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We investigate PT -symmetric quantum systems ultra-weakly coupled to an environment. We find that
such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical
map describing the evolution is then determined explicitly using a quantum canonical transformation.
Furthermore, we provide an explanation of whyPT -symmetric dephasing type interactions lead to critical
slowing down of decoherence. This effect is further exemplified with an experimentally relevant system –
a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.
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Introduction. Symmetry is one of the most important
and profound concepts in physics [1, 2] which explains the
modus operandi of many complex physical and biological
systems [3]. It expresses how systems remain unaffected
by perturbations [4]. Therefore, a violation of symmetry
(or its breakdown [5]) constitutes an irreplaceable source
of valuable information regarding properties of physical
systems [6–8]. There is an abundance of useful transfor-
mations providing necessary ingredients to understand and
investigate quantum systems. Among them, there are two
of special physical significance: the time reversal oper-
ation T [9] and parity – a mirror-reflection symmetry –
P [10]. These two transformations are both hermitian and
independent of each other, i.e., [P, T ] = 0. Systems that
are invariant under the joint PT operation are called PT -
symmetric [11]. Such effectively open systems exhibit dy-
namics with balanced loss and gain [12, 13]. Recent results
have proven to be of great theoretical [14–17] and exper-
imental [18–21] importance, and PT -symmetric quantum
systems have been realized in many different setups, such
as optical [22], optomechanical [23] or microcavity based
experiments [12, 24].

Contemporary studies have revealed that important
(non)equilibrium properties and thermodynamic relations
also hold for PT -symmetric quantum systems; e.g., the
Carnot theorem [14, 25] and the Jarzynski equality [26,
27]. Nevertheless, to further advance our understanding
of PT -symmetric quantum systems the next natural step
is to understand decoherence [28]. This is particularly im-
portant when one wants to store and process information in
quantum systems [29–31].

A comprehensive description of the system’s dynamics
requires tracing out the environmental degrees of freedom.
Unfortunately, except for a few analytically solvable mod-
els, finding such reduced dynamics %S(t) has proven to be
extremely complicated, often impossible, even for hermi-
tian systems [32]. Recently, it has been shown that all PT -
symmetric quantum systems that admit real spectrum can
be represented in a physically equivalent way by hermitian

Hamiltonians [33]. One would therefore expect them to
be influenced by decoherence in a similar manner. In this
Letter, however, we demonstrate features that are unique
to PT -symmetric systems, resulting from the way they in-
teract with their environment. In particular, we investigate
a PT -symmetric quantum system coupled ultra-weakly to
a hermitian environment [34]. Our motivation is twofold:
First, very weak coupling guarantees that no heat is ex-
changed between the system and environment [35, 36].
This leads to a phenomenon known as pure decoherence
or dephasing [37, 38]. Only quantum information is al-
lowed to enter or leave the system so that any effect caused
solely by decoherence can be quantified easily. Finally, fol-
lowing the Ockham’s razor principle [39], hermiticity of
the environment is assumed for the sake of simplicity and
transparency of our description.

Under these assumptions, we find that such open systems
evolve under PT -symmetric, purely dephasing and unital
dynamics. The dynamical map describing the evolution
is then determined explicitly using a quantum canonical
transformation. Therefore, as an immediate consequence
of dephasing and unital dynamics we find the validity of
the Jarzynski equality [40]. Furthermore, we explain how
a PT -symmetric dephasing channel leads to critical slow-
ing down of decoherence. This effect is exemplified us-
ing an experimentally relevant example – a PT -symmetric
qubit. Such a two-level system can be realized e.g. in op-
tics [19] or in a microcavity [21]. In particular, in the de-
velopment of practical architectures for quantum computer
systems with minimal or suppressed decoherence are ap-
pealing [41, 42]. We will see that PT -symmetric qubits
are thus significantly better suited than standard, hermitian
qubits [43].

Pure decoherence in PT -symmetric quantum systems.
Consider a PT -symmetric quantum system S interacting
with its environment, B. The composite system S+B can
be described by the following Hamiltonian

H = HS ⊗ IB + IS ⊗HB +HI, (1)
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where HS and HB are the Hamiltonians of the system and
the environment respectively, and HI describes the interac-
tion between them. In the following, we assume the usual
form of the interaction: HI = VS ⊗ VB, where both HB
and VB are hermitian yet VS is PT -symmetric. Typical ex-
amples include PT -symmetric resonators coupled weakly
to the rest of the (hermitian) Universe [44]. A particularly
interesting example arises when VS = g(HS), where g is
an arbitrary function. Since [HS, HI] = 0, there is no en-
ergy exchange between the system and its environment;
i.e., 〈HS〉 remains constant during the evolution. There-
fore, any effect of the environment on the system leads to
pure decoherence [45]. Without any loss of generality we
further assume that g(HS) = HS.

Henceforth, we focus on PT -symmetric quantum sys-
tems and show how to construct their reduced dynamics in
the presence of pure decoherence. To this end, we notice
that if the spectrum of the system is real a hermitian trans-
formation T such that hS = THST

−1 is hermitian can al-
ways be found [14]. Moreover, since hS is hermitian we
also have H†S = T 2HST

−2 which will be crucial for our
analysis. We will prove this shortly. Here, we only note
that in order to change hermiticity such a transformation
cannot be unitary. However, T preserves (canonical) com-
mutation relations (e.g. between x and p: [x, p] = i~) and
therefore will be regarded as a quantum canonical trans-
formation [46, 47]. More importantly, canonical transfor-
mations do not change expectation values of observables:
〈OS〉PT = 〈oS〉H where oS = TOST

−1.
Now, applying the canonical transformation T to the

Hamiltonian (1) yields

h = hS ⊗ IB + IS ⊗HB + hI, hI = THIT
−1, (2)

where T acts nontrivially only on the system of inter-
est. Since the two systems are now hermitian their com-
posed dynamics is described by the Liouville-von Neu-
mann equation of motion, i%̇(t) = [h, %(t)], whose unique
solution can be written as [32]

%(t)→ U(t)%(0)U(t)†, U(t) = exp(−iht). (3)

At any given time t, the reduced system’s dynamics is de-
termined by tracing out the environmental degrees of free-
dom (see e.g. [48]). Thus, one can write

%S(t) = trB{U(t)%S(0)⊗ ΩBU(t)†}, (4)

where ΩB is the initial state of the environment and trB{·}
denotes the partial trace [48]. Note that the two systems
are uncorrelated at t = 0 [49]. This requirement is crucial
for the map Φ: %S(t) = Φ[%S(0)] to be well defined [50].
However, this is not difficult to fulfill experimentally [51].

Since ΩB is a density operator, it can be expressed as
ΩB =

∑
α pα |α〉 〈α|, where pα denotes the probability

of finding the environment in state |α〉. As a result, the
reduced dynamics (4) can be rewritten using the so called
operator-sum representation [52]:

%S(t) =
∑
iKi(t)%S(0)Ki(t)

†, (5)

where the Kraus operators Ki(t) =
√
pα 〈β|U(t) |α〉 sat-

isfy
∑
iKi(t)

†Ki(t) = IS. To simplify notation we have
combined the two indices α, β into i. Moreover, Eq. (5)
defines a unital map, i.e. Φ[IS] = IS [40]. Indeed, since hS
commutes with h we also have [Ki(t),Ki(t)

†] = 0 [53].
The operator-sum representation in Eq. (5) provides the

most general description of decoherence and dissipation
for hermitian quantum systems, which results from the in-
teraction with the environment. It is often referred to as
a quantum channel, i.e., a map that is completely positive
and trace preserving - CPTP [54]. When there is only one
Kraus operator the evolution is unitary [55]. Multiplying
Eq. (5) from both sides by T−1 and T , respectively, yields

ρS(t) = T−1%S(t)T =
∑
iLi(t)ρS(0)Ri(t), (6)

where the left, Li(t), and right,Ri(t), Kraus operators read

Li(t) = T−1Ki(t)T, Ri(t) = T−1Ki(t)
†T. (7)

We see immediately that they fulfill
∑
i Li(t)Ri(t) = IS.

The last equality assures that the PT -CPTP map (7) is uni-
tal as well [56–58]. Therefore, PT -symmetric, purely de-
phasing and unital dynamics preserve the Jarzynski equal-
ity [59]. Similar conclusions have been drawn recently for
PT -symmetric Schrödinger dynamics [27]. Note, when
the dynamics is unitary then L(t) = U(t) and R(t) =
U(−t), where U(t) satisfies the Schrödinger equation. We
emphasize, however, that U(t)† 6= U(−t).

In summary, Eq. (6) provides the most general descrip-
tion of open PT -symmetric quantum systems. This is
our main result. To this end, we followed the following
recipe: First, one transforms the PT -symmetric Hamil-
tonian into its hermitian representation using a quantum
canonical transformation. Next, after solving the corre-
sponding equation of motion, the inverse map is applied to
obtain the final solution [60]. Our approach is generic and
can be applied to e.g. Lindblad master equations [61, 62] or
quantum Brownian motion [63, 64]. Also, our strategy is
not restricted just to Markovian dynamics [65]. However,
for the present purposes we have chosen a model without
heat exchange between system and environment [45].

Canonical transformation. As we have seen, to obtain
the reduced dynamics for an open PT -symmetric system
one needs to construct a canonical transformation T that re-
stores hermiticity [14]. To this end, we assume that all en-
ergies ofHS are real and experimentally accessible. For the
sake of simplicity, we also assume that the spectrum of HS
is discrete and non-degenerate. Therefore, there exists a ba-
sis |En〉 in which all energies En can be measured. Hence,
V HSV

−1 =
∑
nEn |En〉 〈En|, where 〈En|Em〉 = δnm

and all energies En are real. Now, the canonical transfor-
mation T can be calculated as T =

√
V †V . Note, since

HS is not hermitian V is not unitary (i.e., V † 6= V −1). To
show this elegant and simple result we first notice that HS
can also be rewritten as [66]

HS =
∑
nEn |ψn〉 〈φn| . (8)
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The new eigenstates |ψn〉 = V −1 |En〉 and 〈φn| = 〈En|V
form a biorthonormal basis [67, 68]. That is to say, the
following orthogonality and completeness relations hold:
〈ψn|φn〉 = δnm and

∑
n |ψn〉 〈φn| = IS. Biorthonormal-

ity also means that |ψn〉, |φn〉 are the left and right eigen-
states of HS, respectively. The corresponding eigenenergy
reads En. Since HS is PT -symmetric, it follows that [69]

PHSP = T HST = H†S . (9)

From the last equation we have P |ψn〉 = eiθn |φn〉, where
θn = 0, π. Now, T can be decomposed as T 2 = PC,
where the charge conjugation C reads [69]

C =
∑
n |ψn〉 〈ψn| P (note C2 = IS). (10)

By construction, the charge conjugation commutes with the
system Hamiltonian HS and thus from Eq. (9) it follows
immediately that T 2HS T

−2 = H†S [70]. Finally,

h†S = T−1
(
T 2HS T

−2)T = hS. (11)

In conclusion, the canonical map T indeed transforms a
PT -symmetric Hamiltonian HS into a hermitian one, hS.
The main results (6)-(7) hold for all PT -symmetric quan-
tum systems that admit real spectra [71].

Critical slowing down of decoherence. The remainder
of our work is dedicated to studying an experimentally rel-
evant example [21]. Consider a PT -symmetric qubit [72]:

HS = ασ+σ− + γσ+ + h.c. =

(
α γ
γ∗ α∗

)
, (12)

where both α and γ can be complex parameters, whereas
σ+ and σ− are the raising and lowering fermionic opera-
tors. This simple model has been extensively studied in the
literature [11, 27, 73]. Moreover, it has also been realized
experimentally both in optics [19] and semiconductor mi-
crocavities [21]. We assume the system (12) to be coupled
to a bosonic heat bath at the inverse temperature β via a
dephasing interaction. That is to say

HB =
∑
nωna

†
nan, VB =

∑
ngn

(
an + a†n

)
, (13)

where an, a†n are the bosonic creation and annihilation op-
erator, respectively [74]. They obey the canonical com-
mutation relation [an, a

†
m] = δnm. The bath’s eigen-

modes ωn and coupling constants gn are assumed to be
real. We emphasize that the above bosonic Hamiltonians
are hermitian [39]. Nevertheless, they do not commute, i.e.
[HB, VB] 6= 0. This results in nontrivial dynamics and de-
coherence.

In the following, we explicitly construct the hermitian
representation of Hamiltonian (12). Without any loss of
generality, we can choose α to be purely imaginary, i.e.
α → iα; we will also set γ = 1. Then, as long as |α| ≤ 1,
the spectrum of HS is real. It consists of two eigenvalues:
E1,2 = ∓

√
1− α2. Simple calculations show that [14]

T = U†
(
s1 0
0 s2

)
U, U =

1√
2

(
i 1
−i 1

)
, (14)
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FIG. 1. (Color online): Critical slowing down of decoher-
ence. The decoherence function D(t) decays more gradually as
α increases. Eventually, it becomes constant at the critical point
α = 1. Red line corresponds to a hermitian system (α = 0).
Parameters are: µ = −0.5, β = 0.5 and J0 = ωc = 1. For
negative α the situation is symmetric [see e.g. Eq. (18)].

where s1,2 =
√

2(1± α) and U is unitary. Therefore, the
corresponding hermitian Hamiltonian reads

hS = E1σx =

(
0 E1

E1 0

)
, (15)

where σx is the Pauli-x matrix. The resulting model de-
scribes the paradigmatic spin-boson system with effective
couplings gnE1 [75].

In what follows, we assume the initial state of the en-
vironment to be the Gibbs state, ΩB = exp(−βHB)/Z,
where Z = tr{exp(−βHB)} is the partition function [76].
The reduced dynamics %(t) = [%ij(t)]2×2 can be obtained
exactly [77]. Indeed, we have [78]

%11(t) =
1

2
−<[%12(0)e−iE1t]D(t),

%12(t) = %11(0)− 1

2
+ i=[%12(0)e−iE1t]D(t),

(16)

Moreover, %22(t) = 1− %11(t) and %21(t) = %12(t)∗ [79].
Above, symbols <(z) and =(z) denote the imaginary and
real parts of a complex number z, respectively, whereas the
decoherence function D(t) = exp(−E2

1γ(t)) quantifies
decoherence [80]. Information regarding the environment
is encoded in the temperature-dependent function γ(t),

γ(t) =

∫ ∞
0

dω
J(ω)

ω2
(1− cosωt) coth

(
~βω

2

)
, (17)

where J(ω) =
∑
n |gn|2δ(ω − ωn) is the spectral density

that characterizes the environment. Typical examples in-
clude J(ω) = J0ω

1+µ exp(−ω/ωc) for some predefined
constants J0, µ and ωc [81]. For example, when µ = 0
(Ohmic case) and βωc � 1, in the long time limit the deco-
herence function behaves like (exponential relaxation [78])

D(t) ∼ exp
[
−πJ0

(
1− α2

)
t/β
]
. (18)
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The reduced dynamics (16) can also be expressed using the
Kraus representation directly [78]. The reduced dynamics
for the original PT - symmetric qubit (12) can now be cal-
culated as ρ(t) = T−1%(t)T , where T is given by Eq. (14).

Since D(t) → 0, from Eq. (16) it is evident that the en-
vironment will eventually destroy the coherent dynamics
of the system. However, this process can be controlled by
changing α [cf. Eq. (18)]. Indeed, as depicted in Fig. 1,
decoherence becomes slower [i.e. D(t) decays more grad-
ually] as α increases. Moreover, when α→ 1 the decoher-
ence process becomes suppressed completely [82]. How-
ever, when the system is hermitian, i.e. α → 0, decoher-
ence becomes severe and quickly destroys any coherence.

To explain this phenomenon we notice that when α > 1
all eigenvalues of HS are complex. Therefore, α = 1 can
be seen as a critical point separating two physically distinct
regimes. As E1 → 0 when α → 1, it takes longer for the
system to complete one oscillation (in the Hilbert space) in
close proximity of the critical point. Precisely at that point
the dynamics “freezes out” completely. This critical slow-
ing down also affects decoherence (critical slowing down
of decoherence) because of the effective coupling strengths
gnE1 that also depend on α. Setting gn = 1/E1 removes
the α-dependence from the interaction and assists deco-
herence [83]. At the critical point ρ(t) → ∞; however,
〈OS(t)〉 = tr {%(0)oS} is finite. Therefore, when α → 1
expectation values are determined only by the initial con-
dition and remain unchanged. This is due to hS → 0 – the
“freezing out” of the dynamics.

A similar dynamical behavior manifesting itself through
the “freezing out” scenario has already been observed in
closed quantum systems. The 1D Ising model [84], where
the Kibble-Zurek mechanism [85, 86] can be applied, pro-
vides one example, another example is the Landau-Zener
problem [87] of a two level quantum system that supports
the Kibble-Zurek mechanism [88].

Summary. We have investigated a PT -symmetric
quantum system coupled to an external environment. To
this end, we have considered a particular scenario where
there is no heat exchange between these two systems and
only quantum information is allowed to enter/leave the sys-
tem. This phenomenon is known as pure decoherence or
dephasing. We have shown how to derive the reduced dy-
namics using a quantum canonical transformation.

Moreover, we have studied an experimentally relevant
example, namely a PT -symmetric qubit. Such a system
can be realized e.g. in optics [19] and microcavities [21].
In contrast to hermitian qubits, this system exhibits a phe-
nomenon that we identified as critical slowing down of de-
coherence. As we have argued, such behavior is character-
istic of every open PT -symmetric and any quantum sys-
tem whose spectrum can be divided in two physically dif-
ferent regimes [24]. When a system approaches the critical
point separating these two regimes its dynamics “freezes
out”. This critical slowing down also affects decoherence
due to the dephasing interaction. Concluding, this behav-

ior suggests thatPT -symmetric qubits may be more robust
against decoherence and therefore be better suited as com-
ponents in quantum computers [42, 43, 89].

Experimental setups that are sensitive enough to detect
the PT -symmetry breaking (i.e. the critical point) should
also be able to capture the critical slowing-down [24].
Thus, critical slowing-down of decoherence can be testable
as well, provided there is no heat exchanged with the en-
vironment. Such induced dephasing, however, can be real-
ized experimentally [90].
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