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Despite ubiquitous, quantum systems out of equilibrium are much less understood than systems at equilib-

rium. Progress in the field has benefited from a symbiotic relationship between theoretical studies and new ex-

periments on coherent dynamics. The present work strengthens this connection by providing a general picture

of the relaxation process of isolated lattice many-body quantum systems that are routinely studied in experi-

ments with cold atoms, ions traps, and nuclear magnetic resonance. We show numerically and analytically that

the long-time decay of the probability for finding the system in its initial state necessarily shows a powerlaw

behavior ∝ t−γ . This happens independently of the details of the system, such as integrability or presence

of disorder. Information about the spectrum, the structure of the initial state, and the number of particles that

interact simultaneously is contained in the value of γ. From it, we can anticipate whether the initial state will or

not thermalize.

A great deal of effort has recently been put into improving

our understanding of isolated many-body quantum systems

quenched far from equilibrium. This is in part motivated by

the possibility of investigating the coherent evolution of these

systems for long times with different experimental setups, in-

cluding those with ultracold atoms [1, 2], trapped ions [3, 4],

and nuclear magnetic resonance (NMR) [5, 6]. Aligned with

these efforts, this work characterizes and justifies the dynami-

cal behavior at different time scales of experimentally accessi-

ble integrable and chaotic lattice many-body quantum systems

with and without disorder. From this analysis, a new criterion,

based exclusively on dynamics, is introduced for identifying

which systems can thermalize.

The survival probability (probability for finding the system

in its initial state at time t) and the Loschmidt echo (measure

of the revival of the initial state after a time-reversal opera-

tion) have been extensively considered in the analysis of quan-

tum systems out of equilibrium [7–14]. Several works tried to

establish a correspondence between the initial exponential or

Gaussian decays with quantum chaos [13–18] and others fo-

cused on the onset of powerlaw decays at long times [7–12].

In the case of continuous models, the algebraic behavior of the

survival probability has been associated with the presence of

bounds in the spectrum [7–9] and in disordered noninteracting

systems at the metal-insulator transition, the powerlaw expo-

nent has been related with fractal dimensions [10–12]. Ex-

changes between these different communities have been very

limited. Here, we unify these multiple perspectives into a sin-

gle framework and use it to describe the evolution of lattice

many-body quantum systems.

The survival probability of the initial state is defined as
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∣
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where Eα are the eigenvalues of the system Hamiltonian

H , C
(0)
α = 〈ψα|Ψ(0)〉 are the overlaps of the initial state

|Ψ(0)〉 with the eigenstates |ψα〉 of H , and ρ0(E) =

∑

α |C(0)
α |2δ(E − Eα) is the energy distribution of |Ψ(0)〉

weighted by the components |C(0)
α |2, the so-called local den-

sity of states (LDOS). The survival probability is the absolute

square of the Fourier transform of the LDOS. All information

about the evolution of F (t) is contained in ρ0(E).

We verified that the initial decay of the survival probabil-

ity is dissociated from the regime (integrable or chaotic) of

the Hamiltonian [19–24], but depends on the strength of the

perturbation. We now show that at long times, regardless of

how fast the initial evolution may be, the dynamics necessar-

ily slows down and becomes powerlaw, F (t) ∝ t−γ . The

characterization of the long-time dynamics and its connection

with the viability of thermalization are the central topics of

this work.

We show that in realistic many-body quantum systems with

two-body interactions, 0 ≤ γ ≤ 2. The value of the power-

law exponent indicates the level of delocalization of the initial

state in the energy eigenbasis. When the initial state samples

only a portion of the Hilbert space and the LDOS is sparse,

γ < 1 and thermalization does not happen. When the ini-

tial state is chaotic, its components C
(0)
α are uncorrelated and

spread over its entire energy shell [25–28], so thermalization

is guaranteed [28–34]. In the case where the LDOS is er-

godically filled, γ = 2. From the values of γ, one can thus

anticipate whether the initial state will or not thermalize. We

also discuss the non-realistic scenario of full random matrices,

where the powerlaw exponent reaches the upper bound γ = 3.

Time Scales.— The system is initially prepared in an eigen-

state of the unperturbed Hamiltonian H0, which is abruptly

quenched into H = H0 + gV , where g is the strength

of the perturbation V . At very short times, the decay of

the survival probability is quadratic [35], as derived from

the expansion F (t ≪ σ−1
0 ) ≈ 1 − σ2

0t
2, where σ0 =

[
∑

α |C(0)
α |2(Eα − E0)

2]1/2 is the width of the LDOS and

E0 =
∑

α |C(0)
α |2Eα = 〈Ψ(0)|H |Ψ(0)〉 is the energy of the

initial state.

After the initial quadratic behavior, whether F (t) switches

or not to an exponential decay depends on the strength g of

the perturbation. The exponential decay is valid in the Fermi
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golden rule regime, where the typical matrix elements of gV
are larger than the mean level spacing and the LDOS has a

Lorentzian form. However, for very strong perturbations, g →
1, the LDOS is broader. In many-body quantum systems with

two-body interactions, where the density of states is Gaus-

sian [36–38], the limiting shape of the LDOS is also Gaus-

sian, resulting in the Gaussian decay F (t) = exp(−σ2
0t

2)
[15, 16, 19–24, 39]. Exponential and Gaussian decays can

thus occur in both integrable and chaotic models [19–24]. The

picture becomes more subtle at long times, where the power-

law behavior∝ t−γ emerges and the filling of the LDOS plays

a key role.

Causes of the powerlaw decay.– We discuss two distinctive

causes for the long-time algebraic decay of the survival prob-

ability.

Case 1 is related to the unavoidable presence of a lower

bound Elow in the energy spectrum of any real quantum sys-

tem. This point was put forward already in 1957 [40] and

in several other early works [41–46]. At long times, the en-

ergy bound leads to the partial reconstruction of the initial

state. This results in the powerlaw decay of continuous many-

particle models [7–9] and, as explained here, also of finite

lattice many-body quantum systems with ergodically filled

LDOS.

Case 2 is induced by the correlations that are present in

nonchaotic eigenstates. They are typical of disordered sys-

tems undergoing localization with [23, 24] or without interac-

tions [10–12] and, as argued here, appear also in clean inte-

grable systems. The powerlaw exponent due to correlations is

smaller than that resulting from energy bounds.

The exponents of Case 1 can be derived from asymptotic

expansions of the integral form of Eq. (1), assuming that

ρ0(E) is absolutely integrable [47] and that its derivatives ex-

ist and are continuous in [Elow,∞]. Two scenarios are identi-

fied [48, 49]:

(i) If limE→Elow
ρ0(E) > 0, then at long times F (t)∝ t−2.

(ii) If ρ0(E) decays abruptly close to the lower bound,

such that ρ0(E) = (E − Elow)
ξη(E) with 0 < ξ < 1 and

limE→Elow
η(E) > 0, then F (t) ∝ t−2(ξ+1).

These results are obtained for continuous functions. Yet we

show that they remain valid even in the case of discrete spectra

provided |Ψ(0)〉 is chaotic and the LDOS is ergodically filled.

To determine if the initial state is chaotic, one performs

scaling analysis of the inverse participation ratio (IPR) of

|Ψ(0)〉 written in the energy eigenbasis, IPR0 ≡ ∑

α |C(0)
α |4.

IPR−1
0 is the effective number of energy eigenstates contribut-

ing to the initial state. A chaotic |Ψ(0)〉 samples most energy

eigenbasis without any bias, IPR0 ∝ D−1, where D is the

dimension of the Hilbert space. Hence, as the system size

increases, ρ0(E) becomes homogeneously filled and close to

an absolutely integrable function. An illustrative example is

that of an arbitrary initial state projected onto the eigenstates

of a full random matrix (FRM). Since these eigenstates are

pseudo-random vectors, the overlaps C
(0)
α are random vari-

ables and IPR0 ∼ 3/D [29]. Even though realistic chaotic

many-body quantum systems with two-body interactions are

not described by FRMs, because their Hamiltonian matrices

are banded, sparse, and random elements may not even ex-

ist, they still follow random matrix statistics and their bulk

eigenstates are close to random vectors [29, 50, 51]. After a

strong perturbation into such Hamiltonians, initial states with

energies away from the edges of the spectrum also give ergod-

ically filled LDOS [25–33].

Case 1(i) holds for realistic chaotic many-body quantum

systems, where the LDOS is Gaussian and γ = 2. For FRM,

the LDOS is semicircle [19], so Case 1(ii) applies and γ = 3.

In Case 2, the powerlaw exponent is obtained from the cor-

relation functionC(ω) ≡ ∑

α,β |C
(0)
β |2|C(0)

α |2δ(Eα−Eβ−ω)
present in F (t) =

∫∞
−∞ dωeiωtC(ω). A powerlaw decay of

C(ω → 0) ∝ ωγ−1, with γ < 1, leads to F (t) ∝ t−γ [10–

12, 52–54]. The more correlated the components of |Ψ(0)〉
are, the smaller the exponent γ is. This exponent coincides

with the fractal dimension φ obtained from the scaling anal-

ysis of IPR0 ∝ Dφ. This relation was found in studies of

Anderson localization [10–12] and of many-body localiza-

tion [23, 24]. We show that it holds also in noninteracting

integrable models.

This work analyzes how γ depends on the properties of

the spectrum, the structure of the initial state, and the num-

ber of particles that interact simultaneously. We consider fi-

nite many-body quantum systems described by realistic lat-

tice models with two-body interactions and by banded random

matrices. A complete general picture is given for disordered

models and specific cases are treated with clean Hamiltonians.

Realistic many-body quantum systems.– We consider one-

dimensional spin-1/2 models with L sites described by

H =
L
∑

n=1

hnS
z
n +HNN + λHNNN , (2)

HNN = J
∑

n

(

Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1

)

,

HNNN =
∑

n

J
(

Sx
nS

x
n+2 + Sy

nS
y
n+2 +∆Sz

nS
z
n+2

)

.

Hamiltonian H contains nearest-neighbor (NN) and possi-

bly also next-nearest-neighbor (NNN) couplings; ~ = 1 and

Sx,y,z
n are the spin operators on site n. hn are random numbers

from a uniform distribution [−h, h], the system is clean when

h = 0 and disordered otherwise. J is the coupling strength, ∆
the anisotropy parameter, and λ the ratio between NNN and

NN couplings. J = 1 sets the energy scale. The Hamiltonian

conserves total spin in the z-direction Sz . We work with the

largest subspace Sz = 0 of dimension D = L!/(L/2)!2.

The integrable limits of H include the noninteracting XX

(∆, λ, h = 0) and the interacting XXZ (∆ 6= 0, λ, h = 0)

models. The system becomes chaotic as λ increases from

zero [55–58] and the level spacing distribution changes from

Poisson [59] to a Wigner-Dyson form [60]. It also becomes

chaotic when the disorder strength increases from zero and

h < J [61–63].

The initial states considered are site-basis vectors, where

the spin on each site either points up or down in the z-

direction. An example is the experimentally [64] accessible

Néel state, | ↑↓↑↓↑↓↑↓ . . .〉, that has been extensively used in

studies of the dynamics of integrable spin systems. Site-basis
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vectors evolve under H (2) after a strong perturbation, where

the anisotropy parameter is quenched from ∆ → ∞ to a fi-

nite value. The envelope of the LDOS for these initial states

is therefore Gaussian.

Realistic disordered systems.– Figure 1 shows the survival

probability of site-basis vectors under H (2) with ∆ = 1,

λ = 0 and various values of h. The initial decay is Gaussian,

as expected from the Gaussian LDOS. It agrees very well with

the analytical expression F (t) = exp(−σ2
0t

2), as seen for the

bottom curve of Fig. 1 (a). Subsequently the dynamics slows

down and becomes powerlaw for all curves.
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FIG. 1: Survival probability (a) and f(t) (b), (c). In (a): from bottom

to top, h = 0.2, 0.3, . . . 0.9, h = 0.95, 1, 1.25, . . . 3, h = 3.5, 4.

Thick solid line: h = 1 with γ ∼ 1. Circles: analytical Gaussian

decay F (t) = exp(−σ2

0t
2). In (b) and (c): numerical curve (solid),

const−L−1ln t−γ (dashed). Averages over 105 data of disorder re-

alizations and initial states with E0 ∼ 0; L = 16, closed boundaries.

When the disorder strength is small, 0 < h < 1, the sys-

tem is chaotic and the LDOS is very filled. This is corrob-

orated from the analysis of level statistics and by computing

the inverse participation ratio averaged over initial states and

random realizations. One finds that 〈IPR0〉 ∝ D−1. For the

value of h where 〈IPR0〉 is maximum, the decay of F (t) at

long times is ∝ t−2, as illustrated with the bottom curve in

Fig. 1 (a). For other values of h in (0, 1], we have the interme-

diate region, where 1 ≤ γ < 2. These values may result from

a competition between weak correlations and energy bounds,

but this needs to be further investigated.

The bottom curve of Fig. 1 (a) is isolated in Fig. 1

(c), which shows the rescaled survival probability f(t) =
−(1/L) lnF (t) [65, 66]. For L ≫ 1, this quantity is in-

dependent of L [67]. Figure 1 (c) is a clear example of the

powerlaw decay caused by energy bounds [Case 1(i)]. The

Fourier transform of a Gaussian LDOS that has lower Elow

and upper Eup bounds, as in our case, leads to F (t) =

e−σ2
0
t2

4N 2

∣

∣

∣
erf

(

E0−Elow+iσ2

0
t√

2σ0

)

− erf
(

E0−Eup+iσ2

0
t√

2σ0

)∣

∣

∣

2

, where

erf is the error function and N is a normalization constant

that depends on L through the energy bounds and σ0. At long

times, after dropping the oscillations from the sinusoidal term

cos[t(Eup + Elow)], the expression becomes F (t ≫ σ−1
0 ) ≃

(2πσ2
0t

2N 2)−1
∑

k=up,low e
−(Ek−E0)

2/σ2

0 , from where the

t−2 powerlaw decay is evident.

When h = 1, we get γ ∼ 1. This curve is depicted with

a thick line in Fig. 1 (a). Above this line, h > 1 and γ < 1.

An example with γ ∼ 1/2 is isolated in Fig. 1 (b). This γ is

close to the exponent φ obtained from the scaling analysis of

IPR0 ∝ Dφ [23]. This example belongs to Case 2.

Figure 1 (a) demonstrates that with the disordered XXZ

model, we can obtain all powerlaw exponents accessible to

realistic lattice many-body quantum systems with two-body

interactions. By varying h, every γ ∈ [0, 2] can be reached.

Banded random matrices.– Algebraic decays faster than

t−2 also signal the ergodic filling of the LDOS. They are pos-

sible if instead of two-body interactions, many-body random

interactions are included. As the number of particles that in-

teract simultaneously grows, increasing the number of uncor-

related nonzero elements in the Hamiltonian matrix, the den-

sity of states transitions from Gaussian to semicircle [36]. The

latter is typical of FRMs [60]. This transition is reflected also

in the shape of the LDOS [19, 20, 27, 68, 69]. The Fourier

transform of a semicircle gives F (t) = [J1(2σ0t)]
2/(σ2

0t
2),

where J1 is the Bessel function of the first kind [19, 20].

The decay at short times is faster than Gaussian and the

asymptotic expansion reveals a powerlaw decay with γ = 3,

F (t ≫ σ−1
0 ) ≃ [1 − sin(4σ0t)]/(2πσ

3
0t

3). This is an ex-

ample of Case 1(ii), where for the semicircle, ξ = 1/2,

η(E) = (2πσ2
0)

−1(2σ0 − E)1/2, and Elow = −2σ0.
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FIG. 2: F (t) for basis vectors evolving under PBRM with

b = 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 3000 (solid) from top to

bottom. They correspond respectively to the fitted γ ∼

0.1, 0.5, 0.6, 0.7, 0.9, 1.2, 1.4, 1.9, 2.2, 2.8 (dashed). Analytical

F (t) = [J1(2σ0t)]
2/(σ2

0t
2) (dotted); D = 3432. Averages over

100 realizations and 343 initial states with E0 ∼ 0.

To illustrate the increase of the value of γ from 2 to the

upper bound γ = 3, we consider powerlaw banded random

matrices (PBRM) [70–72]. Despite the success of FRMs in

describing statistically the spectrum of complex systems, they

imply the unphysical scenario of all particles interacting si-

multaneously. Banded random matrices were introduced [68]

in an effort to better approach random matrices to real sys-

tems. We use PBRMs that preserve time reversal symmetry

and whose elements are real random numbers from a Gaus-

sian distribution [73]: 〈Hnn〉 = 0, 〈H2
nn〉 = 2, 〈H2

nm〉 =
1/[1 + |(n −m)/b|2] for n 6= m. The value of b determines

how fast the elements decrease as they move away from the

diagonal. When b→ D, the PBRM coincides with a FRM.
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In Fig. 2, we show the survival probability for PBRMs with

different values of b. As b grows from ∼ 50 to D and the

LDOS transitions from Case 1(i) to Case 1(ii), γ increases

from 2 to 3. In the other direction, as b decreases below 50,

the eigenstates become less spread out and γ decreases below

2. With PBRMs, we obtain a general picture of the behavior

of the survival probability, covering all values of γ, without

any restriction to a specific model.

Realistic clean systems.– In Fig. 3, we study the Néel state

evolving under a clean chaotic Hamiltonian (a,b) and under

the XX Hamiltonian (c,d). The envelope of the LDOS is

Gaussian in both cases (a,c), but visibly sparse in Fig. 3 (c).
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FIG. 3: LDOS (a,c) and f(t) (b,d) for the Néel state under the chaotic

open H (2) with h = 0,∆ = 1/2, λ = 1 (a,b) and under the closed

XX H (c,d). In (a,c): numerical LDOS (shaded area) and Gaussian

envelope (solid line). In (b): numerical results for L = 22 (light),

L = 24 (dark), and const−L−1ln t−2 (dashed). In (d): L = 400
(solid) and fNéel

XX (t) (dashed).

The inverse participation ratio of the Néel state in Fig. 3

(a) gives IPR0 ∝ D−1. In Fig. 3 (b), we observe a powerlaw

decay ∝ t−2. The agreement between the t−2 decay and our

numerical results suggests that the LDOS must be ergodically

filled and that thermalization should occur. Several studies for

this model indeed confirm thermalization [30, 31, 74, 75]. We

found γ = 2 also for periodic boundary conditions; chaotic

models with different values of λ and ∆, including ∆ = 0;

and other initial states. A t−2 decay has also been speculated

for the chaotic Ising model with longitudinal and transverse

fields [76].

An analytical expression exists for F (t) for the Néel state

evolving under the periodic XX model [66, 77]. Its ex-

pansion for long times, Lt−1/2 → 0, gives fNéel
XX (t) →

−L−1 ln
[

2−L
(

1 + 2−1Lt−1/2
)]

, as indeed confirmed with

the dashed line in Fig. 3 (d). Such small γ indicates that the

LDOS is not ergodically filled, as seen in Fig. 3 (c) and cor-

roborated below by calculating IPR0.

Among the total D = L!/(L/2)!2 components of the

Néel state, only 2L/2 are nonzero and they are all equal,

|C(0)
α |2 = 2−L/2 [77]. This means that IPR0 = 2−L/2. Us-

ing the Stirling approximation for lnD ≃ L ln 2, we find that

IPR0 ≃ D−1/2, so φ = 1/2. One sees that, similarly to what

is done in disordered systems [23, 24], the powerlaw expo-

nent for the Néel state in the XX model, γ = 1/2, can also be

extracted from the scaling analysis of IPR0.

The nonzero |C(0)
α |2 are spread out in energy, result-

ing in a very sparse and inhomogeneous LDOS. The non-

ergodicity of this state indicates that thermalization should

not occur. One way to confirm thermalization is by

verifying the coincidence of the diagonal entropy Sd =

−∑

α |C(0)
α |2 ln |C(0)

α |2 [78] and the thermodynamic entropy,

Sth = ln
∑

α e
−Eα/T − (

∑

αEαe
−Eα/T )/(T

∑

α e
−Eα/T )

[30]. Here, Sd = (L/2) ln 2 and Sth = lnD [Note that

the Néel state has E0 = 0 and thus infinite temperature T ].

The two entropies do not coincide even in the thermodynamic

limit, where (Sth − Sd)/L = ln
√
2.

Conclusions.– We have shown that the long-time decay of

the survival probability in isolated lattice many-body quantum

systems is algebraic, F (t) ∝ t−γ , be the system integrable

or chaotic, interacting or noninteracting, clean or disordered.

The entire range of γ ∈ [0, 3] can be reached with banded ran-

dom matrices, while for realistic systems with two-body inter-

actions, γ ∈ [0, 2]. From the value of γ, we infer how much

delocalized the initial state is in the energy eigenbasis. This

provides a way to identify whether the initial state will ther-

malize based exclusively on its dynamics. Exponents γ ≥ 2
signal ergodicity and therefore thermalization. Advantages of

this approach to the problem of thermalization include: any

initial state can be considered, numerical methods other than

exact diagonalization are available for analyzing dynamics,

and a natural connection is established with experiments that

routinely study the dynamics of many-body quantum systems.

Acknowledgments

This work was supported by the NSF grant No. DMR-

1147430 and funding from Yeshiva University. EJTH ac-

knowledges funding from CONACyT, PRODEP-SEP and

VIEP-BUAP, Mexico. We thank Adolfo del Campo, Yevgeny

Bar Lev, and Marcos Rigol for useful discussions.

[1] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,
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