)∗
σ̂iσ̂
†
j

]
,

(22)
with ∆±ij the coarse-grained vacuum cross shift terms

and ∆T
ij := ∆T−

ij −∆T+
ij the coarse-grained temperature-

dependent cross shift terms. Their evaluation requires
a careful diagrammatic resummation which includes the
high-energy contributions [29]. Nevertheless, their struc-
ture is already visible in the form one obtains in lowest
order in the relativistic correction:

∆±ij :=
2

3

~d∗i · ~dj
π~c3

Fc(ωi − ωj)P
∫ ωcut

0

dω ω3 1

ω ± ωij
,

(23)

∆T±
ij :=

2

3

~d∗i · ~dj
π~c3

Fc(ωi − ωj)P
∫ ωcut

0

dω ω3n(ω, T )

ω ± ωij
.

(24)

with P the Cauchy principal value of the integral and ωcut

the cutoff frequency [27, 29]. Their order of magnitude
can be estimated by using existing data since

∆±ij ≈
1

2
~d∗i · ~djFc(ωi − ωj)

(
1

|~di|2
∆±ii +

1

|~dj |2
∆±jj

)
,

(25)

and analogously for ∆T±
ij .

III. SHIFT OF RESONANCE LINES IN
HYDROGEN SPECTROSCOPY

We test the predictions of this master equation for the
spectroscopy of the 2S − 4P transition in atomic Hy-
drogen in the setup of Ref. [30]. The relevant states
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are displayed in Fig. 2. The atoms are initially pre-
pared in the state 22S1/2, F = 0, MF = 0. A laser, de-

scribed by a classical field, probes the 22S−42P transition
and is detuned by δ from resonance with the transition
|22S1/2, F = 0, MF = 0〉 → |42P1/2, F = 1, MF = 0〉.

For Hydrogen-like atoms, it can be shown that in the
long-wavelength approximation the cross-shift terms ob-
tained for i 6= j in Hamiltonian (22) can be neglected [14],
as we show below. The cross-damping terms, however,
lead to a distortion of the line shapes, which could induce
a shift when extracting the line positions by approximat-
ing the spectra with a sum of Lorentzians as typically
done in the experiment. A measure for this shift could
be performed with the line pulling, which we here define
as

∆L :=
[
δc
n − δnc

n

]
/(2π) , (26)

for the transition 22S 1
2
− 42Pn

2
(n = 1, 3) [30], which is

the change in the peak positions δc
n for the case in which

the cross shift and damping terms have been incorporated
and the positions δnc

n for when they have been set to zero.
In the Appendix we show that this definition corresponds
to the one of Eq. (12) in Ref. [19].

A. Cross-shift terms for Hydrogen-like atom

We now show that the cross-shift terms in the self
Hamiltonian, Eq. (22), cancel for atomic systems that
can be treated in the long-wavelength approximation if
there are two interacting manifolds of states. In this case,
the ∆−ij terms describe both a shift of and a coupling

between states of the upper manifold E = {|e〉}. Fur-
thermore, we only get a contribution from the operator

σ̂†i σ̂j = |e〉〈g|g′〉〈e′| if both transitions share the same
ground state |g〉. It is useful to split the self Hamiltonian
as

HS = H−S +H+
S ,

where Ĥ±S includes the ∆±ij terms. We then write

H−S = −~
∑
e,e′

δee′ |e〉〈e′| ,

where δee′ =
∑
g(∆

−
gege′ + ∆T

gege′) only contains transi-
tion operators within the upper manifold. All terms δee′
contain the function Fc(ωge−ωge′) and are proportional
to terms Dee′

Dee′ :=
∑
Mg

~d∗ge · ~dge′ , (27)

where the sum is over the magnetic quantum number
of the ground state multiplet. We now show that Dee′

and thus also δee′ vanishes when the states |e〉 and |e′〉,
that share the same principal quantum number n, are
different.

FIG. 2. (color online) (a) Relevant states for the spectroscopy
of the 2S-4P transition in Hydrogen. The hyperfine structure
is displayed in the standard notation where states with dif-
ferent F (MF) quantum numbers are vertically (horizontally)
displaced. The atom is assumed to be homogeneously broad-
ened, initially prepared in the |22S1/2, F = 0, MF = 0〉 state,
and probed by a laser that is detuned by δ from the transi-
tion |22S1/2, F = 0, MF = 0〉 → |42P1/2, F = 1, MF = 0〉.
The laser is linearly polarized along z and propagates along
x. The decay channels to the 1S, 2S, 3S and 3D manifolds
are taken into account and the steady state signal is obtained
after a time t = 500 γ−1

tot , with γtot the total linewidth. The
laser Rabi frequencies are ∼ 10−3γtot. (b) Processes that lead
to a vanishing line pulling when detecting over the 4π angle
with no polarization filter.

By evaluating the transition dipole moments using the
Wigner-Eckart Theorem we obtain a formula for Dee′

where the dependence on the magnetic quantum number
Mg is included in the product of two Wigner 3j symbols

Dee′ ∝
∑
Mg,q

(
Jg 1 Je
−Mg q Me

)(
Jg 1 Je′
−Mg q Me′

)
(28)

with |g〉 = |ngJgMg〉, |e〉 = |neJeMe〉 and |e′〉 =
|ne′Je′Me′〉. Due to the orthogonality relation of the
Wigner 3j symbols there is only a nonvanishing con-
tribution provided that Je = Je′ and Me = Me′ as
Dee′ ∝ δJeJe′ δMeMe′ . If both states have the same princi-
pal quantum number, this already means that |e〉 = |e′〉.
We have thus proven that Dee′ = 0 for ne = ne′ and
|e〉 6= |e′〉. The product of two dipole moment vectors
that connect a common ground state to two different ex-
cited states vanishes in the sum over all Mg if the prin-
cipal quantum number is equal for both |e〉 and |e′〉. It
follows that δee′ = 0 for ne = ne′ and |e〉 6= |e′〉.

Using an analogous procedure, the same result is ob-
tained for the coupling between different ground states.



7

FIG. 3. (color online) Lower panels: Line pulling in the 2S-4P
hyperfine transition in Hydrogen driven by a nearly resonant
laser which is linearly polarized along z and propagates along
the x-axis. The different curves correspond to four different
detection regions (a), (b), (c) and (d). The curves (a)-(c) are
plotted as a function of the detection solid angle Ω whereas (d)
is plotted as a function of the azimuthal detection angle θ.The
line pulling of the 42P1/2 (42P3/2) resonance is displayed by
the solid blue (dotted red) line. Upper panels: The detection
regions are (a) a conic region around the y-axis; (b) a double
cone with symmetry axis z, and (c) the corresponding inverted
double cone (analogous to the one of Ref. [30]). For these
cases θ denotes the opening angle, while in (d) photons are
detected in a stripe of width δθ at an azimuthal angle θ.

B. Photon count rate

We determine the line pulling, Eq. (26), from the pho-
ton count rate S(δ), namely, the rate of photons emitted
by an atom driven by a probe laser, as a function of the
laser frequency, here given by its detuning δ from the
transition |22S1/2, F = 0, MF = 0〉 → |42P1/2, F = 1,
MF = 0〉.

In this section, we derive the photon count rate for spe-
cific detection regions. For this purpose, we first consider
the expectation value of the photon number operator for
a EMF mode λ for t′ ≥ t,

Nλ(t′) := 〈â†λâλ〉t′ ,

where the expectation value is taken over the density
matrix χ(t′) at time t′. The total photon count N(t′)

FIG. 4. (color online) Line pulling for the detection scheme of
Fig. 2(c) and Ω = 0 in units of the maximum line pulling ∆max

L

(indicated by the arrow in Fig. 2(c)) and as a function of the
coarse-graining time τc. The line pulling remains constant in
the interval [10−13, 10−11] s and decreases when τc approaches
the inverse linewidth of the transition.

is given by the sum of the photon counts of all modes
N(t′) :=

∑
λNλ(t′).

We find an expression for Nλ(t′) by following the same
procedure as for the master equation. This allows us to
obtain the photon count rate

Sλ(t) = (Nλ(t+ τc)−Nλ(t))/τc .

The total photon count rate SΩ(t), namely, the rate at
which photons are emitted into the solid angle Ω, then
depends explicitly on the cross damping terms:

SΩ(t) =
∑
i,j

γΩ
ijTr{σ̂j ρ̂(t)σ̂†i } , (29)

where

γΩ
ij :=

4

3

~d †i
←→
D Ω

~dj
~c3

Fc(ωi − ωj)ω3
ij , (30)

and
←→
D Ω = 3/(8π)

∫
Ω

(~eθ~e
T
θ + ~eφ~e

T
φ ) is the detection ma-

trix where the spherical coordinate vectors {~eθ, ~eφ}, or-

thogonal to the wave vector ~k, appear with the same
weight, implying that we assume no polarization filter.

For the case of a 4π detection angle, then
←→
D Ω reduces

to 13 and γΩ
ij = γij .

If photons are detected over a 4π solid angle, the con-
tribution of the cross-damping terms vanishes identically
due to destructive interference between the decay chan-
nels with σ± and π polarization. This can be under-
stood considering that only this result can be consis-
tent with the rotational symmetry of the Hydrogen atom.
We prove it by considering the two manifolds of ground
and excited states, and writing the photon count rate
as S =

∑
ee′ Gee′ρee′ where Gee′ :=

∑
g γgege′ . The

terms Gee′ are proportional to Dee′ and to the function
Fc(ωi−ωj). Using the same argumentation as in the pre-
vious section, it follows that Gee′ = 0 for ne = ne′ and
|e〉 6= |e′〉. Furthermore, for states with different princi-
pal quantum numbers, the function Fc(ωi−ωj) vanishes
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because the difference in transition frequencies is large
compared to τ−1

c . Thus, for photo-detection over the full
4π solid angle, the cross damping terms have no mea-
surable effect on the signal. We remark that this is true
provided that there is no polarization filter.

The shift due to the cross-damping term can be differ-
ent from zero in presence of a polarization filter, or for a
finite detection angle Ω. We focus on the latter case for
determining the line pulling observed when a beam of Hy-
drogen atoms is illuminated by a probe laser which drives
quasi-resonantly the 2S-4P transition. Figure 3 displays
the line pulling as a function of the detection angle of four
different detection setups. Specifically, we consider the
detection solid angle Ω in subplots (a)-(c) and the detec-
tion azimuthal angle in (d). In general, the line pulling is
a non-linear function of the detection angle and vanishes
for specific angles. The maximum it can reach is of the
order of 60 kHz, and this is majorly due to the contribu-
tion of the decay channel to the 1S state. The (c) detec-
tion scheme is analogous to the one implemented in Ref.
[30]. We discuss in particular the (d) detection scheme,
since it shows non-trivial points at which the line pulling
vanishes. Here, the photons are detected at a stripe de-
fined by an arbitrary polar angle φ and an azimuthal
angle θ with uncertainty δθ. For a negligible width of
the stripe δθ � 1 one obtains lines on the unit sphere.
Because of the rotational symmetry, the line pulling of
the complete line then equals the line pulling of arbitrary
spots on the line. For θ → 0, π and δθ → 0, namely,
detection around the z pole, we obtain ∆L ' 60 kHz
for the resonance to 42P1/2 and ∆L ' −60 kHz for

the 42P3/2 resonance. Moreover ∆L vanishes for the

angles θ = tan−1(
√

2) and θ = π − tan−1(
√

2) (note

that tan−1(
√

2) = sin−1(
√

2/3)). Most importantly, the
range of the line pulling caused by the cross-damping
interference includes shifts of the order or larger than
10 kHz, that can lead to a 4% deviation of the correspond-
ing value for the estimated r.m.s. proton radius [30], and
is of the order of the discrepancy between the values ex-
tracted from atomic and muonic Hydrogen spectroscopy
[6, 30, 31].

IV. CHOICE OF THE COARSE-GRAINING
TIME

We finally analyze the dependence of the master equa-
tion’s coefficients on the coarse-graining time τc, which
is the only free parameter of this theory [23]. We per-
form an optimization following the procedure in Ref. [24].
Fig. 4 displays the maximum line pulling as a function of
τc: it is constant for τc in the interval [10−13 s, 10−11 s],
which corresponds to the range of validity of the coarse-
graining. Large deviations are found for τc > 10−10s, be-
ing this value too close to the atomic relaxation time: For
steps of this order or larger, in fact, the coarse-graining
averages out the cross-damping terms.

V. CONCLUSIONS

In conclusion, we have theoretically derived a master
equation using the coarse-graining procedure, which sys-
tematically includes the terms due to cross interference
in the emission into the modes of the EMF and preserves
positivity, without the need of ad hoc assumptions. We
applied our predictions to high-precision spectroscopy on
the 2S-4P transition in Hydrogen, and showed that these
cross-interference terms shall be accurately taken into
account in experiments aimed at testing the validity of
quantum electrodynamics.

Our equations further predict that dynamics due to
cross interference could be better observed for atoms
with no hyperfine structure and/or coupled to light in
confined geometries [33]. In this case also the dynamics
due to cross-shifts could become visible. Extension of
this treatment to other systems, where analogous inter-
ference effects can arise [34], is straigthforward as long as
the Markov approximation is valid.
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Appendix A: Definition of the Line Pulling

In the following, we compare the definition of the line
pulling in Ref. [19], Eq. (12) to our definition given by

∆L :=
[
δc
n − δnc

n

]
/(2π). (A1)

In the main text we approximate the photon count rate
in the 2S-4P transition in Hydrogen using a sum of two
Lorentzians of the form

S(x) ≈ a1

π

b1/2

(x− x1)2 + (b1/2)2

+
a2

π

b2/2

(x− ω0 − x2)2 + (b2/2)2
, (A2)

where x1 and x2 are the approximated positions of the
resonance maxima in Hz (δn := 2πxn), b1 and b2 are the
homogeneous linewidths, a1 and a2 are the areas of the
resonance curves and ω0 is the level splitting between the
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4P1/2 and 4P3/2 states. The line pulling ∆L of the two
resonance peaks can then be defined as

∆L(22S1/2 − 42P1/2) := xc
1 − xnc

1 , (A3a)

∆L(22S1/2 − 42P3/2) := xc
2 − xnc

2 , (A3b)

where xc
n are the line positions obtained from fitting spec-

tra where the cross damping terms have been taken into
account and xnc

n are the spectra where all cross damping
terms have been set to zero in the master equation in the
main text. The results for the line pulling are displayed
in Fig. 3.

We now first introduce the definition of the line pulling
as found in Ref. [19] and then compare the line pulling
presented in Fig. 3 to the values obtained using Eq. (12)
in [19]. In Ref. [19] the individual resonance peaks of the
photon count rate are approximated by the function

C

x2 + Γ2
r/4

+ ax+
bx

x2 + Γ2
r/4

=
C

[x−∆(x)]2 + Γ2
r/4

(A4)
where Γr is the linewidth and a, b and C are fit param-
eters. ∆(x) can be approximated by

∆(x) =
a

2C
(x2 + Γ2

r/4)2 +
b

2C
(x2 + Γ2

r/4). (A5)

Applying the fitting function of Eq. (A5) to the respective
peaks in the spectrum where the cross damping terms
have been taken into account, the parameters can be ex-
tracted. Ref. [19] gives two possible definitions of the line
pulling, which we recall:

Taking ’the shift of the resonance curve at the half-
maximum value as the experimentally observable mea-
sure of the apparent shift of the line center’ [19] one ob-
tains (this is Eq. (12) in [19])

∆

(
Γr
2

)
=
aΓ4

r

8C
+
bΓ2
r

4C
, (A6)

while taking ’the shift of the maximum of resonance’ [19]
yields (this is Eq. (13) in [19])

∆(0) =
aΓ4

r

32C
+
bΓ2
r

8C
. (A7)

As the terms containing the parameter a in these two
equations are negligible for the system under considera-
tion, the line pulling as defined in Eq. (A6) is approxi-
mately twice as large as in (A7).

We now apply both the definition in Eq. (A6) and our
own definition in Eq. (A3) to the same spectra that we
extract from our master equation. In particular we in-
vestigate the θ = π/2 point in Fig. 4 (d) and compare
the resulting line pullings.

For the 42P1/2 resonance we obtain

1. ∆L = −30326.1 Hz using our definition,

2. ∆L = −30547.9 Hz using Eq. (12) in [19] (respec-
tively Eq. (A6) in this appendix).

Moreover for the 42P3/2 resonance we obtain

1. ∆L = 12139.5 Hz using our definition,

2. ∆L = 12175.9 Hz using Eq. (12) in [19] (respec-
tively Eq. (A6) in this appendix).

In both cases the resulting relative deviation in the ob-
tained value for the line pulling is smaller than 1 % and
thus the definition in the main text and the definition
using Eq. (12) in [19] can be considered equivalent.
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