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We study the dissipative dynamics of an atom in a V-level configuration driven by lasers and
coupled to a semi-infinite waveguide. The coupling to the waveguide is chiral, in that each transition
interacts only with the modes propagating in a given direction, and this direction is opposite for
the two transitions. The waveguide is terminated by a mirror which coherently feeds the photon
stream emitted by one transition back to the atom. First, we are interested in the dynamics of
the atom in the Markovian limit where the time-delay in the feedback is negligible. Specifically, we
study the conditions under which the atom evolves towards a pure "dark" stationary state, where
the photons emitted by both transitions interfere destructively thanks to the coherent feedback, and
the overall emission vanishes. This is a single-atom analogue of the quantum dimer, where a pair
of laser-driven two-level atoms is coupled to a unidirectional waveguide and dissipates towards a
pure entangled dark state. Our setup should be feasible with current state-of-the-art experiments.
Second, we extend our study to non-Markovian regimes and investigate the effect of the feedback
retardation on the steady-state.

I. INTRODUCTION

The ability to engineer the coupling between quantum
optical systems and photonic baths allows for many appli-
cations in quantum information [1, 2], such as the prepa-
ration of single- or many-body quantum states via the
dissipative emission of photons [3–5]. During the last
decade, tremendous experimental progress has been made
to efficiently couple atoms (either real or artificial) to
one-dimensional waveguides [6–11], for instance with real
atoms coupled to optical fibers [12, 13] or photonic struc-
tures [14–16]. For the last few years there has been a
strong interest towards the implementation of chiral cou-
plings between atoms and waveguides, where by "chiral"
we mean that the coupling depends on the propagation
direction of the photons in the waveguide. Several re-
cent experiments have demonstrated such chiral couplings
between quantum emitters and guided light fields, for
instance using atoms coupled to the evanescent field of
whispering-gallery-modes bottle microresonators [17] and
tapered optical fibers [18], or quantum dots in photonic
nanostructures [19, 20].

Chiral couplings allow for the formation of entangled
states as pure steady-states of the dynamics of laser-driven
open systems via the dissipative emission of photons [21–
23]. In particular, it was shown in Ref. [24] that an ensem-
ble of atomic two-level systems (TLS) driven by classical
fields and coupled to a unidirectional waveguide eventu-
ally stops emitting photons in the waveguide under the
right conditions on the driving fields. The atoms then
form EPR-correlated pairs (see Fig. 1(a)) where the pho-
tons emitted by the first atom are coherently absorbed by
the second one. The atomic pair, called quantum dimer,
now forms a pure dark state ρ(t) → |D〉 〈D| which is de-

coupled from the waveguide. This steady-state is of the
form |D〉 ∝ |gg〉 + α(|eg〉 − |ge〉), where |g〉 and |e〉 are
the ground and excited states of each TLS and α depends
on the setup parameters. Only the excited components of
the state contribute to the photon radiation in the open
waveguide, and their total contribution vanishes thanks to
their opposite sign.

While the long-term goal is to observe this phenomenon
in the laboratory, the purpose of the present work is to
explore the possibility of experimenting analogous physics
with a single atom, which would be achievable at the cur-
rent state of the technology. The system of interest is rep-
resented in Fig. 1(b), and is constituted of a single atom
coherently driven by its quantum feedback and by exter-
nal lasers. The atom has a V-level configuration where the
transitions are coupled to the guided modes propagating in
opposite directions. The first question we want to address
is thus whether the dynamics of the two atoms of Fig. 1(a)
can be mimicked by the interaction of one atom with its
mirror image. The pumping to a dark state in both setups
can be achieved only if the coupling to external non-guided
modes γ′ is negligible. Recent experiments coupling atoms
to waveguides (albeit without featuring chiral couplings)
have reported β-factors of β ≡ γ/(γ + γ′) ≈ 0.5 [25, 26],
with γ the coupling to the guided modes. On the other
hand, very high β-factors of β = 0.98 have been reached
using quantum dots as artificial atoms [27]. As an al-
ternative way to increase the coupling strength between
the atom and the guided modes, we consider the setup
of Fig. 1(c), where the atom is coupled with a rate g to
a cavity which preserves chiral coupling [17] and is itself
strongly coupled to the guided modes with a rate κ. In
the bad-cavity regime g � κ, the atom undergoes the
same dynamics as in Fig. 1(b), with γ ≈ (2g)2/κ and an
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FIG. 1. (Color online) (a) A pair of two-level systems (TLS)
coupled to a unidirectional waveguide. The TLSs are driven
by classical fields with Rabi frequencies Ω and are additionally
coupled to the guided modes with a rate γ and to non-guided
modes with a rate γ′ which we will first assume to be negli-
gible. Under specific conditions, the photons emitted by the
left TLS are fully coherently absorbed by the right one. Re-
markably, the whole system then relaxes towards a pure dark
state, where the photon emission vanishes [24]. See Sec. II. (b)
Atom in a V-level configuration driven with a Rabi frequency
Ω and coupled to a bidirectional waveguide, where the two
transitions couple to the guided modes propagating in oppo-
site directions, represented with red and blue arrows, with the
same rate γ. The photon stream propagating to the left is fed
back to the system, which now acts as its own coherent ab-
sorber. Under the appropriate conditions, the system relaxes
towards a pure dark state, analogously to the case described in
(a). See Sec. IIIA and Sec. III B. (c) The cooperativity can be
increased by coupling the atom with a rate g to a cavity which
preserves chiral coupling [17] and is also coupled with a rate
κ to the guided modes. In the bad-cavity regime g � κ, the
system reproduces the physics described in (b), with an effec-
tive atom-waveguide coupling of γ ≈ (2g)2/κ and a negligible
decoherence rate γ′. See Sec. III C.

increased β-factor [28, 29].
Moreover, our system is a very simple example of co-

herent quantum feedback [30], and from a theory view
point the effect of the delay in the feedback has recently
attracted a lot of interest [31–36]. In general, one of
the requirements for the existence of pure atomic states
is that the photon number between the mirror and the
atom is negligible, otherwise the atom would become en-
tangled with these photons. This assumption is equivalent
to the usual Markovian approximation, where the retar-
dation effects in the effective atomic dynamics, induced
by the finite photon travel time, are neglected in order
to derive an atomic master equation [22, 23, 37]. The
second question we want to address is thus how this fi-
nite delay affects the properties of the steady-state. In or-

der to do so, an approach has been developed in Ref. [32],
which employs matrix-product states (MPS) techniques
[38] to track the entangled state of the atom and of the
photons, and dynamically solves the quantum stochastic
Schrödinger equation [39] (QSSE).

The paper is organised as follows. In Sec. II, we briefly
review the physics of the quantum dimer formation with
two-level atoms. In Sec. III we address the dynamics of
our feedback system in the Markovian limit. We derive the
master equation and analyse the conditions under which
the system dissipates towards a pure dark state. We also
show that by coupling the atom to the cavity of Fig. 1(c)
one can increase the β-factor. In Sec. IV, we investigate
how the steady-state properties are modified by the re-
tardation effects of a non-Markovian coherent feedback.
Finally, in Sec.V we discuss some experimental consider-
ations such as the effect of the coupling to external non-
guided modes and the effect of an imperfect chiral coupling
to the waveguide.

II. DIMERIZATION OF AN ATOMIC CHAIN

To provide the basis for the understanding of the physics
of our feedback system (Fig. 1(b)), we first review the for-
mation of entanglement in cascaded many-body two-level
atoms [40, 41], i.e in an ensemble of atoms coupled to a
unidirectional waveguide [42].

Let us first consider two atoms driven by classical fields
near resonance and coupled with a rate γ to the guided
modes, as represented in Fig. 1(a). The atoms are sepa-
rated by a distance d along the waveguide. We consider
the ideal case where the coupling to the guided modes is
perfectly chiral and the coupling to non-guided modes γ′ is
negligible. Due to the unidirectionality of the waveguide,
atom 1, on the left, does not feel the presence of atom 2,
on the right. The second atom however is continuously
driven by the coherent photon emission of the first one.
If we neglect the travel time of the photons between both
atoms (Markovian approximation), we can derive a master
equation for the atoms, which reads (with ~ = 1) [24]

dρ

dt
= −i[HS , ρ] + 2γD[σ−tot]ρ, (1)

where D is the Lindblad superoperator

D[a](·) ≡ a · a† − 1

2
{a†a, ·}. (2)

The Hamiltonian reads

HS =−
(
δ1 |e1〉 〈e1|+ δ2 |e2〉 〈e2|

)
− Ω

2

(
σ−1 + eiφ

′
σ−2 + H.C.

)
+ i

γ

2

(
eiφσ+

1 σ
−
2 − e−iφσ+

2 σ
−
1

)
,

(3)

where |gi〉 and |ei〉 are the ground and excited states of
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atom i = 1, 2, and σ−i = |gi〉 〈ei|. The first two rows of
Eq. (3) are the laser driving terms, with δi = ω̄ − ωi � ωi
the detuning between the laser frequency ω̄ and the tran-
sition frequency for atom i. The drivings of the two atoms
have the same Rabi frequency Ω and a relative phase φ′.
The last row is the dipole-dipole interaction induced by
the exchange of photons trough the waveguide. The phase
acquired by a photon traveling between both atoms is
φ = −ω̄d/c where c is the speed of light in the waveguide.
The unidirectionality of the problem lies in this dipole-
dipole term, which is asymmetric under the exchange of
the labels 1 and 2. The last term of Eq. (1) is the collective
decay of the ensemble at a superradiant rate 2γ, where the
collective jump operator is

σ−tot =
(
σ−1 + eiφσ−2

)
/
√

2. (4)

Although two phases appear in Eq. (3), only their dif-
ference φ − φ′ affects the dynamics. We can thus gauge
φ′ away in Eq. (3) and Eq. (4) by redefining the state
|e2〉 → eiφ

′ |e2〉 and the phase φ→ ∆φ = φ− φ′. We now
make the assumption that ∆φ is a multiple of 2π, which
we will refer to as the commensurability condition. Let us
consider two scenarios. In the first scenario, the atoms are
driven by different lasers outside of the waveguide. The
relative laser phase φ′ can be independently tuned, and
should be set to φ in order to satisfy the commensurabil-
ity. In the second scenario, the atoms are driven by the
same laser propagating inside the fiber. In that case, φ′ is
no longer an independent parameter and is equal to φ by
definition. Here, the commensurability is thus automati-
cally satisfied.

We are interested in the formation of pure atomic
steady-states ρ(t)→ |D12〉 〈D12|, which have to be in par-
ticular disentangled from the waveguide. This requires
that, for these states, the system should effectively decou-
ple from the waveguide and stop radiating photons, hence
their appellation of "dark" states. In terms of Eq. (1), this
means that the jump operator σ−tot, which induces deco-
herence, should annihilate the steady-state. This restricts
us to states of the form

|D12〉 =
1√

1 + |α|2
(
|g1g2〉+ α |S12〉

)
, (5)

where |S12〉 = (|e1g2〉 − |g1e2〉)/
√

2 is the "singlet" state.
In order to be a steady-state of the Hamiltonian HS , one
can show that the detunings have to be opposite (δ1 =
−δ2), which yields

α = −
√

2
Ω

iγ + 2δ1
. (6)

Remarkably, this result can be easily generalized to the
situation represented in Fig. 2(a), where an array of 2N
atoms is coupled to the waveguide. Provided δ1 = −δ2,
the first two atoms will be pumped to the dark state |D12〉
since they are not influenced by the presence of the other
atoms thanks to the directionality of the problem. As
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FIG. 2. (Color online) (a) Ensemble of laser-driven two-level
atoms coupled to a unidirectional waveguide. (b) As time
evolves, the atoms form pairs. These quantum dimers are in a
pure dark state and do not exchange or radiate photons.

their state converges towards this steady-state, the photon
stream between atoms 2 and 3 vanishes, and finally the
third and fourth atoms do not feel the presence of the
first two ones either, which allows them to evolve towards
their dark state |D34〉, provided δ3 = −δ4. By iterating
this argument, the steady-state of the atomic array will
factorize into

|D〉 = |D12〉 ⊗ |D34〉 ⊗ ... (7)

This is represented in Fig. 2(b). Each atomic pair in a
dark state is called quantum dimer, and the factorization
process is the dimerization of the atomic chain.

III. MARKOVIAN QUANTUM FEEDBACK

In this section we analyse the dynamics of the atom of
our coherent feedback system (Fig. 1(b)) in the Markovian
limit where the feedback retardation effects are neglected,
and we expose the similarities and the differences with the
quantum dimers of the previous section. In Sec. IIIA, we
derive the master equation for the atom in the ideal case
where the coupling to non-guided modes is negligible. In
Sec. III B, we study the dissipative evolution of the system
towards the steady-state and derive the conditions under
which this state is pure. In Sec. III C we take the non-
guided modes into account and we discuss the possibility
of increasing the cooperativity in this setting by coupling
the atom to a cavity in the bad-cavity regime.

A. Master equation

The system consists of a single laser-driven atom in a
V-level configuration. The atom is coupled to a semi-
infinite waveguide terminated by a mirror located at a
distance d from the atom, as represented in Fig. 1(b). We
denote the atomic ground state by |g〉, and the excited
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states by |e1〉 , |e2〉. The transition operators are given by
σ−i = |g〉 〈ei| (i = 1, 2). Additionally, the σ1 transition is
exclusively coupled to the guided modes propagating to-
wards the mirror whereas the σ2 transition is coupled to
the modes propagating outwards. We assume that the dis-
persion relation of the waveguide is approximately linear
around the laser frequency ω̄ over a relevant bandwidth
θ � ω̄ (i.e. ω ≈ c|k| with ω the mode frequency, k the
wave number along the propagation axis and c the speed
of light in the waveguide).

The Hamiltonian for the waveguide is thus given by
(with ~ = 1)

HB =

∫ ω̄+θ

ω̄−θ
dω ω b†ωbω, (8)

where bω annihilates a photon with frequency ω, and
[bω, b

†
ω′ ] = δ(ω−ω′). The Hamiltonian for the driven atom

reads

Ha = ω1 |e1〉 〈e1|+ ω2 |e2〉 〈e2|

−Ω

2

(
eiω̄tσ−1 + eiω̄teiφ

′
σ−2 + H.C.

)
.

(9)

where ωi are the transition frequencies, Ω is the Rabi fre-
quency which we assume real and positive without loss of
generality, and φ′ is the relative driving phase. We used
a rotating wave approximation (RWA), which is valid for
Ω, |δi| � ω̄, where δi = ω̄−ωi is the detuning between the
laser and the transition frequencies. The atom-waveguide
interaction Hamiltonian in the RWA is given by

Hint = i

∫ ω̄+θ

ω̄−θ
dω g(ω)b†ω

(
σ−1 + σ−2 e

i(π−2ωd/c)
)
−H.C.,

(10)
where g(ω) is the atom-waveguide coupling and the phase
factor is the feedback photon phase which accounts for the
propagation over a distance 2d and for the π-shift due to
the mirror reflexion. Analogously to the case of Sec. II,
the only physically relevant phase here is the phase differ-
ence π− 2ωd/c−φ′ between the feedback and the driving
phases, hence we will gauge φ′ away by redefining the state
|e2〉 → eiφ

′ |e2〉. We will also assume that the coupling is
approximately independent of the frequency over the rele-
vant bandwidth [ω̄− θ, ω̄+ θ] and replace g(ω)→

√
γ/2π.

In order to derive the master equation for the atom, we
move to an interaction picture with respect to the waveg-
uide Hamiltonian HB and to a frame rotating with the
laser frequency ω̄ for the atomic transitions. In this pic-
ture, the total Hamiltonian now reads HI

tot = HI
a + HI

int,
where

HI
a = −δ1 |e1〉 〈e1| − δ2 |e2〉 〈e2| −

Ω

2

(
σ−1 + σ−2 + H.C.

)
.

(11)

and

HI
int = i

√
γ

2π

∫ ω̄+θ

ω̄−θ
dω b†ω

(
e−i(ω̄−ω)tσ−1

+ e−i(ω̄−ω)(t−τ)ei∆φσ−2
)
−H.C., (12)

with τ = 2d/c the time-delay of the quantum feedback and
∆φ = π−ω̄τ−φ′ the phase difference which we will restrict
to the interval [−π, π] for convenience. From now on we
will drop the superscript I and always refer to the Hamil-
tonians in this picture. The state of the system compris-
ing the atom and the waveguide at time t |Ψ(t)〉 is related
to the initial state |Ψ0〉 by a unitary operator U(t) such
that |Ψ(t)〉 = U(t) |Ψ0〉, which satisfies the Schrödinger
equation i ddtU(t) = HtotU(t). In the Heisenberg picture,
the waveguide operators bω(t) = U†(t)bωU(t) satisfy the
Heisenberg equation

d

dt
bω(t) =

√
γ

2π

(
e−i(ω̄−ω)tσ−1 (t)+e−i(ω̄−ω)(t−τ)ei∆φσ−2 (t)

)
(13)

where σ−i (t) = U†(t)σ−i U(t). On the other hand, the
Heisenberg equation for an operator a(t) acting on the
atomic subspace is

d

dt
a = −i[a,Ha] +

√
γ

2π

∫ ω̄+θ

ω̄−θ
dω b†ω(t)[

a, e−i(ω̄−ω)tσ−1 (t) + e−i(ω̄−ω)(t−τ)ei∆φσ−2 (t)
]

−
√

γ

2π

∫ ω̄+θ

ω̄−θ
dω
[
a, ei(ω̄−ω)tσ+

1 (t)

+ ei(ω̄−ω)(t−τ)e−i∆φσ+
2 (t)

]
bω(t). (14)

Note that, in order to simplify the notation, we remove
the time dependance of a whenever it should be under-
stood as a(t). Formally integrating Eq. (13) and inserting
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the corresponding expression into Eq. (14), we obtain

da

dt
= −i[a,Ha] +

√
γ
([
a, ξ†(t)σ−1 (t)−H.C.

])
+
√
γ
(
[a, ξ†(t− τ)ei∆φσ−2 (t)−H.C.

])
+
γ

2π

∫ ω̄+θ

ω̄−θ
dω

∫ t

0

dt′ e−i(ω̄−ω)(t−t′)σ+
1 (t′)[

a, σ−1 (t) + ei(ω̄−ω)τei∆φσ−2 (t)
]

− γ

2π

∫ ω̄+θ

ω̄−θ
dω

∫ t

0

dt′
[
a, σ+

1 (t)

+ e−i(ω̄−ω)τe−i∆φσ+
2 (t)

]
ei(ω̄−ω)(t−t′)σ−1 (t′)

+
γ

2π

∫ ω̄+θ

ω̄−θ
dω

∫ t

0

dt′ e−i(ω̄−ω)(t+τ−t′)e−i∆φσ+
2 (t′)[

a, σ−1 (t) + ei(ω̄−ω)τei∆φσ−2 (t)
]

− γ

2π

∫ ω̄+θ

ω̄−θ
dω

∫ t

0

dt′ ei(ω̄−ω)(t+τ−t′)ei∆φ
[
a, σ+

1 (t)

+ e−i(ω̄−ω)τe−i∆φσ+
2 (t)

]
σ−2 (t′),

(15)
where ξ(t) = 1√

2π

∫ ω̄+θ

ω̄−θ dω bω(0)ei(ω̄−ω)t are the quantum
noise operators. We now perform a Born-Markov treat-
ment where the integration over ω of the phase factors
generates Dirac delta functions of t′, which allows to eval-
uate the integral in t′. This approximation is valid if
σ−i (t′) ≈ σ−i (t) for t′ ∈ [t − 1/θ, t + 1/θ], which requires
γ,Ω, |δi| � θ. This gives rise to terms such as∫ ω̄+θ

ω̄−θ
dω

∫ t

0

dt′ e−i(ω̄−ω)(t−t′)σ+
1 (t′)[a, σ−1 (t)]

≈ 2π

∫ t

0

dt′δ(t− t′)σ+
1 (t′)[a, σ−1 (t)]

= πσ+
1 (t)[a, σ−1 (t)],

(16)

and∫ ω̄+θ

ω̄−θ
dω

∫ t

0

dt′ e−i(ω̄−ω)(t−t′−τ)ei∆φσ+
1 (t′)[a, σ−2 (t)]

≈ 2π

∫ t

0

dt′δ(t− t′ − τ)ei∆φσ+
1 (t′)[a, σ−2 (t)]

= 2πei∆φσ+
1 (t− τ)[a, σ−2 (t)].

(17)

For now we are interested in the Markovian limit where
τ is set to 0+. This requires that the delay is much
shorter than the typical evolution time of the system, i.e.
γ,Ω, |δi| � 1/τ , which we will assume from now on. We
then obtain the quantum Langevin equation for the atomic

operators

d

dt
a = − i[a,Ha] (18)

+
√
γ[a, ξ†(t)σ−1 (t)−H.C.]

+
√
γ[a, ξ†(t)ei∆φσ−2 (t)−H.C.]

+
γ

2

(
σ+

1 (t)[a, σ−1 (t)]− [a, σ+
1 (t)]σ−1 (t)

)
+
γ

2

(
σ+

2 (t)[a, σ−2 (t)]− [a, σ+
2 (t)]σ−2 (t)

)
+ γ
(
ei∆φσ+

1 (t)[a, σ−2 (t)]− [a, σ+
2 (t)]e−i∆φσ−1 (t)

)
.

Let us write down the expectation value of this
equation for an initial state |Ψ0〉 where the waveg-
uide is in the vacuum state. In that case, 〈ξ(t)〉 =

1√
2π

∫ ω̄+θ

ω̄−θ dω 〈Ψ0| bω(0) |Ψ0〉 ei(ω̄−ω)t = 0, and we get

d〈a〉
dt

= − i〈[a,Ha]〉 (19)

+
γ

2
〈σ+

1 (t)[a, σ−1 (t)]− [a, σ+
1 (t)]σ−1 (t)〉

+
γ

2
〈σ+

2 (t)[a, σ−2 (t)]− [a, σ+
2 (t)]σ−2 (t)〉

+ γ〈ei∆φσ+
1 (t)[a, σ−2 (t)]− [a, σ+

2 (t)]e−i∆φσ−1 (t)〉

We now move to the Schrödinger picture and express the
average terms in Eq. (19) as

〈a〉 = 〈Ψ0| a |Ψ0〉 = Tra
(
Trw(a(0) |Ψ(t)〉 〈Ψ(t)|)

)
, (20)

where Trw denotes the trace over the waveguide modes,
and Tra the trace over the atomic states. The atomic
density matrix ρ is obtained from the full density matrix
|Ψ(t)〉 〈Ψ(t)| by tracing over the waveguide modes: ρ(t) =
Trw(|Ψ(t)〉 〈Ψ(t)|). Notice that every operator appearing
in Eq. (19) acts only on the atomic Hilbert space, and can
thus be taken out of the waveguide trace Trw. The average
terms thus read 〈a〉 = Tra(a(0)ρ(t)), and by using the
cyclic property of the trace, one finally obtains the master
equation.

dρ

dt
= −i[Ha +Hdd, ρ] + γD[σ−1 + σ−2 ]ρ, (21)

where the effective dipole-dipole interaction term reads

Hdd ≡ i
γ

2

(
ei∆φσ+

1 σ
−
2 − e−i∆φσ+

2 σ
−
1

)
. (22)

We will denote the effective Hamiltonian as Heff = Ha +
Hdd. In Fig. 3(a) we show the level scheme of the system
along with the different terms of the master equation.

It is convenient to introduce the following states

|S〉 =
1√
2

(
|e1〉 − e−i∆φ |e2〉

)
,

|T 〉 =
1√
2

(
|e1〉+ e−i∆φ |e2〉

)
,

(23)
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and the corresponding operators σ−S = |g〉 〈S| and σ−T =
|g〉 〈T |. The master equation can then be expressed as

dρ

dt
= −i[Heff, ρ] + 2γD[σ−T ]ρ, (24)

where the Hamiltonian now reads

Heff =− δ1 + δ2
2

(
|S〉 〈S|+ |T 〉 〈T |

)
+
( iγ − δ1 + δ2

2
σ+
S σ
−
T + H.C.

)
− Ω

2

(1− e−i∆φ√
2

σ−S +
1 + e−i∆φ√

2
σ−T + H.C.

)
.

(25)
We see from Eq. (24) that the state |T 〉 is superradiant as
it decays with a rate 2γ, while the state |S〉 is subradiant
as it does not spontaneously decay. Although the latter
state does not generate radiation, it is not a dark state
since it is unstable, due to the dipole-dipole term. We
illustrate the dynamics of the atom in Fig. 3(b).

Notice that the master equation of Eq (24) is very sim-
ilar to the equation for the cascaded two-level atoms of
Sec. II (Eq. (1)), where the state |g1g2〉 is now replaced by
|g〉, the state |e1g2〉 by |e1〉 and the state |g1e2〉 by |e2〉.
The double-excited state |e1e2〉 however does not have an
equivalent in our feedback setup.

B. Formation of dark states

Due to the dissipation of the open system via photon
emission, the system relaxes towards a steady-state which
is in general mixed. However, depending on the settings
of the driving laser, this steady-state can be a pure state
|D〉. The two conditions for the existence of such a state
are [43]

1.
[
Heff, |D〉 〈D|

]
= 0,

2. σ−T |D〉 = 0.

The first condition implies that the state is stationary,
i.e. an eigenstate of Heff. The second condition requires
that no incoherent stochastic jump occurs, which is a re-
quirement for the state to be pure. Since the jump oper-
ator is σ−T , such a state belongs to the manifold spanned
by |g〉 and |S〉. We can then write

|D〉 =
1√

1 + |α|2
(
|g〉+ α |S〉

)
(26)

for some α, in analogy with Eq. (5). Requiring this state
to be an eigenstate of Heff provides two constraints. De-
noting the projector on the {|g〉 , |S〉} subspace P =
|g〉 〈g|+ |S〉 〈S|, the first one is (1− P )Heff |D〉 = 0 which
means that the coupling between |D〉 and |T 〉 must vanish,

|gi

|e1i |e2i
�1 �2

⌦⌦

� �

|gi

|Si |T i
�1 + �2

2

�1 + �2
2

i� � �1 + �2

⌦
1 � e�i��

p
2

⌦
1 + e�i��

p
2

2�

|T i

|Di
|Bi

2�

1 + |↵|2 2�|↵|2
1 + |↵|2

(b)

(a)

(c)

i�e�i��

FIG. 3. (Color online) Representation of the atom’s dynam-
ics in different basis. The coherent component is represented
in solid black arrows and the incoherent component in dashed
blue ones. (a) {|g〉 , |e1〉 , |e2〉} basis. The dynamics is given
by Eq. (21). The transitions are driven with a Rabi frequency
Ω and undergo a dipole-dipole interaction. (b) {|g〉 , |S〉 , |T 〉}
basis. The dynamics is given by Eq. (24). The state |T 〉 deex-
cites at a rate 2γ and is coherently coupled to the other two
states. When ∆φ = 0, the state |S〉 is decoupled from the
ground state. (c) {|D〉 , |B〉 , |T 〉} basis. The dynamics coher-
ently couples the bright component |B〉 to the decaying state
|T 〉, which incoherently jumps to the other states via photon
emission. Eventually the system is pumped into the dark state
|D〉.

and yields

α = − Ω√
2

1 + ei∆φ

iγ + δ1 − δ2
. (27)

The second one reads PHeff |D〉 ∝ |D〉 which means that
|D〉 is an eigenstate of the effective Hamiltonian restricted
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to the P subspace, and yields

α2Ω(e−i∆φ − 1)/
√

2 + α(δ1 + δ2)

+Ω(1− ei∆φ)/
√

2 = 0.
(28)

The existence of a solution for α satisfying these two
constraints strongly depends on the phase difference ∆φ.
In what follows, we will consider two different regimes,
namely when the commensurability condition ∆φ = 0 is
satisfied, and when it is not. Note that if one drives the
atom through the waveguide, φ′ = π−ω̄τ and the commen-
surability condition is automatically satisfied. In order to
tune ∆φ to different values, the driving must thus be done
using fields outside of the waveguide. We now show that
dark states can arise in both regimes and that they display
different properties.

1. ∆φ = 0

In Sec. II, we have assumed this condition satisfied. In-
deed, one can show [22] that for the quantum dimers, any
deviation from this phase induces a coherent coupling be-
tween the |S12〉 state from Eq. (5) and the double-excited
state |e1e2〉. Since the latter state is not destroyed by the
Lindblad jump operator, the commensurability is a neces-
sary condition for a dark steady-state. In our case, if we
assume this condition satisfied, Eq. (28) simply becomes
δ1 + δ2 = 0, signifying that the state |S〉 is not detuned
from |g〉. The |S〉 fraction is then given by

α = −
√

2
Ω

iγ + 2δ1
(29)

which increases linearly with the Rabi frequency. For any
Ω, there exists a dark state as the unique steady-state of
the dynamics. Note that this is the same expression as
Eq. (6), which shows the similarities between the physics
of our system and the quantum dimer.

We define the bright state |B〉 = 1√
1+|α|2

(α∗ |g〉 − |S〉),
which is bright in the sense that, contrary to the dark
state, it is coupled to |T 〉 which eventually decays by emit-
ting photons. The three states {|T 〉 , |D〉 , |B〉} form an
orthonormal basis on the atomic Hilbert space, and the
dynamics is represented in Fig. 3(c), where it is clear that
|D〉 is the steady-state. On this basis, the decay from
|T 〉 to |g〉 generates an effective decay to |D〉 with a rate
γeff = 2γ/(1 + |α|2) and to |B〉 with a rate |α|2γeff. The
time necessary to reach the steady-state is roughly given
by 2π/γeff, which grows quadratically with Ω. The Hamil-
tonian from Eq. (24) now takes the simple form

Heff =
(
i
γ

2
+ δ1

)√
1 +

2Ω2

|iγ + 2δ1|2
|T 〉 〈B| . (30)

2. ∆φ 6= 0

The fact that the state |e1e2〉 from the quantum dimer
setup has no equivalent in our system allows to construct
dark states even when the commensurability is not satis-
fied, i.e. the feedback photons are out of phase with the
driving. Inserting Eq. (27) into Eq. (28), a relation be-
tween the variables of the system can be obtained. We
require Ω to be real, and find that the detunings must sat-
isfy δ1 − δ2 = 0, which is the exact opposite condition as
for the ∆φ = 0 case. From now on we will assume this
condition to be satisfied, and we will denote δ = δ1 = δ2.
The requirement for obtaining a dark state then becomes

Ω/γ =

√
1

1 + cos(∆φ)
− 2δ/γ

sin(∆φ)
. (31)

This dark state can be interpreted as follows (see
Fig. 3(b)). In contrast to the case ∆φ = 0, the two states
|g〉 and |S〉 are coupled by the coherent part of the dy-
namics. Since a pure steady-state has to be an eigenstate
of this coherent evolution, it restricts the possibility to the
two dressed states |±〉 = (|g〉+α± |S〉)/

√
1 + |α±|2, where

α± = −
Ω 1−ei∆φ√

2

δ ± sgn(∆φ)
√
δ2 + |Ω 1−ei∆φ√

2
|2
. (32)

Eq. (31) then states the condition under which the cou-
plings to the state |T 〉 from the components of the state
|g〉 and the state |S〉 in the state |+〉 interfere destructively,
rendering |+〉 a dark eigenstate of the coherent dynamics
with eigenvalue

E+ = −δ +
γ

2

1− cos(∆φ)

sin(∆φ)
. (33)

In particular, for δ = 0 we find |α| = 1, which is now in-
dependent of the Rabi frequency. Moreover, from Eq. (31)
we note that this dark state appears only above a critical
Rabi frequency Ωc = γ/

√
2.

The bright state |B〉 is identified as the other dressed
state |−〉 with the energy

E− = −γ
2

1− cos(∆φ)

sin(∆φ)
. (34)

On the {|T 〉 , |D〉 , |B〉} basis, the coherent part of the dy-
namics of the system, represented by the black arrow in
Fig. 3(c), is now governed by the Hamiltonian

Heff =− δ |T 〉 〈T |+ E+ |D〉 〈D|+ E− |B〉 〈B|
+
(
JTB |T 〉 〈B|+ H.C.

)
,

(35)

where the coupling can be expressed as

JTB = i
γ

2

√
2 + δ/E−. (36)
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P = Tr(⇢2), �/� = 0 P = Tr(⇢2), �/� = 1

|↵2|/(1 + |↵|2), �/� = 1|↵2|/(1 + |↵|2), �/� = 0

(a) (b)

(c) (d)

(e) (f) hHe↵i/�, �/� = 1hHe↵i/�, �/� = 0FIG. 4. (Color online) Properties of the steady-state, as a
function of the Rabi frequency Ω and the phase difference ∆φ.
The master equation (24) was solved exactly by vectorising
ρ. In dashed black lines, we plot the curves along which we
predicted dark states. In the first column, δ = 0, whereas
δ = γ in the second one. In the first row we plot the purity,
which is exactly 1 along the white lines. In the second row we
plot the excitation probability, which is the occupancy of |S〉.
In the third row we plot the expectation value of Heff in units
of γ.

In particular, if ∆φ → π then E± → ±∞ whereas JTB
remains finite. In this limit, we see that all three states
effectively decouple, hence the time necessary to reach the
steady-state |D〉 diverges. For other values of ∆φ however,
this time remains finite.

We now look at the whole parameter range for Ω and
∆φ. In Fig. 4, we plot some of the properties of the steady-
state as a function of Ω/γ and ∆φ. When δ = 0, the hor-
izontal dashed black line corresponds to the case ∆φ = 0.
The other dashed curve is a plot of Eq. (31). In Fig. 4(a),
we see that for any given phase ∆φ 6= (0, π) there exists
a unique Rabi frequency Ω for which the steady-state is
dark. By adiabatically increasing the laser intensity from
zero, one would thus observe a dip in the intensity of the
photon emission in the waveguide, which is the signature
of the dark state. Conversely, for Ω ≤ Ωc = γ/

√
2 the

only possible phase is ∆φ = 0 whereas for Ω > Ωc three
different values lead to a dark state. Fig. 4(c) shows that,
as predicted, the occupation of |S〉 along the ∆φ = 0 line
rapidly converges to 1 when Ω/γ increases, whereas along
the other curve it remains constant at 1/2. In Fig. 4(e), we
see that the energy of the dark state has the same sign as
∆φ. When the detuning becomes non-zero (Figs. 4(b,d,f)),
both black curves merge into two bands, which are now
separated by a phase gap.

C. Coupling to a cavity in the bad-cavity regime

In the previous sections we have always assumed that
the coupling of the atom to non-guided modes γ′ was

negligible compared to the coupling to the guided ones
γ. This is currently not the case when working with real
atoms, where β = γ/(γ + γ′) . 0.5 [26] in setups where
the atom-waveguide coupling is not chiral, and β ≈ 0.025
[29] in setups featuring chiral couplings. A way to increase
the effective atom-waveguide cooperativity is depicted in
Fig. 1(c), where the atom couples with a rate g to a cavity
which preserves chiral coupling [17]. The cavity is reso-
nant with the laser and is coupled to the guided modes
with a rate κ.

In a frame rotating at the laser frequency, the master
equation for the system consisting of atom and cavity is
given by

dρ

dt
= −i[Ha, ρ] + L′ρ+ Lintρ+ Lcavρ, (37)

where the loss to non-guided modes from the atom is given
by

L′ρ = γ′
(
D[σ−1 ]ρ+D[σ−2 ]ρ

)
, (38)

the coupling between the cavity and the atom is described
by

Lintρ = −ig[σ+
T aT + σ+

S aS + H.C., ρ] (39)

and the free evolution of the cavity modes is given by

Lcavρ =
κ

2
[a†SaT − a†TaS , ρ] + 2κD[aT ]ρ

+ κ′
(
D[a1]ρ+D[a2]ρ

)
. (40)

Here, κ′ is the intra-cavity loss rate due to absorption and
coupling to non-guided modes, a1 and a2 are the annihila-
tion operator for the cavity modes coupled respectively to
the σ1 and σ2 transitions, and we have defined the T and
S cavity modes aT/S = (a1 ± ei∆φa2)/

√
2 in analogy with

the σ−T and σ−S atomic operators. In order to write down
the master equation, we assumed that the time-delay τ is
much smaller than the relevant timescale of the system,
namely here 1/κ.

As detailed in Appendix A, in the bad-cavity regime
g � κ the cavity can be adiabatically eliminated [44], and
the density matrix for the atom ρa, obtained from ρ by
tracing over the cavity modes, is governed by the following
master equation

dρa
dt

=− i[Ha, ρa] + 2γD[σ−T ]ρa

+
γ

2
[σ+
S σ
−
T − σ+

T σ
−
S , ρa]

+ (γ′ + γκ′/κ)
(
D[σ−1 ]ρa +D[σ−2 ]ρa

)
,

(41)

where γ = (2g)2κ/(κ + κ′)2 is identified as the effective
atom-waveguide coupling and ∆φ has been redefined with
an additional π-shift, and hence now reads ∆φ = −ω̄τ−φ′.
This shift is reminiscent of the cavity and the fact that a
resonant photon entering it will leave with a π-shift [45].
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The dynamics of Eq. (41) is equivalent to the case without
a cavity (Eq. (24)), with an additional coupling to non-
guided modes whose rate is identified as γ′tot = γ′+γκ′/κ,
so that the ratio between the respective couplings to the
non-guided and to the guided modes is

γ′tot
γ

=
γ′

γ
+
κ′

κ
. (42)

In order to have a low ratio, one needs κ′ � κ (in which
case γ ≈ (2g)2/κ) and γ′ � γ.

IV. BEYOND THE MARKOVIAN
APPROXIMATION

In this section we study the dynamics of our setup be-
yond the Markovian regime, when the retardation effects
in the coherent quantum feedback become important. We
are thus interested in the regime where the time-delay
τ is non-negligible compared to the relevant timescales,
namely 1/Ω, 1/γ, 1/|δi|. Due to the constant driving,
a non-negligible photon number is now present between
the atom and the mirror, which results in entanglement
between these photons and the atom, and in a retarded
dipole-dipole interaction between the two transitions of
the atom. The previous master equation treatment is no
longer valid [32, 46] and one needs to employ numerical
methods in order to track the entangled states of the elec-
tromagnetic field and of the atom. Recently, techniques
have been developed to study the dynamics of photonic
circuits consisting of quantum optical systems coupled via
waveguides, where the time-delay in the interaction can
be significant [32]. The state of the system comprising the
atom and the photonic field is approximated using matrix-
product states (MPS) methods [47], which are well suited
to account for the entanglement in our system. We pro-
vide a brief description of the method in Appendix B. In
this section we first neglect the effect of the non-guided
modes and assume a perfect chiral coupling.

In Fig. 5 we show the evolution of the populations of the
atomic reduced density matrix as a function of time. Up
to time t = τ = 10/γ, the system evolves freely, as if the
mirror was not present. The solution is thus given by a
Rabi oscillation between the ground state |g〉 and the state
(|e1〉 + |e2〉)/

√
2 with a Rabi frequency

√
2 Ω, and a dis-

sipation induced by photon emission into the waveguide.
At time τ the system starts interacting with the feedback,
and for ∆φ = 0, the feedback photons previously emit-
ted by the σ1 transition are perfectly in phase with the
photons emitted by the σ2 transition. This generates a
constructive photon interference which amplifies the emis-
sion via a superradiance process. This is demonstrated by
the sudden dip in the excitation of |e2〉 and the bump for
the ground state. Consequently, a fraction of this ground
state bump will be transferred to the occupation of |e1〉
by the laser driving which leads to the bump in the exci-
tation of |e1〉. A similar process can be distinguished for

�⌧ = 10, ⌦/� = 1, �/� = 0, �� = 0

FIG. 5. (Color online) Atomic occupation probabilities as a
function of time for a long delay τ = 10/γ, with Ω = γ, δ = 0
and ∆φ = 0. For reference we plot the ground state occupation
in the Markovian limit.

�⌧

�⌧

�⌧

Tr(⇢2), �/� = 0 Tr(⇢2), �/� = 1(a) (b)

(c) (d)

(e) (f)

ninjected[�], �/� = 0 ninjected[�], �/� = 1

nemitted[�], �/� = 1nemitted[�], �/� = 0

FIG. 6. (Color online) Properties of the steady-state as a func-
tion of the phase difference ∆φ and the propagation time γτ ,
for Ω = 2γ and δ = 0 (first column) or δ = γ (second column).
In the first row we plot the purity of the reduced density ma-
trix of the atom. In the second row we plot the number of
photons injected inside the feedback loop per unit time 1/γ
via the σ1 transition. In the third row we plot the number of
photons emitted in the waveguide, outside of the feedback loop,
per unit time 1/γ. In dashed lines we plot φD + (E+ − E−)τ ,
where φD is one of the values of ∆φ for which the steady-state
is dark in the Markovian limit, and E+ and E− are the energies
of the corresponding dark and bright states, given by Eq. (33)
and Eq. (34), in black for ∆φ > 0 and in white for ∆φ < 0.
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t = 2τ , after what the system becomes very close to the
steady-state.

In Fig. 6, we show how some of the steady-state proper-
ties are affected by an increasing time-delay τ . In Fig. 6(a)
and Fig. 6(b), we see that the purity is locally maximal
along the lines given by ∆φ = φD + (E+ − E−)τ , where
φD is one of the values of ∆φ for which the steady-state is
dark in the Markovian limit, and E+ and E− are the ener-
gies of the corresponding dark and bright states, which are
given by Eq. (33) and Eq. (34). For δ = 0, the phase of the
solution φD = 0 is not shifted. The other two solutions are
shifted symmetrically and thus cross at ∆φ = ±π. The
purity decreases locally around this point, which indicates
that the steady-state is now mixed. Figs. 6(c,e) show that
the photon number in the waveguide is however still very
low (albeit non-zero). For larger values of γτ , the pho-
ton emission increases along the dashed lines, therefore
the purity vanishes. The fact that the photon emission in
the dark state with φD = 0 increases much more rapidly
with γτ than for the other dark states is related to the
fact that the component of the dark state which lies in
the excited manifold, given by α, is higher, as can be seen
from Fig. 4(c). This leads to a higher number of photons
injected in the feedback loop, as represented in Fig. 6(c),
hence even a small delay generates an important number
of feedback photons which are entangled with the system.
Similar results are obtained with δ = γ, in Figs. 6(b,d,f).
Along the black line, the dark state is much more robust to
the increase of the delay than for the white lines, which is
due to the fact that the value of α is lower (see Fig. 4(d)).

V. EXPERIMENTAL CONSIDERATIONS

To conclude this work we discuss some experimental
considerations for the physical implementation of our sys-
tem.

A. Effect of non-guided modes

We now consider the case where the atom can sponta-
neously deexcite by emitting a photon in the non-guided
modes with a rate γ′. This coupling will effectively de-
crease the purity of the steady-state. In Fig. 7 we inves-
tigate the robustness of the dark states. In the Marko-
vian regime, this is done by adding a decoherence term
γ′(D[σ−1 ]ρ + D[σ−2 ]ρ) to the master equation (Eq. (24)).
Fig. 7(a) shows that in this regime, increasing Ω dimin-
ishes the purity. Two effects are in play here. For the dark
state with ∆φ = 0, we saw from Eq. (29) that α increases
proportionally with the Rabi frequency. Since α is the ex-
cited fraction of the dark state, which can spontaneously
emit in the non-guided modes, increasing Ω lowers the pu-
rity. For the dark states with ∆φ 6= 0, we saw that the
time required to reach the steady-state diverges as ∆φ ap-
proaches ±π. As this time becomes large compared to the
decoherence time 1/γ′, the purity decreases. In Fig. 7(b)

Tr(⇢2), �⌧ = 0, �0/� = 0.05 Tr(⇢2), ⌦/� = 2, �0/� = 0.05

1 � Tr(⇢2), �⌧ = 0, ⌦/� = 2

(a) (b)

(c)

FIG. 7. (Color online) Effect of the coupling to non-guided
modes. (a) Purity of the steady-state in the Markovian limit,
as a function of Ω/γ and ∆φ, for γ′/γ = 5% and δ = 0. (b)
Purity of the steady-state as a function of γτ and ∆φ, for
γ′/γ = 5% and δ = 0. (c) Impurity of the steady-state in the
Markovian limit for Ω/γ = 2, where ∆φ is set to the dark state
phases (∆φ = 0 in solid red, ∆φ 6= 0 in dashed blue).

we show the effect in the non-Markovian regime. As the
delay τ increases, the effect on the purity is not signifi-
cantly increased, and the shifting of the phase with the
delay is still very recognizable. In Fig. 7(c) we show the
purity as a function of γ′ for Ω = 2γ. The dark state with
∆φ 6= 0 (in dashed blue) is more robust than the one with
∆φ = 0 (in solid red) which already for γ′/γ = 2% has a
purity of P ≈ 0.75.

B. Imperfection of the chiral coupling

Finally, we consider the case where the coupling be-
tween the atom and the waveguide modes is not per-
fectly chiral. Each transition of the atom σ1 and σ2 now
couples to the guided modes propagating in both direc-
tions. Let us define the directionality of the coupling as
η = γpref/(γpref+γimp), where γpref is the decay rate in the
preferred direction and γimp = γ − γpref the decay rate in
the other direction. We assume that both transitions have
the same directionality, although their preferred directions
are opposite. In the definition of the atom-waveguide in-
teraction Hamiltonian (Eq. (10)), the creation of a photon
propagating towards the mirror is now associated with the
atomic operator σ−L =

√
η σ−1 +

√
1− η σ−2 instead of σ−1 .

For a photon propagating outwards, the atomic operator
is σ−R =

√
1− η σ−1 +

√
η σ−2 instead of σ−2 .

In the Markovian regime, the master equation (Eq. (24))
is now modified in the following way. First, the rela-
tive laser phase φ′ can no longer be gauged away and is
instead an independent parameter which we will set to
zero. Second, the Lindblad jump operator is redefined as
σ−T = σ−L + ei∆φσ−R , and undergoes a dipole-dipole inter-
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FIG. 8. (Color online) Effect of the directionality η of the sys-
tem on the purity of the steady-state for δ = 0 in the Markovian
limit.

action with the redefined operator σ−S = σ−L − ei∆φσ−R .
In Fig. 8 we study the effect of this imperfect direction-

ality. For the dark state with ∆φ = 0, the directionality
does not noticeably alter the purity. This situation is in
fact analogous to the dimerization of two-level atoms cou-
pled to a bidirectional waveguide, where now the atomic
pair couples to the left-moving guided modes with a rate
γL and to the right-moving ones with a rate γR. This sys-
tem has been investigated in Ref. [22], where the authors
have shown that as long as γL 6= γR, the atoms dimerize
to form a unique pure steady-state. In our system, γL is
identified as γpref and γR as γimp.

For ∆φ 6= 0, on the contrary, the dark state vanishes as
η → 0.5. However, we see that the purity of the steady-
state is not drastically altered for small variations of η. For
example, for η = 0.9, the results are still very similar to
the predictions of the scenario with a perfect directionality
η = 1.

VI. CONCLUSION

In this paper we have studied the dissipative dynamics
of an atom in a V-level configuration exhibiting a chiral
coupling with a semi-infinite waveguide, where the atomic
transitions are coupled to the modes propagating in op-
posite directions. The atom is coherently driven by lasers
and by its own quantum feedback. In the Markovian limit,
i.e. when the retardation effects of the quantum feedback
are neglected, we have shown that the dynamics can lead
to a situation where the atom is in a pure steady-state and
no photons are emitted in the waveguide. The properties
of this steady-state crucially depend on the phase acquired
by the quantum feedback.

If this phase is a multiple of 2π, the atom mimics the
dynamics of a pair of laser-driven two-level atoms coupled
to a unidirectional waveguide in a cascaded setup [24]. In

the steady-state of the dissipative dynamics, these two-
level atoms form a pure EPR-entangled pair which effec-
tively decouples from the waveguide, and the excited frac-
tion of this steady-state grows linearly with the driving
intensity. The current effort in the development of chiral
atom-waveguide couplings in different platforms [18, 20]
should allow the observation of these atomic pairs in the
future. In the meantime, we have shown that a single atom
can experience analogous physics which could be achieved
with current state-of-the-art technology.

If the phase of the quantum feedback is different than
2π, we have shown that the pure steady-state of the
atom exhibits very different properties, where the driv-
ing strength is dependent on the feedback phase and the
excited fraction of the steady-state is now a constant. We
have also extended our study to non-Markovian regimes,
where the retardation effects in the quantum feedback be-
come important, and we have shown that this delay in-
duces a shift in the feedback phase.
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Appendix A: Adiabatic elimination of the cavity
modes

We consider the setup of Sec. III C and we derive the
master equation for the atom in the regime g � κ starting
from Eq. (37). The projection operator for the adiabatic
elimination of the cavity modes is

Pρ ≡ Trc(ρ)⊗ |0〉 〈0| , (A1)

where Trc denotes the trace over the cavity modes and |0〉
is the vacuum state on the cavity subspace. A second order
perturbation expansion of the master equation projected
on the P space provides an equation for the atomic density
matrix ρa ≡ Trc(ρ) [39]

dρa
dt

= − i[Ha, ρa] + L′ρ (A2)

+ Trc
(
P
(
Lint(−Lcav)−1Lint(ρa ⊗ |0〉 〈0|)

))
︸ ︷︷ ︸

Leffρa

.

Using the fact that limt→∞ eLcavt = |0〉 〈0| (the unique
steady-state of Lcav is the vacuum) and Trc

(
Lint(ρa ⊗
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|0〉 〈0|)
)

= 0, the third term of the right-hand-side can
be rewritten

Leffρa =

∫ ∞
0

dt Trc
(
LinteLcavtLint(ρa ⊗ |0〉 〈0|)

)
. (A3)

We now move to a picture where the operators evolve with
Lcav. For two operators O1 and O2 acting on the cavity
subspace, we will write 〈0|O1(t)O2(0) |0〉 to denote the
vacuum correlations Trc

(
O1e

Lcavt(O2 |0〉 〈0|)
)
. Using this

notation and the explicit form of Lint from Eq. (39), the
expression from Eq. (A3) can be rewritten

Leffρa =
∑

i,k∈{S,T}
g2

∫ ∞
0

dt 〈0| ai(t)a†k(0) |0〉 [σ−k ρa, σ+
i ]

+ 〈0| ak(0)a†i (t) |0〉 [σ−i , ρaσ+
k ].
(A4)

We thus have to obtain the expressions for 〈0| ai(t)a†k(0) |0〉
and 〈0| ak(0)a†i (t) |0〉. Using the expression of Eq. (40)
for the Liouvillian, we first solve the equations of mo-
tion for 〈aT (t)〉 and 〈aS(t)〉 for an arbitrary density ma-
trix ρ. These equations are obtained by noting that
d
dt 〈a(t)〉 = d

dtTr(aρ(t)) = Tr(aLcavρ). Using the expres-
sion of Lcav from Eq. (40), we get

d

dt
〈aT (t)〉 = −

(
κ+

κ′

2

)
〈aT (t)〉 − κ

2
〈aS(t)〉 (A5)

d

dt
〈aS(t)〉 =

κ

2
〈aT (t)〉 − κ′

2
〈aS(t)〉, (A6)

whose solution reads

〈aT (t)〉 = e−(κ+κ′)t/2〈aT (0)〉 (A7)

− κt

2
e−(κ+κ′)t/2(〈aT (0)〉+ 〈aS(0)〉)

〈aS(t)〉 = e−(κ+κ′)t/2〈aS(0)〉 (A8)

+
κt

2
e−(κ+κ′)t/2(〈aT (0)〉+ 〈aS(0)〉).

We now apply the quantum regression theorem [39] to
obtain the vacuum correlations 〈0| ai(t)a†k(0) |0〉. For ex-
ample, by choosing ρ = a†S |0〉 〈0|, Eq. (A7) provides

〈0| aT (t)a†S(0) |0〉 = −κt
2
e−(κ+κ′)t/2. (A9)

The other terms are similarly obtained, and the integral
in Eq. (A4) can be performed, which provides the effective
Liouvillian

Leffρa =2γD[σ−S ]ρa +
γ

2
[σ+
T σ
−
S − σ+

S σ
−
T , ρa]

+ γ
κ′

κ

(
D[σ−1 ]ρa +D[σ−2 ]ρa

)
,

(A10)

where we define γ = (2g)2κ/(κ + κ′)2. In the limit κ′ →
0, this Liouvillian describes the coupling of the atom to

the guided modes (Eq. (24)), if we exchange the labels of
the states |T 〉 = (|e1〉 + ei∆φ |e2〉)/

√
2 and |S〉 = (|e1〉 −

ei∆φ |e2〉)/
√

2. This can be done by redefining the phase
∆φ with an additional π shift, in which case the master
equation becomes Eq. (41).

Appendix B: Matrix-product state algorithm in the
non-Markovian regime

a. Quantum Stochastic Schrödinger Equation

We provide here a description of the numerical method
developed in [32] that we use to study our feedback system
in non-Markovian regimes. Let us start from the interac-
tion picture Hamiltonian given by Eq. (11) and Eq. (12)
and define the Fourier transform operators

b(t) =
1√
2π

∫ ω̄+θ

ω̄−θ
dω bωe

i(ω̄−ω)t. (B1)

Their commutation relations can be approximated by a
Dirac delta function [b(t), b†(t′)] ≈ δ(t − t′) on timescales
much larger than the photon correlation time 1/θ. The
interaction Hamiltonian (Eq. (12)) becomes

Hint(t) = i
√
γ
(
b†(t)σ−1 + b†(t− τ)ei∆φσ−2 −H.C.

)
, (B2)

and provides a Quantum Stochastic Schrödinger Equation
[39] d|Ψ〉dt = (Ha + Hint(t)) |Ψ〉 for the system comprising
the atom and the waveguide.

b. Time discretization

We discretize time into time-steps of length ∆t which
we take much smaller than the relevant time-scales
1/γ, 1/Ω, 1/|δi|, but much larger than the photon corre-
lation time 1/θ. For a given ∆t we define the quantum
noise increments

∆Bk =

∫ tk+1

tk

dt b(t) (B3)

where tk+1 = tk+∆t, and [∆Bk,∆B
†
k′ ] ≈ ∆t δk,k′ . In this

stroboscopic view, the photons are separated into discrete
time-bins, which consists of a bosonic Fock space with the
corresponding annihilation operators given by the opera-
tor ∆Bk/

√
∆t. The Fock basis for each time-bin k is de-

noted {|ik〉 , ik = 1, 2, ...}, where |ik〉 = (∆B†/
√

∆t)ik√
ik!

|vac〉
and ik is interpreted as the number of photons in the time-
bin. We denote the state of the system consisting of the
atom and all the time-bins as |Ψ(t)〉.

The evolution between two successive discrete times tk
and tk+1 is given by a unitary operator Uk, such that
|Ψ(tk+1)〉 = Uk |Ψ(tk)〉. Using the Hamiltonian from
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Eq. (B2), this operator reads

Uk = T exp
(
− iHa∆t+

√
γ
(
∆B†kσ

−
1

+ ∆B†k−me
i∆φσ−2 −H.C.

))
,

(B4)
where T denotes the time-ordering of the b(t) operators
appearing if one replaces the ∆B operators by their def-
inition (Eq. (B3)). To first order in ∆t, we will neglect
this time-ordering. During each time-step k, we see that
the atom interacts only with the time-bins k and k −m,
where we have defined m = bτ/∆tc. The first one physi-
cally corresponds to the photons emitted towards the mir-
ror, whereas the second one corresponds to the delayed
interaction with the feedback photons.

We assume that the initial state is of the form
|Ψ(t = 0)〉 = |ψa〉⊗∞p=1 |φp〉, where |ψa〉 denotes the initial
state of the atom and |φp〉 the initial state of the time-
bin p (namely the vacuum state in our case), hence the
system is initially fully disentangled. After an evolution
up to time tk, the entanglement grows and in general the
system is of the form |Ψ(tk)〉 = |ψ(tk)〉 ⊗∞p=k |φp〉, where
|ψ(tk)〉 denotes the state of the system comprising the
atom and the time-bins up to p = k − 1. We work in
the basis |ia, ik−1, ik−2, ..., i1〉, where ia ∈ {g, e1, e2} labels
the atomic states. On this basis, |ψ(tk)〉 is decomposed as

|ψ(tk)〉 =
∑
ia,{ip}

ψia,ik−1,ik−2,...,i1 |ia, ik−1, ik−2, ..., i1〉 .

(B5)

c. Matrix-product state algorithm

The matrix-product state (MPS) [38] approach consists
in writing the amplitude as the trace of a product of ma-
trices

ψia,ik−1,ik−2,... = Tr
(
A[a]iaA[k − 1]ik−1A[k − 2]ik−2 ...

)
,

(B6)
where each A[p]ip is a matrix of finite dimensions Dp ×
Dp−1. The bond dimension Dp represents the entangle-
ment between the different components of the system,
more precisely between the two parties formed by a bi-
partite cut of the time-bins between bins p and p+ 1. The
objects A[p] are thus tensors with 2 bond indices encoding

the entanglement, and 1 physical index ip. In our case we
use open boundary conditions, meaning thatDa = D0 = 1
at each time tk. Note that by setting a boundary Dmax
for the bond dimensions, the numerical cost is bounded by
NdD2

max for N bins with a physical dimension d. This can
be much lower than the usual exponential complexity dN .
As discussed in Ref. [32], Dmax needs to increases expo-
nentially with the delay γτ due to long-range correlations
between the bins which increase the entanglement entropy.
However, given a fixed γτ , the entropy remains constant
once the system reaches the steady-state, meaning that
the numerical cost increases only linearly with time.

The algorithm then consists in updating the tensors at
each time-step in the following way. We first extend the
definition of the system by one time-bin. Formally this
amounts to writing

ψia,ik,ik−1,... = Tr
(
A[k]ikA[a]iaA[k − 1]ik−1 ...

)
(B7)

where A[k]ik = δik,0 is a 1×1 matrix, as this new time-bin
is still completely disentangled from the rest of the system.
The Kronecker delta signifies that the state of the time-bin
is the vacuum state. The next step is to apply the unitary
evolution from Eq. (B4). Uk can be seen as a tensor with 6
physical indices, 3 of which are to be contracted with the
physical indices of the MPS tensors A[a], A[k] and A[k−m]
to obtain the evolved state. Notice that A[a] and A[k] are
successive tensors in the state representation (Eq. (B7)),
which corresponds to a short-range interaction between
the tensors. On the other hand, the interaction with A[k−
m] is more involved, as it implies long-range interactions,
hence all the bins between A[k] and A[k − m] must be
updated in order to account for the entanglement increase
arising from this interaction. Various methods for dealing
with these interactions exist [48–50]. Our algorithm is
described in details in the Supplemental Material of [32]
and employs a method proposed in [51, 52]. It consists
in exchanging recursively m − 1 times the state of the
(k − m)-th bin with that of the (k − m + 1)-th bin in
order to obtain an MPS description of the state where all
three interacting tensors are successive tensors. We then
merge these three tensors into a tensor with 3 physical
indices ik, ia, ik−m, and locally apply the unitary tensor
Uk by contracting these indices. The resulting tensor can
finally be brought back into single bin tensors by applying
singular value decompositions (SVD), and by exchanging
the positions of A[k] and A[a], the system is put back in
the form of Eq. (B6), with k → k + 1.
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