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We demonstrate how an acoustic phonon bath when coupled to a quantum dot with the help of a bichromatic

laser field may effectively form a quantum squeezed reservoir. This approach allows to achieve an arbitrary

degree of squeezing of the effective reservoir and it incorporates the properties of the reservoir into two param-

eters, which can be controlled by varying the ratio of the Rabi frequencies of the bichromatic field. It is found

that for unequal Rabi frequencies, the effective reservoir may appear as a quantum squeezed field of ordinary or

inverted harmonic oscillators. When the Rabi frequencies are equal the effective reservoir appears as a perfectly

squeezed field in which the decay of one of the polarization quadratures of the quantum dot dipole moment is

inhibited. The decay of the quantum dot to a stationary state which depends on the initial coherence is predicted.

This unusual result is shown to be a consequence of a quantum-nondemolition type coupling of the quantum

dot to the engineered squeezed reservoir. The effect of the initial coherence on the steady-state dressed-state

population distribution and the fluorescence spectrum is discussed in details. The complete polarization of the

dressed state population and asymmetric spectra composed of only a single Rabi sideband peak are obtained

under strictly resonant excitation.

PACS numbers: 42.50.Lc, 42.50.Ct, 73.21.La

I. INTRODUCTION

The study of the effect of phonons on the dynamics and co-

herent excitation of a quantum dot has been a subject of con-

siderable interest in recent years. A number of different situ-

ations have been investigated [1–15]. It includes experimen-

tal studies of the effect of phonons on the Rabi oscillations,

Autler-Townes splitting, and the Mollow triplet of the fluo-

rescence field emitted by a driven quantum dot [16–24]. In

particular, it has been observed that the linewidths of the Rabi

sidebands of the Mollow triplet increase linearly with temper-

ature and with the square of the driving field strength [25, 26].

These properties of the spectrum have been explained as aris-

ing from the coupling of the exciton transition of the quan-

tum dot to longitudinal acoustic phonons [27]. Moreover, an

interesting phenomenon of population inversions between the

excitonic states of a quantum dot located inside an optical cav-

ity and interacting with a phonon bath has been demonstrated

both theoretically and experimentally [28–32]. The investiga-

tion of this interaction in a quantum dot-cavity system has led

to the prediction of single photon sources and the realization

of single-photon devices [33–36]. The influence of a phonon

bath on the photon blockade effect in a driven dot-cavity sys-

tem and the emission of correlated and entangled photons has

also been treated [37–39].

It is well known that the decay of a quantum system can

be controlled and significantly modified by coupling the sys-

tem to a squeezed vacuum field, which is characterized by the
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noise in one of the field quadrature components reduced be-

low the usual vacuum level [40–44]. Particularly interesting

effects of the squeezed vacuum field on the atomic radiative

processes are the inhibition of the atomic decay and its de-

pendence on the squeezing phase. However, there are many

practical problems with the application of the squeezed field

produced by an external sources [45–50]. The main obstacle

is due to the requirement that nearly all the modes to which

the quantum system is coupled must be squeezed. In addi-

tion, there is a general lack of squeezed light sources coincid-

ing with convenient atomic transitions [51]. It has been pro-

posed that these difficulties could be circumvent by engineer-

ing a squeezed-reservoir-type interaction of a quantum system

rather than coupling the system to a squeezed field produced

by an external source [52, 53]. For example, Lütkenhaus

et al. [54] have studies the dynamics of a four-level system

driven by two laser fields and have shown that the system may

effectively behave as a two-level system coupled to a squeezed

reservoir.

In this paper we propose a method to construct a squeezed-

vacuum type multimode reservoir from a phonon bath based

on a suitable engineering of the coupling of the phonon bath

to a quantum dot. The quantum dot is modeled as a two-level

system and experiences fluctuations and decay of its excita-

tion that are due to the dissipative interaction with the phonon

bath. We derive the master equation for the reduced density

operator of the quantum dot and show that the phonon bath

combined together with a bichromatic laser field tuned close

to the dot’s transition frequency can result in a squeezed reser-

voir type interaction of the phonon bath with the quantum dot.

We find that the squeezing properties of the effective reservoir

and then the quantum dot’s relaxation dynamics can be con-
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trolled through variation of certain tunable system parameters

e.g., the Rabi frequencies of the bichromatic field. By vary-

ing the ratio between the Rabi frequencies of the bichromatic

field the effective squeezed reservoir displays interesting dif-

ferences in its properties. In particular, the reservoir may

appear as a quantum squeezed field of ordinary or inverted

harmonic oscillators, or can behave as a perfectly squeezed

field. When in addition to the interaction with the squeezed

reservoir, the quantum dot is driven by a resonant laser field

we find that the steady-state dressed state population distribu-

tion and in the properties of the fluorescence field can be gov-

erned by the initial coherence between the ground and excited

states of the quantum dots. The fluorescence spectrum can be

asymmetric and its structure varied with the initial coherence.

We show that the asymmetries are manifestation of the com-

plete polarization of the dressed state populations, and thus

the spectrum offers a method of observing the polarization.

The paper is organized as follows. In Sec. II, we describe

the model and derive the master equation for the reduced den-

sity operator of a quantum dot interacting with a low fre-

quency phonon bath and driven by a bichromatic laser field.

In Sec. III, we examine the conditions for quantum features

of the engineered reservoir and their dependence on the num-

ber of phonons. We distinguish between different forms of the

squeezed phonon reservoir which can be engineered, includ-

ing a perfectly squeezed reservoir and a squeezed reservoir

of inverted harmonic oscillators. In Sec. IV, we concentrate

on the dynamics of the quantum dot which in addition to the

interaction with the engineered reservoir is driven by a reso-

nant laser field. We are particularly interested in the station-

ary state and its dependence on the form of the engineered

squeezed reservoir. Section V is devoted to the discussion of

the fluorescence spectrum. The dependence of the stationary

spectrum on the initial coherence is exhibited and explained

in terms of the dressed states of the driven quantum dot. The

results are summarized in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

We consider a single quantum dot (QD) coupled to a low

frequency phonon bath and driven by a bichromatic laser

field. The quantum dot is modeled as a two-level system

with the upper state |e〉, the ground state |g〉, transition fre-

quency ω0, and transition dipole moment ~µ. The driving

field is characterized by two frequencies ω1 and ω2 and the

amplitudes ~E1 and ~E2, respectively. The components of the

laser field are tuned near the atomic resonance, at detunings

∆1 = ω1 − ω0 and ∆2 = ω0 − ω2, as illustrated in Fig. 1.

The phonon bath is treated as a quantized multi-mode reser-

voir. In practice this scheme could be realized by the bichro-

matic driving of an exciton transition between the semicon-

ductor ground state and single exciton state of an InAs/GaAs

quantum dot. Typical parameters of experimental samples of

quantum dots [17, 20] are shapes with heights of 3 − 5 nm,

base diameters of 25 − 30 nm, the exciton transition wave-

length λ0 = 950 nm (ω0/2π = 300 THz).

The total Hamiltonian of the system can be written in the

|e>

|g>

ω0

ω1

ω2

∆1

∆2

FIG. 1: Two-level system driven by a bichromatic laser field of fre-

quencies ω1 and ω2 tuned close to the atomic transition frequency ω0

at detunings ∆1 and ∆2, respectively.

form

H = H0 +H1 +H2, (1)

where H0 is the Hamiltonian of the phonon field (setting ~ =
1 throughout the paper)

H0 =
∑

p

ωpb
†
pbp, (2)

H1 is the Hamiltonian of the quantum dot plus the interaction

with the bichromatic laser field

H1 = ω0Sz

+
[

Ω1e
−i(ω1t−φ1) +Ω2e

−i(ω2t−φ2)
]

S++H.c., (3)

and H2 is the interaction Hamiltonian of the quantum dot with

the phonon reservoir

H2 =
∑

p

gpSz(bp + b†p). (4)

Here b†p and bp are the creation and annihilation operators of

mode p of frequency ωp of the phonon bath, S+(S−) is the

raising (lowering) operator and Sz is the population difference

operator of the quantum dot, and gp is the coupling strength of

the mode p of the phonon reservoir to the quantum dot. The

parameters Ω1 and Ω2 are the Rabi frequencies between the

quantum dot and the components of the laser field, which are

given by the product of the atomic transition dipole moment

~µ and the laser field amplitudes ~E1 and ~E2, respectively.

To remove the fast oscillating terms in Eq. (3), we transform

the Hamiltonian into a frame rotating with the frequency ω0

and obtain

H̃1 =
(

Ω1e
−i(∆1t−φ1) +Ω2e

i(∆2t+φ2)
)

S+ +H.c. (5)

We now derive the master equation for the reduced den-

sity operator ρ of the quantum dot subject of the driving

bichromatic field and the low frequency phonon reservoir.

In the treatment, we derive the effective interaction Hamil-

tonian between the driven QD and the phonon bath, and the

derivation closely follows the approach previously used in

Refs. [6, 7, 22, 25].
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We assume that the bichromatic field is weak so that the dy-

namics of the QD are mostly affected by the interaction with

the phonon reservoir. In order to analyze the effect of the

phonon reservoir on the QD, we define an unitary operator

U = i
∑

p

gp
ωp

(

b†p − bp
)

Sz, (6)

and make the unitary transformation of the Hamiltonian of the

system. Hence, we obtain

HT = e−iUHeiU = HR +HI , (7)

where

HR = e−iU (H0 +H2)e
iU

=
∑

p

~ωpb
†
pbp −

∑

p

g2p
4ωp

, (8)

and

HI = e−iU H̃1e
iU =

[

Ω(t)S+ +H.c.
]

+

[

∑

p

gpΩ(t)

ωp

(

b†p − bp
)

S+ +H.c.

]

+ . . . , (9)

in which

Ω(t) =
(

Ω̃1e
−i∆1t + Ω̃2e

i∆2t
)

, (10)

with Ω̃i = 〈B〉Ωi exp(iφi), and

〈B〉 = exp

[

−1

2

∑

p

(gp/ωp)
2(2n̄p + 1)

]

. (11)

Here, Ω(t) is the total time-dependent Rabi frequency of the

driving laser and n̄p ≡ 〈b†pbp〉 = [exp(ωp/kBTp) − 1]−1 is

the average occupation phonon number of a mode p, where

kB is the Boltzmann constant and Tp corresponds to the tem-

perature of the reservoir. The first term in Eq. (8) represents

the energy of the phonon reservoir, while the second term rep-

resents a shift of the energy levels of the QD due to the in-

teraction with the phonon reservoir. The shift is known in the

literature as the Lamb shift. This term is usually considered

to be absorbed into the atomic transition frequency and is not

included explicitly in the dynamics of the system. Therefore,

the Hamiltonian (8) can be simply considered as the energy of

the phonon reservoir.

The first term on the right-hand side of Eq. (9) contains the

interaction of the QD with the driving laser field. The sec-

ond term represents the interaction of the QD with the phonon

reservoir. It is in a form of the electric dipole interaction in

which the phonon reservoir couples to the dipole transition of

the QD. In the derivation of Eq. (9), we have performed a Tay-

lor expansion and have kept only the terms up to first-order in

gp. With the higher-order terms ignored, we simply limit the

interaction of the QD with the phonon reservoir to one-phonon

processes only.

It is worthwhile noting at this point that the main result of

the unitary transformation of the Hamiltonian of the system

is the coupling of the phonon reservoir to the atomic dipole

moment. Thus, with the help of the driving laser, the low

frequency phonon reservoir effectively couples to the atomic

dipole transition |g〉 ↔ |e〉.
We may transform the Hamiltonian (7) into the interaction

picture with the unitary operator U(t) = eiHRt, and find

H̃T = e−iHRtHT e
iHRt = VL(t) + VR(t), (12)

where VL(t) is the interaction of the laser with the QD, and

VR(t) =
∑

p

gpΩ(t)

ωp

(

b†pe
iωpt − bpe

−iωpt
)

S++H.c. (13)

is the interaction of the QD with the phonon reservoir. The

interaction VR(t) can be written explicitly as

VR(t) =
∑

p

gp
ωp

{[

b†p

(

Ω̃1e
i(ωp−∆)t + Ω̃2e

i(ωp+∆)t
)

− bp

(

Ω̃1e
−i(ωp+∆)t + Ω̃2e

−i(ωp−∆)t
)]

S++H.c.
}

,

(14)

where we have assumed that the components of the bichro-

matic field are equally detuned from the atomic transition fre-

quency, i.e. ∆1 = ∆2 ≡ ∆.

We see from Eq. (14) that the interaction contains terms

which oscillate at frequencies ωp − ∆ and ωp + ∆. If the

density of modes of the phonon reservoir is large only in the

vicinity of the laser field detuning ∆, then ωp ≈ ∆. In such a

case, the interaction Hamiltonian reduces to resonant, non-

oscillating terms, and nonresonant terms oscillating at fre-

quency 2∆. We can make the rotating-wave approximation

in which the resonant terms play a dominant role whereas the

nonresonant terms make much smaller contributions and can

be omitted. The interaction Hamiltonian VR(t) then simpli-

fies to

VR(t) =
∑

p

gp
ωp

{[

Ω̃1b
†
pe

i(ωp−∆)t

−Ω̃2bpe
−i(ωp−∆)t

]

S+ +H.c.
}

. (15)

Having derived the effective interaction Hamiltonian of the

driven QD with the phonon reservoir, we now turn to the

derivation of the master equation for the reduced density op-

erator of the quantum dot

ρ(t) = TrFW (t), (16)

where W (t) is the density operator of the total system, the

QD plus the phonon bath. We choose an initial state with no

correlations between the QD and the phonon bath modes

W (0) = ρF (0)⊗ ρ(0), (17)

and specify the phonon bath as a vacuum thermal bath with

the following correlations

〈bp〉 = 〈b†p〉 = 0, 〈b†pbp′〉 = n̄δ(p− p′),

〈bpb†p′〉 = (n̄+ 1)δ(p− p′), (18)
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where n̄ is the average number of phonons.

After tracing over the phonon bath operators, and using the

standard Born-Markov approximations, we arrive at the mas-

ter equation

∂

∂t
ρ = −i[VL(t), ρ] + Lbρ+ Lpρ, (19)

in which

VL(t) = Ω(t)S+ +H.c. (20)

is the interaction of the quantum dot with the bichromatic

field,

Lbρ =
1

2
Γ (2S−ρS+ − S+S−ρ− ρS+S−) (21)

represents the damping of the quantum dot at the rate Γ by

spontaneous emission to vacuum radiation modes, other than

the phonon modes, and

Lpρ = γs(2S
−ρS+ − S+S−ρ− ρS+S−)

+ γn(2S
+ρS− − S−S+ρ− ρS−S+)

− γm
(

2S+ρS+e2iφ + 2S−ρS−e−2iφ
)

, (22)

represents the damping of the quantum dot by a reservoir me-

diated by the phonon bath modes and the bichromatic field.

Here, the parameters are defined as

γs = γ1n̄+ γ2(n̄+ 1), γn = γ1(n̄+ 1) + γ2n̄,

γm = (2n̄+ 1)
√
γ1γ2, 2φ = φ1 + φ2, (23)

with

γi = 2πΩ̃2
i

∑

p

(

gp
ωp

)2

δ(ωp −∆), i = 1, 2. (24)

The assumption of the Born approximation, valid to second

orders in the quantum dot environment coupling strengths,

|gp|2 and |fk|2, where fk is the coupling strength of the kth ra-

diation mode to the quantum dot, restricts the master equation

to weak-system reservoir coupling regimes. The assumption

of the Markov approximation restricts the master equation to

times t longer than the time ∆t required for a phonon to tra-

verse the quantum dot, t ≫ ∆t = l/u, where l is the size of

a quantum dot and u is the speed of sound. Based on the typ-

ical sizes of experimental samples of an InAs/GaAs quantum

dot of l = 5 nm, ∆t ≈ 1 ps. For the Markov approximation

to be valid, the time ∆t should be shorter than any relaxation

time in the system. In practice this may well be a reasonable

assumption. For example, the radiative recombination time of

the exciton, determined by 1/Γ, is usually taken 500 − 800
ps [11, 21].

The Liouvillian (22) has a structure analogous to the damp-

ing of a two-level system by a squeezed reservoir. The pa-

rameters γs and γn correspond to incoherent damping and in-

coherent pumping rates, respectively, and γm corresponds to

the strength of two-photon correlations. A close look at the

parameters in Eq. (23) reveals that not always γs constitutes

the incoherent rate at which a population is damped by the

reservoir. We can have γs > γn as well as γn > γs. Which

of these takes place depends principally on whether γ2 > γ1
or γ1 > γ2. For γ2 > γ1, we have γs > γn. In this case,

γs can be viewed as the incoherent damping rate. Otherwise,

when γ2 < γ1, we have γn > γs that the incoherent pump-

ing rate exceeds the damping rate. In this case, the reservoir

is formed from a bath of inverted harmonic oscillators, and

the rate of transferring the population from the ground state

|1〉 to the upper state |2〉 is larger than the rate of transferring

the population from |2〉 to |1〉. It is easy to see from Eq. (23)

that the condition of γ1 > γ2 can be achieved when the Rabi

frequency Ω̃1 of the bichromatic field component tuned above

the resonance exceeds the Rabi frequency Ω̃2 of the compo-

nent tune below the resonance. Figure 2 illustrates the role

of the parameters γs and γn in the dynamics of the quantum

dot. It is seen that the roles of the parameters reverse when

γ2 > γ1 reverses to γ1 > γ2.

|g>

|e>

γ
s

γ
n ω0

(a)

|g>

|e>

γ
n

γ
s ω0

(b)

FIG. 2: Illustration of the role of the parameters γs and γn in the

dynamics of the quantum dot for (a) γ2 > γ1 and (b) γ1 > γ2.

Apart from the damping by the squeezed reservoir there is

also a contribution from the damping by the radiation field

modes, Eq. (21). If the phonon bath modes occupy all modes

to which the quantum dot is coupled, Γ ∼ |fk|2 = 0 and then

the quantum dot is damped solely by the squeezed reservoir.

However, if there is a small fraction of modes not occupied by

the phonon bath modes, Γ 6= 0, and then the quantum dot is

damped by both the squeezed reservoir and the ”unsqueezed”

radiation modes.

To investigate how efficient the phonon bath together with

the bichromatic field is in the creation of a squeezing type

reservoir to the quantum dot, we compare the master equa-

tion (22) with the equation when a two-level system is illu-

minated by a squeezed vacuum field produced by an external

squeezing source, such as an optical parametric oscillator [47–

49]. The squeezed vacuum field is characterized by the corre-

lation functions [40–44]

〈aka†k′〉 = (N + 1)δk,k′ ,

〈a†kak′〉 = Nδk,k′ ,

〈akak′〉 = |M |e−2iΦδ2ks−k,k′ ,

〈a†ka
†
k′〉 = |M |e2iΦδ2ks−k,k′ , (25)

where ak(a
†
k) is the annihilation (creation) operator for mode

k of the squeezed field, N is the number of photons in the
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field, the parameter |M | determines the degree of two-photon

(squeezing) correlations between modes symmetrically lo-

cated about the squeezing carrier mode 2ks, andΦ is the phase

of the field. The parameter |M | may fall into one of the two

separate regions

|M | −N < 0 or N < |M | ≤
√

N(N + 1). (26)

If |M | falls into the region of |M | < N , the field corre-

sponds to the so-called classically squeezed field in the sense

that fluctuations in one of the quadratures of the field ampli-

tudes are reduced but not below the shot-noise level. If |M |
falls into the region of N < |M | ≤

√

N(N + 1), the field

is then a quantum squeezed field in the sense that the fluctua-

tions of one of the quadratures are suppressed below the shot-

noise level. The equality |M | =
√

N(N + 1) corresponds to

maximal correlations, an ideal squeezed field. Thus, there are

lower and upper limits, |M | = N and |M | =
√

N(N + 1),
respectively, for the quantum correlations of the squeezed

field.

The interaction of a two-level system with a reservoir char-

acterized by the correlation functions (25) leads to the follow-

ing master equation [40–44]

Lpρ =
1

2
γ (N + 1) (2S−ρS+ − S+S−ρ− ρS+S−)

+
1

2
γN(2S+ρS− − S−S+ρ− ρS−S+)

− 1

2
γ|M |

(

2S+ρS+e2iΦ + 2S−ρS−e−2iΦ
)

, (27)

where γ is the spontaneous emission rate of the atomic transi-

tion.

Matching coefficients in Eqs. (22) and (27), we find that

for γ2 > γ1:

γs − γn → 1

2
γ, γn → 1

2
γN, γm → 1

2
γ|M |. (28)

Similarly, for γ1 > γ2:

γn − γs →
1

2
γI , γs →

1

2
γIN, γm → 1

2
γI |M |, (29)

where the subscript ”I” stands for inverted harmonic oscilla-

tor. Thus, the effective squeezing type reservoir can be de-

scribed by field operators bk and b†k satisfying the following

correlation functions (γ2 > γ1):

〈bkb†k′〉 =
γs

γ2 − γ1
δk,k′ ,

〈b†kbk′〉 = γn
γ2 − γ1

δk,k′ ,

〈bkbk′〉 = γm
γ2 − γ1

e−2iφδ2ks−k,k′ ,

〈b†kb
†
k′〉 =

γm
γ2 − γ1

e2iφδ2ks−k,k′ . (30)

As we have mentioned above, there are lower and upper

limits for the quantum correlations of the squeezed field. If

we evaluate the lower limit |M | − N according to Eq. (28),

we find the result

|M | −N =

√
γ1 − n̄

(√
γ2 −

√
γ1
)

√
γ1 +

√
γ2

, (31)

and

|M | −N =

√
γ2 − n̄

(√
γ1 −

√
γ2
)

√
γ1 +

√
γ2

, (32)

if we evaluate the limit according to Eq. (29). It is seen from

Eqs. (31) and (32) that for |M | to fall into the region of quan-

tum squeezing, |M | −N > 0, it is necessary that

n̄ <

√
γ1√

γ2 −
√
γ1

, γ2 > γ1,

n̄ <

√
γ2√

γ1 −
√
γ2

, γ1 > γ2, (33)

and if these conditions hold, then N < |M | ≤
√

N(N + 1).
Thus, the phonon bath with the help of the bichromatic field

creates a squeezed reservoir which can be unique to the quan-

tum field.

If we evaluate the upper limit for the correlations, |M |2 −
N(N + 1) = 0, which determines the maximal two-photon

(squeezing) correlations in the field, we find

|M |2 −N(N + 1) = −n̄(n̄+ 1), (34)

for both γ2 > γ1 and γ1 > γ2 cases. We see that maximal cor-

relations are achieved only at n̄ = 0. For n̄ 6= 0 the reservoir

appears as an imperfectly squeezed reservoir with the correla-

tions decreasing with an increasing n̄. It is interesting to note

that the upper limit for the correlations is independent of γ1
and γ2, whereas the lower limit, as seen from Eqs. (31) and

(32), varies with γ1 and γ2.

0
0.5

1
1.5 1

2
3

4
1

1.2

1.4

1.6

1.8

2

γ
2
/γ

1n 

|M
|/N

 

FIG. 3: The ratio |M |/N plotted as a function of n̄ and γ2/γ1. The

quantum nature of the correlations (|M |/N > 1) occurs for n̄ <

1/(
√

γ2/γ1 − 1).

Figure 3 shows the ratio |M |/N as a function of n̄ and

γ2/γ1 for the case of γ2 > γ1. Values |M |/N > 1 signal
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the quantum nature of the correlations. The correlations in-

crease with an increasing γ2/γ1 and can reach large values

but the largest increase of the correlations above the classical

limit occurs for weak squeezed fields, i.e., for large γ2/γ1 at

which N is small. The correlations are very sensitive to n̄.

For not too large γ2/γ1, the ratio decreases slowly with n̄ so

that the quantum nature of the correlations persists at large

n̄. However, for large γ2/γ1, the decrease of the ratio with

n̄ is considerably more rapid than it is for small γ2/γ1 that

the quantum correlations decrease rapidly with n̄. Beyond

n̄ = 1/(
√

γ2/γ1 − 1), the ratio falls below the lower limit for

quantum correlations.

The case γ1 = γ2 has to be treated separately. In the limit

γ1 = γ2 ≡ γ0, the coefficients in Eq. (22) are

γs = γn = γm = (2n̄+ 1)γ0. (35)

When compared with the coefficients of Eq. (27), we find

γs →
1

2
γ(N + 1), γn → 1

2
γN,

γm → 1

2
γ|M | = √

γnγs →
1

2
γ
√

N(N + 1). (36)

Since γs = γn, this limit can be regarded as corresponding to

a very strong squeezed field, N ≫ 1, with maximal correla-

tions |M | =
√

N(N + 1). We see that in this case the upper

limit of the squeezing correlations is achieved for any values

of n̄.

III. DYNAMICS OF THE QUANTUM DOT

Let us now apply these considerations explicitly to the dy-

namics of the quantum dot interacting with the engineered

squeezed reservoir. The dynamical response of the quantum

dot interacting with the squeezed reservoir is best described

in terms of the expectation values of the dipole components

which obey the following optical Bloch equations

˙〈Sx〉 =−
(

1

2
Γ + γs + γn + 2γm cos 2φ

)

〈Sx〉

+ 2γm sin 2φ〈Sy〉,

˙〈Sy〉 =−
(

1

2
Γ + γs + γn − 2γm cos 2φ

)

〈Sy〉

+ 2γm sin 2φ〈Sx〉,

˙〈Sz〉 =−
(

γs − γn +
1

2
Γ

)

− 2

(

γs + γn +
1

2
Γ

)

〈Sz〉,
(37)

where Sx = (S− + S+)/2 and Sy = i(S− − S+)/2 are the

dipole polarization components. Te effect of squeezing is best

seen through the quadrature phase components

Sφ(t) = Sx(t) sinφ+ Sy(t) cosφ,

Sφ+π
2
(t) = Sx(t) cosφ− Sy(t) sinφ. (38)

When the equations (37) are integrated, we obtain

〈Sφ(t)〉 = 〈Sφ(0)〉e−(
1

2
Γ+γs+γn−2γm)t,

〈Sφ+π
2
(t)〉 = 〈Sφ+π

2
(0)〉e−( 1

2
Γ+γs+γn+2γm)t,

〈Sz(t)〉 = − γs − γn + 1
2Γ

2
(

γs + γn + 1
2Γ

)

+

[

〈Sz(0)〉+
γs − γn + 1

2Γ

2
(

γs+γn+
1
2Γ

)

]

e−2( 1

2
Γ+γs+γn)t.

(39)

The components display simple exponential decays, the com-

ponent 〈Sφ(t)〉 is damped at a reduced rate γφ = 1
2Γ + γs +

γn − 2γm, while 〈Sφ+π
2
(t)〉 is damped at an enhanced rate

γφ+π
2

= 1
2Γ + γs + γn + 2γm. The population inversion

〈Sz(t)〉 decays to a steady-state value which depends strongly

on the relation between γs and γn.

The decay rates depend also on Γ. Because it is precisely

the effect of the phonon bath on the dynamics of the quan-

tum dot that interests us most here, in what follows, we shall

assume γs, γn ≫ Γ and set Γ = 0. This is justified if one

notices from Eq. (24) that γs and γn increase with an increas-

ing Ω̃i. Thus, we may increase the Rabi frequencies of the

bichromatic field such that γs,n ≫ Γ. This situation can

be achieved in current experiments since the radiative life-

time 500 − 800 ps corresponds to Γ ∼ 1.2 GHz. Using the

definition J(ω) =
∑

p g
2
pδ(ω − ωp), which is equivalent to

J(ω) = αω3 exp[−(ω/ωc)
2], where ωc =

√
2u/l is the cut-

off frequency [37], the damping parameters γi can be esti-

mated by writing [26]

γi = 2πΩ̃2
i

∑

p

(

gp
ωp

)2

δ(ωp −∆) = 2πΩ̃2
iα∆. (40)

For the Rabi frequencies of the bichromatic field we choose

the average value Ωi = 70 GHz [26]. For the phonon bath we

assume n̄ = 0.5 and a temperatureT = 2.35K, and take ωc =
1500 GHz [37]. These give ∆(= ωp) = 490 GHz. Taking

α = 2.535× 10−7 (GHz)−2 [7, 26], the damping parameters

γi are then γi = 4 GHz, which are larger than Γ = 1.2 GHz.

As discussed in Sec. II, the manner in which the squeezed

reservoir can affect the dynamics of the quantum dot depends

on the relation between γ1 and γ2. There are three distinct

regimes of the parameters at which the effective squeezed

reservoir can have significantly different properties, A. γ2 >
γ1, B. γ1 > γ2, and C. γ1 = γ2.

A. The case, γ2 > γ1

This limit corresponds to γs > γn that the effective reser-

voir is formed from a phonon bath of the ordinary harmonic

oscillators. As showed in Sec. II, there is in this case a direct

correspondence between the engineered squeezed reservoir

and that produced by an external source of the squeezed vac-

uum field. Therefore, the effects of the engineered squeezed
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reservoir on the dynamics of the quantum dot are expected

to be analogous to those which are well known for a two-

level atom damped by a squeezed vacuum field produced by

an external source. However, there are some subtle differ-

ences. For example, if an external source produces a squeezed

field with maximal correlations, |M | =
√

N(N + 1), the

correlations remain maximal independent of the value of N .

However, in the squeezed reservoir engineered from a phonon

bath, an increase of the number of phonons n̄ is accompa-

nied by a decrease of the two-photon correlations |M |, as seen

from Eq. (34). As a consequence, ideally squeezed reservoir

at n̄ = 0 becomes an imperfectly squeezed reservoir when

n̄ 6= 0. Thus, we lose the option of having an ideally squeezed

reservoir when n̄ 6= 0. Under this circumstance, many effects

unique to the quantum nature of the squeezed field may not be

observed due to the presence of thermal phonons.

In order to determine the rage of the parameters, n̄ in par-

ticular, at which the effects unique to the quantum nature

of the squeezed field still could be observed in the presence

of thermal phonons, we write N = Ns + Nb such that

Ns(Ns + 1) = |M |2. Thus, Ns corresponds to the number of

phonons in the maximally squeezed field and Nb is the num-

ber of excess phonons, which are not correlated, and therefore

correspond to a thermal (background) field. When this divi-

sion of N is applied to Eq. (22), it is straightforward to find

from Eq. (23) that

Ns =
√

4n̄(n̄+ 1)u2 + w2 − 1

2
,

Nb = (2n̄+ 1)w −
√

4n̄(n̄+ 1)u2 + w2, (41)

where u = 2
√
γ1γ2/γ and w = (γ1 + γ2)/γ. The Liouvil-

lian (22) can then be written in the form

Lpρ =
1

2
γ(2ΥρΥ† −Υ†Υρ− ρΥ†Υ)

+
1

2
γNb(2S

−ρS+ − S+S−ρ− ρS+S−)

+
1

2
γNb(2S

+ρS− − S−S+ρ− ρS−S+), (42)

where

Υ =
√

Ns + 1S−e−iφ +
√

NsS
+eiφ. (43)

Thus, the Liouvillian (22) describing the damping of the quan-

tum dot by an imperfectly squeezed reservoir has been divided

into two parts, one describing damping by the maximally

squeezed reservoir, the first term in Eq. (42), and the other

describing damping by the background thermal reservoir, the

second and third terms in (42). In other words, the interaction

of the quantum dot with an imperfect squeezed reservoir may

be viewed as the interaction with two separate reservoirs, a

maximally correlated squeezed reservoir and a thermal reser-

voir. Which reservoir dominates in the interaction depends on

the ratio Nb/Ns. If Ns is much larger than Nb, then signif-

icant effects of the squeezed reservoir should be observable.

For example, both Nb and Ns contribute to the damping rate

of the quantum dot. Therefore, the reduction of γφ below the

standard quantum limit is possible only for Nb < |M | −Ns.

Viewed as a function of n̄, the inequality Nb < |M | − Ns

becomes n̄ < 1/(
√

γ2/γ1− 1) which is, as one could expect,

the same as the condition (33) for quantum squeezing.

0
1

2
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4
5 1

1.2

1.40
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2
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N
b/(

|M
|−

N
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FIG. 4: The ratio of the number of the background thermal

phonons Nb to the degree of quantum squeezing correlations |M | −
Ns plotted as a function of n̄ and γ2/γ1.

Figure 4 shows the ratio Nb/(|M | − Ns) as a function of

n̄ and γ2/γ1. The grow of the ratio with n̄ depends strongly

on γ2/γ1 and the effect of increasing γ2/γ1 is to decrease the

range of n̄ over which the ratio is smaller than 1.

B. The case, γ1 > γ2

The exchange γ1 ↔ γ2 leads to an exchange γs ↔ γn.

Therefore, the damping rates of the quadrature components in

Eq. (37) are formally identical with the corresponding damp-

ing rates for γ2 > γ1, and the interpretation of the properties

of the Liouvillian (22) follows the same lines as for γ2 > γ1.

There is, however, an important difference in the evolution

of the average inversion 〈Sz(t)〉. In the parameter regime,

γn > γs, an incoherent excitation of the quantum dot is more

likely to be followed with a further excitation than with a

spontaneous decay to the ground level. The net effect of these

processes is to accumulate more population in the excited state

rather than in the ground state. In physical terms, the system

behaves as an inverted harmonic oscillator. It is clearly seen

from Eq. (37) that in the steady-state the population inver-

sion is

〈Sz〉s =
γn − γs

2(γs + γn)
=

γ1 − γ2
2(2n̄+ 1)(γ1 + γ2)

. (44)

Clearly, the population between the bare states of the quan-

tum dots is inverted. The population inversion increases with

an increasing γ1/γ2 and for γ1/γ2 ≫ 1 can reach the total

inversion. The effect of the squeezed reservoir on the dynam-

ics of the quantum dot is therefore much more drastic when

γ1 > γ2 than when γ2 > γ1. The result (44) implies that the

engineered squeezed reservoir can be employed to maintain a

large population inversion necessary for laser generation in a

two-level quantum dot.
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C. The case, γ1 = γ2

In this limit γs = γn = γm, and then the damping rate of

the 〈Sφ(t)〉 component

γφ = γs + γn − 2γm, (45)

reduces to zero. Consequently, the decay of 〈Sφ(t)〉 is com-

pletely inhibited that the squeezing of the fluctuations of

the Sφ component is perfect. This shows that by a proper

engineering of the coupling of a phonon bath to a quantum

dot one can produce a coherent atomic dipole without the ac-

companying quantum fluctuations and incoherent excitations

associated with the presence of phonons. Note that γφ = 0 is

obtained independent of the number of phonons n̄. It follows

that 〈Sφ(t)〉 can be locked at its initial value for an arbitrary

long time independent of the temperature of the phonon bath.

On the other hand, the component Sφ+π
2
(t) decays at the

rate γφ+π
2
= 4 (2n̄+ 1) γ0, which is enhanced and dependent

on n̄ but is not infinite. Moreover, the two-level transition in

the quantum dot becomes saturated in the steady-state, that

limt→∞〈Sz(t)〉 ≡ 〈Sz〉s = 0. Thus, independent of n̄ the

population is evenly distributed between the ground and ex-

cited levels of the quantum dot. Therefore, the interaction of

the quantum dot with the squeezed reservoir (22) offers the

possibility of both inhibiting the phase decay and an align-

ment of the spin vector along the x axis.

These features are significantly different from those pro-

duced by the decay of a two-level system to a squeezed reser-

voir generated by an external source. When the Liouvillian

(27) is used instead of (22), one can easily find that the com-

ponents display the following exponential decays

〈Sφ(t)〉 = 〈Sφ(0)〉e−γ( 1

2
+N−|M|)t,

〈Sφ+π
2
(t)〉 = 〈Sφ+π

2
(0)〉e−γ( 1

2
+N+|M|)t,

〈Sz(t)〉 = − 1

2N + 1

+

[

〈Sz(0)〉+
1

2N + 1

]

e−γ(2N+1)t. (46)

Clearly, for the inhibition of the decay of the component

〈Sφ(t)〉 one evidently requires a very strong squeezed field,

N → ∞ at which N − |M | → − 1
2 . In this limit, the decay

rate of the 〈Sφ+π
2
(t)〉 goes to infinity. Moreover, 〈Sz〉s < 0

and the population inversion approaches zero only in the limit

of N → ∞.

The physical reason for the changed decay behavior in the

engineered squeezed reservoir is most clearly understood by

considering the expectation value of the spin vector of the

quantum dot and its fluctuations. In the steady-state, we have

〈Sφ〉s = 〈Sφ(0)〉, 〈Sφ+π
2
〉s = 0, 〈Sz〉s = 0. (47)

Thus, the expectation value of the spin vector 〈~S〉 lies in the

x− y plane such that it forms an angle φ with the y axis

〈Sx〉s = S sinφ, 〈Sy〉s = S cosφ, 〈Sz〉s = 0, (48)

where S =
√

〈Sx〉2 + 〈Sy〉2 and tanφ = 〈Sx〉/〈Sy〉.

Assume for simplicity that φ = 0. In this case, the follow-

ing Heisenberg uncertainty principles are obeyed

√

〈(∆Sx)2〉〈(∆Sy)2〉 ≥ 0, x− y plane,

√

〈(∆Sz)2〉〈(∆Sx)2〉 ≥
1

2
|〈Sy〉s|, z − x plane,

√

〈(∆Sy)2〉〈(∆Sz)2〉 ≥ 0, y − z plane. (49)

The form of the uncertainty relations resembles very much of

that occurring in a planar squeezing situation where one can

independently change fluctuations in two quadrature compo-

nents which lie in the plane of the spin vector [55–57].

It is not difficult to show that in the case considered here

the Liouvillian (22) can be written as

Lpρ = 4(2n̄+ 1)γ0
(

2SφρSφ − S2
φρ− ρS2

φ

)

, (50)

from which we see that only the quadrature phase Sφ is cou-

pled to the reservoir. Thus, we conclude that the case γ1 = γ2
corresponds to a quantum-nondemolition type coupling of the

quantum dot to the effective squeezed reservoir [52, 58].

IV. STATIONARY STATE OF A DRIVEN QUANTUM DOT

Suppose that in addition to the bichromatic field, which

couples the quantum dot to the phonon bath, the dot is sub-

jected to an exciting laser field of frequency ωL which is on

resonance with the transition frequency of the quantum dot,

i.e., detuning ∆L = ωL − ω0 = 0. With the addition of the

exciting field, the Bloch equations (37) take the form

˙〈Sx〉 = −γx〈Sx〉,
˙〈Sy〉 = −γy〈Sy〉 − Ω〈Sz〉,
˙〈Sz〉 = −(γs − γn)− γz〈Sz〉+Ω〈Sy〉, (51)

where

γx = γs + γn ± 2γm, γy = γs + γn ∓ 2γm,

γz = 2(γs + γn), (52)

and Ω is the Rabi frequency of the exciting field. In writing

Eq. (51) we have chosen the phase of the laser φL = 0 and

have made the choices of the squeezing phase φ = 0 and

φ = π/2 corresponding to the limits of the variation of the

damping rates.

Our purpose is to determine the steady-state values of the

average values of the spin components. It is clear from

Eq. (51) that the polarization component 〈Sx〉 is decoupled

from the exciting field and the other components. The equa-

tion of motion for 〈Sx〉 can be integrated immediately to give

〈Sx(t)〉 = 〈Sx(0)〉e−γxt. (53)

It is a simple exponential decay with the rate γx, so in order to

determine the steady-state value of 〈Sx〉 we have to look at the

properties of the damping rate γx. According to Eqs. (52) and
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(23), the rate depends strongly on the relation between γ1 and

γ2 and the phase φ. When γ1 > γ2 or γ1 < γ2, at which γs 6=
γn 6= γm, we see that 〈Sx(t)〉 decays to zero independent

of the phase. However, in the case γ1 = γ2, that is when

γs = γn = γm, the decay rate γx depends on the phase. It

follows that if φ = 0 then in the steady state 〈Sx〉s = 0,

whereas the component decays to a nonzero steady-state value

〈Sx〉s = 〈Sx(0)〉 if φ = π/2. This implies that the coherence

between the ground and excited states of the quantum dot is

locked at its initial value. Hence, the two choices of phase

lead to widely different behavior of the 〈Sx〉 component.

The steady-state values of the remaining two components

〈Sy〉 and 〈Sz〉 are found to be

〈Sy〉s =
(γs − γn)Ω

γyγz + Ω2
, 〈Sz〉s =

−(γs − γn)γy
γyγz +Ω2

. (54)

Provided that γs 6= γn, the steady-state values are different

from zero. However, if γ1 = γ2 we have γs = γn and then

〈Sy〉s = 〈Sz〉s = 0 regardless of the phase φ. Thus, for

γ1 = γ2, the steady-state value of the total spin of the system

depends solely on the initial value of 〈Sx〉. For 〈Sx(0)〉 6= 0
the polarization is locked at its initial value due to the interac-

tion with the perfectly squeezed field.

In this way, we may modify the steady-state population dis-

tribution between dressed states of the driven quantum dot. In

order to show it, we introduce the semiclassical dressed states,

which are the eigenstates of the two-level system and the clas-

sical driving field. Since the driving laser is on resonance with

the two-level transition, the dressed states are

|+〉 = 1√
2
(|g〉+ |e〉), |−〉 = 1√

2
(|g〉 − |e〉). (55)

It is easily verified that the populations of the dressed states

are related to the populations and coherences of the bare states

through the relations

ρ++ =
1

2
(ρ11 + ρ22 + ρ12 + ρ21) =

1

2
(1 + 2〈Sx〉),

ρ−− =
1

2
(ρ11 + ρ22 − ρ12 − ρ21) =

1

2
(1− 2〈Sx〉). (56)

We see that only the component 〈Sx〉 contributes to the popu-

lations of the dressed states. Since in the stead-state 〈Sx〉s =
〈Sx(0)〉, we see that one can polarize the dressed state popula-

tions, i.e., create an asymmetry in populations within dressed-

state doublets simply by choosing an initial state at t = 0
such that 〈Sx(0)〉 6= 0. Particularly interesting is the phe-

nomenon of dressed state population trapping or complete

polarization of the dressed state populations which happens

when 〈Sx〉 = ± 1
2 . From the foregoing discussion on the pos-

sible steady-state values of 〈Sx〉, we see that complete polar-

ization of the dressed state populations occurs when φ = π/2
and initially at time t = 0, 〈Sx(0)〉 = ± 1

2 . In practice, arbi-

trary initial values of 〈Sx〉 could be prepared using the stan-

dard technique of a π/2 pulse excitation. For example, the

quantum dot could be prepared in one of the dressed states

(〈Sx(0)〉 = ± 1
2 ) using a π/2 pulse laser field that is ±π/2

out of phase with the exciting field [59].

Note that the polarization effect in the system considered

here is obtained in the resonant case (∆L = 0). This is in

contrast to the polarization effect found for the steady-state of

a two-level atom damped by an externally generated squeezed

vacuum field, where it was shown [60, 61] that the dressed-

state polarization is possible only at a non-zero laser detun-

ing, ∆L 6= 0.

V. FLUORESCENCE SPECTRUM

We now consider the spectrum of the fluorescence field,

which can be written as a sum of two parts

S(ω) = Scoh(ω) + Sin(ω), (57)

where

Scoh(ω) = 2π〈S+〉s〈S−〉sδ(ω − ω0) (58)

is the coherent (elastic) part of the spectrum, and

Sin(ω) = 2Re

{
∫ ∞

0

dτ ei(ω−ω0)τ

× lim
t→∞

〈δS+(t)δS−(t+ τ)〉
}

(59)

is the incoherent (noise) part of the spectrum. Here, δS±(t) =
S±(t)− 〈S±(t)〉 are the fluctuation parts of the dipole opera-

tors.

The two-time correlation function appearing in Eq. (59) can

be written as

〈δS+(t)δS−(t+ τ)〉 = 〈δS+(t)δSx(t+ τ)〉
− i〈δS+(t)δSy(t+ τ)〉, (60)

and the correlation functions 〈δS+(t)δSx(t+ τ)〉 and

〈δS+(t)δSx(t+ τ)〉 may in turn be evaluated from Eq. (51)

with the help of the quantum regression theorem [62]. By

Laplace transforming of the resulting equations of motion for

the two-time correlation functions, we obtain

Λ(z) ≡ lim
t→∞

L{〈δS+(t)δS−(t+ τ)〉} =
〈δS+δSx〉s
z + γx

− i
〈δS+δSy〉s(z + γz)− Ω〈δS+δSz〉s

z2 + (γy + γz)z + γyγz +Ω2
, (61)

where z is the Laplace transform parameter and the steady-

state averages of the various operator products arising are

〈δS+δSx〉s =
1

2

(

〈Sz〉s +
1

2

)

− 〈Sx〉s (〈Sx〉s + i〈Sy〉s) ,

〈δS+δSy〉s =
i

2

(

〈Sz〉s +
1

2

)

− 〈Sy〉s (〈Sx〉s + i〈Sy〉s) ,

〈δS+δSz〉s = −1

2
(〈Sx〉s + i〈Sy〉s) (1 + 2〈Sz〉s) . (62)

To illustrate the analytic structure of the spectrum in a sim-

ple form as possible, we focus on the case γ1 = γ2 and
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the strong-field limit Ω ≫ γ1, γ2. The cases, γ1 > γ2 and

γ2 > γ1 lead to the spectrum which is essentially the same

as that of the fluorescence field emitted by a two-level sys-

tem whose relaxation is determined through coupling to a

squeezed vacuum field produced by an external source [41–

43, 50]. In the strong-field limit, we readily find that the two

roots of the quadratic equation in the denominator of Eq. (61)

are approximately given by

z1,2 = −1

2
(γy + γz)± iΩ, (63)

and then the spectral components take the form

Scoh(ω) = 2π〈Sx〉2sδ(ω − ω0), (64)

and

Sin(ω) = 2Re{Λ(z)}z=−i(ω−ω0)

=
1

2

(

1− 4〈Sx〉2s
) γx
γ2
x + (ω − ω0)2

+
1
8 (1 + 2〈Sx〉s) (γy + γz) +

γz−γy

8Ω (ω − ω0 − Ω)
1
4 (γy+γz)2 + (ω − ω0 − Ω)2

+
1
8 (1− 2〈Sx〉s) (γy + γz) +

γz−γy

8Ω (ω − ω0 +Ω)
1
4 (γy+γz)2 + (ω − ω0 +Ω)2

.

(65)

where we have used the fact that 〈Sy〉s = 〈Sz〉s = 0.

One can see from Eqs. (64) and (65) that the amplitudes

of the spectral components are solely dependent on the polar-

ization (coherence) component 〈Sx〉s. We first note that the

coherent part of the spectrum is present only if 〈Sx〉s 6= 0.

Otherwise when 〈Sx〉s = 0 the spectrum consists only of the

incoherent part, which is always present. In general, the inco-

herent part of the spectrum is composed of three Lorentzian

peaks of the widths and magnitudes varying with the phase

φ. The most interesting feature of the incoherent spectrum is

its asymmetry related to 〈Sx〉s 6= 0, because this feature is

not encountered at all under the damping of the quantum dot

by an externally produced squeezed vacuum field. If we con-

sider the the variation of the spectrum with the phase, we find

for φ = 0,

γx = γz = 4(2n̄+ 1)γ0, γy = 0, 〈Sx〉s = 0, (66)

while for φ = π/2,

γx = 0, γy = γz = 4(2n̄+ 1)γ0, 〈Sx〉s = 〈Sx(0)〉. (67)

For φ = 0, the coherent part of the spectrum is suppressed,

whereas the incoherent part is composed of three peaks of

equal amplitudes. The width of the central peak is 4(2n̄+1)γ0
and it is twice as wide as the width of the Rabi sidebands.

Thus, the spectrum is symmetric about the laser frequency and

entirely composed of the incoherent part.

The spectrum changes dramatically when the phase is var-

ied to φ = π/2. The coherent part appears and the central

peak of the incoherent part becomes a δ-type peak. The widths

of the Rabi sidebands as twice as wide as for φ = 0. Thus, for

φ = π/2, the central peak contributes to a coherent (elastic)

part of the spectrum leading to an enhancement of the coher-

ent scattering. The incoherent part is then effectively com-

posed of two peaks located at the Rabi sidebands. Depending

on 〈Sx(0)〉 the number of peaks in the incoherent part can

vary from three to a single side peak located at ω−ω0 = ±Ω.

The disappearance of two peaks is a consequence of the com-

plete polarization of the dressed state population. For exam-

ple, when 〈Sx(0)〉 = 1
2 , the population is entirely in the upper

dressed state |+〉. Consequently, the central and the lower fre-

quency Rabi sideband peaks disappear. On the other hand,

when 〈Sx(0)〉 = − 1
2 , the population is entirely in the lower

dressed state |−〉 resulting in the absence of the central peak

and the higher frequency Rabi sideband. The disappearance of

the central peak is accompanied by an increase of the ampli-

tude of the coherent part of the spectrum. On the other words,

the energy contained in the central peak is coherently scat-

tered by the quantum dot. The disappearance of one of the

Rabi sidebands is accompanied by an increase of the ampli-

tude of the opposite Rabi sideband, which after the complete

transfer of the population is twice as high as for 〈Sx(0)〉 = 0.
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(ω
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FIG. 5: The incoherent part of the fluorescence spectrum as a func-

tion of 〈Sx(0)〉 for φ = π/2, Ω = 20γ0 and n̄ = 0.5. In order to

make the central component visible in the plot, the delta function has

been replaced by a Lorentzian of a width γ0.

The features described above are easily seen in Fig. 5 which

shows the incoherent fluorescence spectrum plotted as a func-

tion of 〈Sx(0)〉 for fixed Ω and n̄. We see the disappear-

ance of the central peak and one of the Rabi sidebands when

〈Sx(0)〉 = ± 1
2 , and simultaneously the increase in the height

of the opposite Rabi sideband. We again point out that the

asymmetric spectrum and its variation with the initial coher-

ence are obtained under strictly resonant excitation. The vari-

ation of the fluorescence spectrum with the initial coherence

shows clearly that the phase relationships between the irradi-

ating field and the initial dipole moment of the radiating quan-

tum dot are important even in the steady-state fluorescence.
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VI. SUMMARY

We have shown that the combined effect of a phonon bath

and a bichromatic field can result in an effective squeezed-

vacuum-type reservoir to a two-level quantum dot. It has been

found that depending on the ratio of the Rabi frequencies of

the components of the bichromatic field, one can engineer a

squeezed reservoir of ordinary or inverted harmonic oscilla-

tors. We have shown that in the case of the inverted harmonic

oscillators the steady-state population of the bare states of the

quantum dot can be highly inverted. We have examined the

conditions for quantum two-photon correlations characteristic

of a squeezed field and have distinguished between the quan-

tum correlations and a form of classical two-photon correla-

tions which may exist at high temperatures of the phonon bath.

When in addition to the squeezed reservoir, the quantum

dot interacts with a strong laser field, the dynamics and the sta-

tionary state could depend critically on whether or not a coher-

ence between the ground and excited states is initially present.

With the coherence present, the steady-state population distri-

bution between the dressed states of the driven quantum dot

could be completely polarized (trapped) in one of the dressed

states. We have calculated the steady-state spectrum of the

fluorescence field and have found that the structure spectrum

depends on the initial value of the coherence. In particular,

with a nonzero initial coherence the spectrum is asymmetric

even if the quantum dot is exposed to a resonant laser field.

We have found that the asymmetric features are the same as

those exhibited by the spectrum of a two-level system excited

off resonance and damped by a squeezed vacuum field pro-

duced by an external squeezing source. The appearance of the

asymmetric features have been interpreted as a direct conse-

quence of locking the coherence at its initial value, resulted

from the coupling of the quantum dot to perfectly squeezed

field. In the absence of the initial coherence, the spectrum was

found to be composed of only the incoherent part displaying

the symmetric triplet spectrum. With the coherence present,

both coherent and incoherent parts are present and the number

of peaks in the incoherent part becomes strongly dependent on

phase. By varying the phase, the central peak can become a δ-

type peak and one of the Rabi sidebands could be suppressed.
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