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When spatially coherent radiation is diffracted by a crystalline object, the field is scat-

tered in specific directions, giving rise to so-called von Laue patterns. We examine the role

of spatial coherence in this process. Using the first-order Born approximation, a general

analytic expression for the far-zone spectral density of the scattered field is obtained. This

equation relates the coherence properties of the source to the angular distribution of the

scattered intensity. We apply this result to two types of sources. Quasi-homogeneous Gaus-

sian Schell-model sources are found to produce von Laue spots whose size is governed by

the effective source width. Delta-correlated ring sources produce von Laue rings and ellipses

instead of point-like spots. In forward scattering polychromatic ellipses are created, whereas

in backscattering striking, overlapping ring patterns are formed. We show that both the

directionality and the wavelength-selectivity of the scattering process can be controlled by

the state of coherence of the illuminating source.

PACS numbers: 42.25.Fx Diffraction and scattering;42.25.Kb Coherence
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I. INTRODUCTION

The diffraction of radiation by a three-dimensional, periodic potential, i.e., from a crystalline

object, is a subject whose origins were developed a century ago by von Laue, Friedrich, Knipping

and the Bragg father-son team1. Specifically, in the von Laue method, broad spectrum radiation,

which is assumed to be spatially coherent, is diffracted by a monocrystal with a fixed orientation2

(Ch. 6). The resulting diffraction peaks are separated both spatially and spectrally. The location

of these von Laue spots is determined by the crystal’s structure3 (Sec. 13.1.3). Here we report

how the state of spatial coherence of the incident field can drastically affect their size, shape and

spectral composition.

The influence of the state of coherence of the incident field on the scattering process has been

investigated in several publications, see, for example4–12. These studies were all concerned with

either spherical particles, cylinders, or planar scatterers. In contrast, scattering of partially coherent

fields by a medium with a periodic potential has remained largely unexplored. Notable exceptions

are a study by Dušek13, who described dispersion effects in crystal scattering with completely

incoherent radiation, and a paper by Hoenders and Bertolotti14 in which the van Cittert-Zernike

theorem was generalized to two-dimensional periodic media. Recently, a more general approach

to this problem was suggested in15, although there the analysis was limited to one-dimensional

scatterers.

In the present paper we study the scattering properties of media with a periodic, three-

dimensional scattering potential. We begin by analyzing the scattering of an incident field, gener-

ated by a source with an arbitrary state of spatial coherence, by a general mono-crystalline structure

of identical point scatterers. We then examine the special case of large, three-dimensional arrays of

scatterers whose unit cells are rectangular parallelepipeds. Such cells form orthorhombic crystals16.

The incident field is taken to be generated by a planar, partially coherent source that is located

far away from the crystal. The use of the first-order Born approximation allows us to derive an

analytic expression for the spectral density of the far-zone scattered field in terms of a correlation

function of the source, namely its cross-spectral density17 (Sec. 4.3.2). We then apply this result

to two types of sources. Gaussian Schell-model (GSM) sources17 (Sec. 5.2.2) generate an incident

field that is Gaussian correlated. Such fields are found to give rise to larger von Laue diffraction

spots than those produced by their spatially fully coherent counterparts. When the GSM source

is also quasi-homogeneous17 (Sec. 5.2.2), the spot size is directly related to the source width. For

the case of a delta-correlated annular source, the incident field is J0-correlated. This can produce
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multi-colored, elliptical von Laue patterns in the forward direction and an overlapping, multiple

ring pattern in the backward direction. Our results show that both the directionality and the

wavelength-selectivity of the scattering process can be controlled by altering the state of coherence

of the illuminating source or the distance between the annular source and the crystal.

II. SCATTERING FROM CRYSTALLINE STRUCTURES

The incident field at position r and at frequency ω, U (in)(r, ω), is taken to be partially coher-

ent. In the space-frequency domain formulation of coherence theory, its correlation properties are

characterized by the cross-spectral density function18

W (in)(r1, r2, ω) = 〈U (in)∗(r1, ω)U
(in)(r2, ω)〉, (1)

where the angular brackets denote an average taken over an ensemble of realizations of the field,

and the asterisk indicates complex conjugation. The normalized version of this correlation function

is the spectral degree of coherence

µ(in)(r1, r2, ω) =
〈U (in)∗(r1, ω)U

(in)(r2, ω)〉

[S(in)(r1, ω)S(in)(r2, ω)]1/2
, (2)

where the incident spectral density is defined as

S(in)(r, ω) ≡ W (in)(r, r, ω). (3)

We consider a general, three-dimensional crystalline array of identical point scatterers. In that

case the scattering potential F (r, ω) can be written as

F (r, ω) = F0(ω)
∑

R

δ3(r−R), (4)

with F0(ω) ∈ R, δ3 denoting the three-dimensional Dirac delta function, and with the position

vectors of the scatterers given by

R = N1a1 +N2a2 +N3a3. (5)

Here a1, a2, and a3 denote the direct lattice vectors that span the crystal, with Ni any integer, and

i = 1, 2, 3. The periodicity of F (r, ω) allows us to express it as a Fourier series, i.e.,

F (r, ω) =
∑

G

f(G, ω) eiG·r, (6)
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with f(G, ω) the structure factor, and G a reciprocal lattice vector16. The structure factor is given

by the expression

f(G, ω) = V −1

∫

V
F (r, ω) e−iG·r d3r, (7)

where V denotes the volume of a unit cell, over which the integration extends. From this it follows

that in our case

f(G, ω) = F0(ω), (8)

for all vectors G.

Within the validity of the first-order Born approximation18, the scattered field in a direction

indicated by the unit vector s = (sx, sy, sz), is given by the formula

U (sca)(rs, ω) =

∫

R3

U (in)(r′, ω)G(rs, r′, ω)F (r′, ω) d3r′, (9)

where r = rs is a point of observation, and G(rs, r′, ω) is the outgoing free-space Green’s function

pertaining to the Helmholtz equation. Because the scattering potential is identically zero outside

the domain of the scatterer, we have extended the integration in Eq. (9) to the entire three-

dimensional space, i.e., to R
3. Far away from the scatterer the Green’s function takes on the

asymptotic form

G(rs, r′, ω) =
eik|r−r′|

|r− r′|
∼

eikr

r
e−iks·r′, (10)

where k denotes the wavenumber associated with frequency ω. The spectral density of the scattered

field is, in strict analogy with Eq. (3), given by the expression

S(sca)(rs, ω) = 〈U (sca)∗(rs, ω)U (sca)(rs, ω)〉. (11)

On substituting from Eqs. (6), (8), (9), and (10) into Eq. (11), and interchanging the order of

ensemble averaging and integration, we obtain

S(sca)(rs, ω) =
F 2
0 (ω)

r2

∫

R6

W (in)(r′, r′′, ω)e−iks·(r′′−r
′)

×
∑

G

e−iG·r′
∑

H

eiH·r′′ d3r′d3r′′, (12)

with the cross-spectral density function W (in)(r′, r′′, ω) of the incident field given by Eq. (1), and

G and H denoting a reciprocal lattice vectors. Interchanging integration and summation, and
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re-arranging terms yields

S(sca)(rs, ω) =
F 2
0 (ω)

r2

∑

G

∑

H

∫

R6

W (in)(r′, r′′, ω)

× eir
′·(ks−G)eir

′′·(H−ks) d3r′d3r′′. (13)

We note that this expression relates the scattered field to the six-dimensional spatial Fourier

transform of the cross-spectral density of the incident field. To simplify the notation we omit

the ω-dependence from now on.

crystal

s

O’

 

z,z’
O

source

θ

u

∆ z

ρ
α

FIG. 1. Illustrating the notation. The origin O of the first coordinate system is taken in the source plane

z = 0. The origin O′ of the primed coordinates is taken at (x, y, z) = (0, 0,∆z).

Next we make use of the fact that, far away from the source, the cross-spectral density function

itself is also a Fourier transform, namely

W (in)(r′, r′′) =

(

k

2π∆z

)2

eik(z
′′−z′)

∫∫

z=0
W (0)(ρ1,ρ2)

× e−ik(ρ′′·ρ
2
−ρ

′·ρ
1
)/∆z d2ρ1d

2ρ2, (14)

where the superscript (0) indicates the source plane z = 0, and with r′ = (ρ′, z′) and r′′ = (ρ′′, z′′).

The distance ∆z between the source and the scatterer is illustrated in Fig. 1. Equation (14) is

derived in Appendix A. On making use of this expression in Eq. (13) we get the formula

S(sca)(rs) =

(

F0k

2πr∆z

)2
∑

G

∑

H

∫

R6

∫∫

z=0
eik(z

′′−z′)W (0)(ρ1,ρ2)

× e−ik(ρ′′·ρ2−ρ
′·ρ1)/∆zeir

′·(ks−G)eir
′′·(H−ks) d2ρ1d

2ρ2d
3r′d3r′′. (15)
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Writing this out in Cartesian components gives

S(sca)(rs) =

(

F0k

2πr∆z

)2
∑

G

∑

H

∫

R

e−ikz′eiz
′(ksz−Gz) dz′

×

∫

R

eikz
′′

eiz
′′(Hz−ksz) dz′′

∫

R8

W (0)(x1, y1, x2, y2)

× e−ik(x′′x2+y′′y2−x′x1−y′y1)/∆zeix
′(ksx−Gx)eiy

′(ksy−Gy)

× eix
′′(Hx−ksx)eiy

′′(Hy−ksy) dx1dy1dx2dy2dx
′dy′dx′′dy′′. (16)

The integrals over z′ and z′′ are readily evaluated to give

∫

R

eiz
′(ksz−Gz−k) dz′ = 2πδ(ksz −Gz − k), (17)

and

∫

R

eiz
′′(Hz−ksz+k) dz′′ = 2πδ(Hz − ksz + k), (18)

respectively. In order to have a scattered field that is non-zero, Eqs. (17) and (18) have to be

satisfied simultaneously. This implies that

Gz = Hz = k(sz − 1). (19)

Similarly, the integrals over the remaining four primed variables also yield δ-functions, for example

∫

R

eix
′(kx1/∆z+ksx−Gx) dx′ = 2πδ(kx1/∆z + ksx −Gx). (20)

Thus we find the four relations

x1 = ∆z(Gx/k − sx), (21)

y1 = ∆z(Gy/k − sy), (22)

x2 = ∆z(Hx/k − sx), (23)

y2 = ∆z(Hy/k − sy). (24)

Substitution in Eq. (16) gives the final result

S(sca)(rs) =

(

F04π
2∆z

kr

)2
∑

G,H

W (0)(x1, y1, x2, y2), (25)

with the arguments (x1, y1, x2, y2) of the cross-spectral density function W (0) given by Eqs. (21)–

(24), and the double summation over the reciprical lattice vectors such that Gz = Hz. Eq. (25) is

a general expression for the far-zone scattered field in terms of the cross-spectral density function

of the source and the reciprocal lattice of the crystal.
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III. ORTHORHOMBIC CRYSTALS

From here on we assume the scattering structure to be an orthorhombic crystal16, consisting

of unit cells with sides a, b, c, as sketched in Fig. 2. We note that this choice of coordinate axes

means that we consider a field that is normally incident along the z direction.

a

b

c

z

x

y

FIG. 2. A rectangular parallelepiped unit cell of eight identical point scatterers. The direct lattice vectors

are a1 = ax̂, a2 = bŷ and a3 = cẑ. The orthorhombic scatterer is assumed to consist of many of these unit

cells.

For an orthorhombic crystal the Cartesian components of its reciprocal lattice vectors are given

by the formulas

Gx = 2π
n1

a
, (26)

Gy = 2π
n2

b
, (27)

Gz = 2π
n3

c
, (28)

and

Hx = 2π
m1

a
, (29)

Hy = 2π
m2

b
, (30)

Hz = 2π
m3

c
, (31)

with the indices ni and mi any integer, and i = 1, 2, 3. Eq. (19) yields the restriction n3 = m3.

The above expressions will be used in Eqs. (21)–(24).

IV. GAUSSIAN SCHELL-MODEL SOURCES

For a planar source of the Gaussian Schell model type17, the cross-spectral density function in

the source plane reads

W (0)(ρ1,ρ2) =
√

S(0)(ρ1)S
(0)(ρ2)µ

(0)(ρ2 − ρ1), (32)
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with the spectral density and the spectral degree of coherence both having a Gaussian form, i.e.,

S(0)(ρ) = A2e−ρ2/2σ2

S , (33)

µ(0)(ρ2 − ρ1) = e−(ρ
2
−ρ

1
)2/2σ2

µ . (34)

Here A2 denotes the maximum spectral density, σS the effective source width, and σµ the effective

transverse coherence length.

Let us next make the additional assumption that the source is quasi-homogeneous. For such

sources the spectral density S(0)(ρ) changes much more slowly with ρ than the spectral degree of

coherence µ(0)(ρ2 −ρ1) changes with |ρ2 −ρ1|. That implies that σ2
µ ≪ σ2

S . The far-zone spectral

degree of coherence of the field that is generated by such a source satisfies the reciprocity relation17

(Sec. 5.3.2)

µ(∞)(r1s1, r2s2) =
S̃(0)[k(s2⊥ − s1⊥)]

S̃(0)(0)
eik(r2−r1), (35)

where the superscript (∞) indicates points in the far zone, and si⊥ = (six, siy), with i = 1, 2, are the

transverse parts of the directional unit vector si. If we apply the spectral density distribution (33)

to this expression, we find for the spectral degree of coherence of the field that is incident on the

crystal the equation

µ(in)(r1s1, r2s2) = e−k2σ2

S
(s2⊥−s1⊥)2/2eik(r2−r1). (36)

Eq. (36) shows that we can change the state of coherence of the incident field, or more precisely,

its effective transverse coherence length, by changing the width σS of the source.

If we substitute from Eq. (32) into Eq. (25) for the case of an orthorhombic crystal, as was

described in the previous section, we obtain the formula

S(sca)(rs) = β
∑

ni,mj
n3=m3

exp

{

−
(∆z)2

4σ2
S

[

(

2πn1

ka
− sx

)2

+

(

2πn2

kb
− sy

)2

+

(

2πm1

ka
− sx

)2

+

(

2πm2

kb
− sy

)2
]}

× exp

(

−
(∆z)2

2σ2
µ

{

[

2π

ka
(m1 − n1)

]2

+

[

2π

kb
(m2 − n2)

]2
})

, (37)

with i, j = 1, 2, 3, and where for brevity we have introduced the parameter β, where

β =

(

AF04π
2∆z

kr

)2

. (38)
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The maximum term in the summation occurs when the arguments of both exponentials are zero,

i.e., when m1 = n1 and m2 = n2, and for a scattering direction s such that

sx =
λn1

a
, (39)

sy =
λn2

b
, (40)

with the wavelength λ = 2π/k. For the longitudinal component of s we have from Eqs. (19)

and (28) that

sz = 1 +
λn3

c
. (41)

These three formulas are the well-known von Laue equations3 (Sec. 13.1.3). They indicate the

directions s of maximum scattering for an incident field that is spatially fully coherent.

On making use in Eq. (37) of the assumption that σ2
µ ≪ σ2

S , it follows that we may safely

neglect all terms for which m1 6= n1 and m2 6= n2. This then gives

S(sca)(rs) = β
∑

ni

exp

{

−
(∆z)2

2σ2
S

[

(

2πn1

ka
− sx

)2

+

(

2πn2

kb
− sy

)2
]}

. (42)

Eq. (42) describes the scattered field as a sum of terms. Each term is characterized by the integer

triplet (n1, n2, n3). The value of these integers determines a specific wavelength λ and a direction

s at which the scattering reaches a maximum, a so-called von Laue spot. It is worth noting that

Eq. (42) does not depend on the coherence length σµ of the source, however it does depend on the

state of coherence of the incident field. This is because for a distant quasi-homogeneous Gaussian

Schell-model source, the reciprocity relation Eq. (36) implies that the coherence of the incident

field is governed by the effective source size σS, rather than σµ. When this source size is decreased,

the spectral degree of coherence of the field that is incident on the crystal, is increased.

We illustrate our results by considering the example of an orthorhombic crystal with unit cells

with sides

a = 1.0 × 10−9 m, (43)

b = 1.2 × 10−9 m, (44)

c = 1.5 × 10−9 m. (45)

We study a single scattering direction by choosing a triplet (n1, n2, n3). The three von Laue

equations, together with the requirement that s is a unit vector, i.e.,

s2x + s2y + s2z = 1 (46)
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form an overdetermined system that will only be satisfied for a specific wavelength. For example,

for the choice

n1 = 1, (47)

n2 = 3, (48)

n3 = −2, (49)

it is found that λ = 2.95× 10−10 m, and hence that sx = 0.29, sy = 0.73 and sz = 0.60.

(a)

S
x

S
y

(b)

S
x

S
y

(c)

S
x

S
y

FIG. 3. Distribution of the normalized scattered intensity around the direction indicated by the von Laue

equations for different values of the effective source width, and hence a different transverse coherence length

of the incident field. Panel a): σS = 5.0×10−3 m; panel b): σS = 2.5×10−3 m; panel c): σS = 1.0×10−3 m.

In these examples n1 = 1, n2 = 3, n3 = −2 and ∆z = 1 m.

We note that, apart from this particular value of the wavelength, there exists, for every choice of

(n1, n2, n3), the trivial solution λ = 0, and hence sz = 1. This corresponds to a forward propagating

field with an infinite frequency. Since this is non-physical, we exclude this solution. We will return

to the issue of spurious solutions in the next section.

The influence of the state of coherence of the incident field on the distribution of the scattered

field around the direction specified by the von Laue equations, is evaluated by calculating a single
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term of the summation in Eq. (42):

S(sca)(n1, n2, n3) = β exp

{

−
(∆z)2

2σ2
S

[

(

2πn1

ka
− sx

)2

+

(

2πn2

kb
− sy

)2
]}

, (50)

where we have changed the arguments of S(sca) from (rs) to the triplet (n1, n2, n3).

An example is presented in Fig. 3. The source width σS decreases in going from panel a) to

panel c). This means that the spectral degree of coherence of the incident field increases. It is seen

that the circular, Gaussian intensity distribution, which is centered around the von Laue direction,

gets narrower when the spatial coherence of the incident field increases, and becomes more and

more point-like.

S
x

S
y

FIG. 4. Distribution of the normalized scattered intensity around two von Laue spots. The left-hand

peak corresponds to (n1, n2, n3) = (1, 3,−2) and hence λ = 2.95 × 10−10 m. The right-hand peak is for

(n1, n2, n3) = (2, 3,−2), and thus λ = 2.21 × 10−10 m. In these two examples σS = 1.0 × 10−3 m, and

∆z = 1 m.

Let us next choose a second scattering direction by setting

n1 = 2, (51)

n2 = 3, (52)

n3 = −2. (53)

We now find that λ = 2.21 × 10−10 m, and hence that sx = 0.44, sy = 0.55, and sz = 0.70. It

is clear from Fig. 4 that these two diffraction peaks are well separated, both directionally and

spectrally.

V. UNCORRELATED, INFINITELY THIN ANNULAR SOURCES

We next consider the idealized case of a completely incoherent, infinitely thin “delta-ring”

source. If this ring has a uniform spectral density A2, and is of radius R, then the cross-spectral
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density of the field in the source plane is given by the expression

W (0)(ρ1,ρ2) = A2δ(ρ1 −R)δ2(ρ2 − ρ1), (54)

where δ and δ2 represent the one- and two-dimensional Dirac delta function, respectively. Such

a source produces a J0 Bessel-correlated field in its far zone. The approximate experimental

realization of such a field was reported in19.

S
x

S
y

(a) (b)

(c)

S
x

u

−0.54

−0.73

S
x

U

S
y

FIG. 5. (a) An oblique, elliptic cylinder and a unit sphere in (sx, sy, u)-space. The sphere is centered on

(0, 0,−1), and the cylinder has a radius R/∆z in the horizontal plane. The intersections of the cylinder and

the sphere are indicated by the two blue curves. (b) The projection of the lower intersection onto the sx, sy-

plane. (c) The projection of the lower intersection onto the sx, u-plane. In these examples a = 1× 10−9 m,

b = 1.2× 10−9 m, c = 1.5× 10−9 m, n1 = −1, n2 = −2, n3 = −2, R = 0.1 m and ∆z = 1 m.

If we substitute from Eq. (54) into Eq. (25) for the case of an orthorhombic crystal as described
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in section III, we get the expression

S(sca)(rs) = β
∑

ni,mj
n3=m3

δ







∆z

[

(

2πn1

ka
− sx

)2

+

(

2πn2

kb
− sy

)2
]1/2

−R







× δ

[

2π

ka
(n1 −m1)

]

δ

[

2π

kb
(n2 −m2)

]

, (55)

= β
∑

ni

δ







∆z

[

(

2πn1

ka
− sx

)2

+

(

2πn2

kb
− sy

)2
]1/2

−R







. (56)

In order to determine the components of the directional vector s and the wavelength λ, we recall

Eq. (41):

sz = 1 + u, (57)

where we defined the scaled wavelength u as

u ≡
λn3

c
. (58)

The first requirement, that |s| = 1, defines a unit sphere in (sx, sy, u)-space that is centered around

the point (0, 0,−1), as is shown in Fig. 5. The second condition, which is derived from Eqs. (56)

and (58), reads

(

u
cn1

n3a
− sx

)2

+

(

u
cn2

n3b
− sy

)2

=
R2

(∆z)2
. (59)

This defines an oblique, elliptic cylinder, whose intersection with any horizontal plane u = constant,

is a circle with center (sx, sy) = (ucn1/n3a, ucn2/n3b), and with radius R/∆z. From this expression

it follows readily that the central axis of the cylinder is the line given by the formula

(sx, sy, u) = (ucn1/n3a, ucn2/n3b, u). (60)

For any choice of the triplet (n1, n2, n3), the directions of non-zero scattering and the wavelength

are given by the intersections of the cylinder and the unit sphere. These will be two closed curves,

as indicated in blue in the example shown in Fig. 5(a). The upper curve, near u = 0, is the partially

coherent analogue of the spurious solution that we discussed below Eq. (49), and we will therefore

not consider it.

The assumption that the scatterer is in the far zone of the source means that R is much smaller

than ∆z. This implies that the cylinder is quite narrow. According to Eq. (57), an intersection of

the cylinder in the upper half of the sphere (u > −1), corresponds to forward scattering (sz > 0),

whereas an intersection in the lower portion of the sphere represents backscattering (sz < 0).
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Instead of a single von Laue direction, we now have a range of scattering directions, each represented

by a point on the intersectional curve. Since these points each have a distinct u coordinate, Eq. (58)

implies that they all represent scattering at a distinct wavelength, i.e., the von Laue curves show

dispersion. It is worth remarking that this spread in u values, and hence the dispersion, will be

more pronounced for oblique scattering than for scattering in the forward direction.

The projection of the sphere-cylinder intersection onto the the sx, sy-plane is obtained by sub-

stituting u = −1± (1− s2x− s2y)
1/2 into Eq. (59), with the plus (minus) sign taken for intersections

in the upper (lower) half of the sphere. This gives the formula

R2

(∆z)2
=

[

(

−1±
√

1− s2x − s2y

) cn1

n3a
− sx

]2

+

[

(

−1±
√

1− s2x − s2y

) cn2

n3b
− sy

]2

. (61)

The projection of the lower curve of Fig. 5(a) is plotted in panel (b). This curve represents

scattering along a range of directions s, each with a specific value of u, and hence with a different

wavelength. The variation of the wavelength with the direction s can be studied by projecting the

intersection onto the sx, u-plane. This is done by substituting sy = ±[1 − s2x − (1 + u)2]1/2 into

Eq. (59), with the plus (minus) sign taken when sy is positive (negative). The result is

R2

(∆z)2
=

[

u
cn1

n3a
− sx

]2

+

[

u
cn2

n3b
∓
√

1− s2x − (1 + u)2
]2

. (62)

The projection of the lower curve is shown in Fig. 5(c). It is seen that the value of u varies

between −0.54 and −0.73. According to Eq. (58), this corresponds to a wavelength range of

4.05 × 10−10 m ≤ λ ≤ 5.47× 10−10 m.

The distinction between forward and backward scattering can be made by considering the angle,

γ say, between the axis of the cylinder and the positive u axis. It follows from Eq. (60) that

tan γ =

√

(

cn1

n3a

)2

+

(

cn2

n3b

)2

. (63)

Ignoring the finite radius of the cylinder for simplicity, the lowest intersection of the cylinder with

the sphere will be above the equator (u = −1) when this angle exceeds 45◦. Hence we conclude

that forward scattering occurs when
(

cn1

n3a

)2

+

(

cn2

n3b

)2

> 1. (64)

When this quantity is less than unity, the scattering is in the backward direction.

Colorful von Laue patterns in the visible spectrum can be produced by crystals with sides on the

order of microns. Examples of three symmetrically located, forward-scattered patterns (sz > 0),
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FIG. 6. (a): Showing three different von Laue patterns scattered in the forward direction (sz > 0) for,

from left to right, n1 = −1, 0, 1, and n2 = n3 = −2. (b): The projection of these curves onto the sx, u-

plane, showing their colors in the visible spectrum. In this example a = 1 × 10−6 m, b = 1.2 × 10−6 m,

c = 1.5× 10−6 m, R = 0.1 m and z = 1 m.

are plotted in Fig. 6(a). Their projection onto the sx, u plane is shown in panel (b). Using Eq. (58),

it is found that the wavelengths for these three ellipses range from 405 to 660 nm, as is indicated

in the color rendering. By increasing the distance ∆z between the source and the crystal (see

Fig. 1), one gradually approaches the case of spatially coherent illumination. This should lead to

a decrease in dispersion. Indeed it found for example, that when ∆z is increased from 1 to 5 m,

the wavelength range is reduced to 465 to 600 nm.
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FIG. 7. Showing five different backscattered von Laue rings for, from left to right, n1 = −2,−1, 0, 1, 2, and

n2 = 1 and n3 = −25. In this example a = 4 × 10−6 m, b = 4.8 × 10−6 m, c = 6.0 × 10−6 m, R = 0.1 m,

and ∆z = 1 m.
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Examples of scattering in the backward direction (sz < 0), are presented in Fig. 7. Near-circular,

overlapping intensity patterns are produced with a wavelength interval from 444 to 480 nm. The

directional radius of these patterns, i.e., their spread in the sx, sy plane, can easily be tailored by

changing either the source radius R or the source-crystal distance ∆z. Decreasing the ratio R/∆z

decreases the directional radius.

VI. CONCLUSIONS

We have analyzed the role of spatial coherence in scattering from a periodic potential. This

was done within the context of the so-called von Laue method, in which a polychromatic field is

diffracted by a crystal with a fixed orientation. A general expression, Eq. (25), that relates the

scattered field to the cross-spectral density of the source, was derived. This result was applied

to two different types of partially coherent sources. Quasi-homogeneous Gaussian Schell model

sources (GSM) and delta-correlated, thin annular sources. The sphere-cylinder construction that

we used for the latter type, can, at least in principle, also be applied to the GSM source. However,

we chose, for that case at least, to stay closer to the traditional treatment. The GSM sources were

seen to produce von Laue spots whose size is directly related to the size of the source. The annular

sources were found to generate elliptical von Laue patterns rather than spots. Both the dispersion

and the angular spread of these patterns can be tuned by changing the source radius or the distance

between the source and the crystal. In summary, we have shown how spatial coherence can be

used to tailor scattering by an object with a periodic potential. Our work may be extended to

sources with different shapes and correlation functions, other crystals, and crystals with a different

orientation.
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APPENDIX A: Derivation of Equation (14)

Consider a secondary, partially coherent, planar source that is situated in the plane z = 0, as

sketched in Fig. 1. The symbol ρ = (x, y) denotes a transverse vector. The coherence properties

of the source field at two points ρ1 and ρ2 are characterized by the cross-spectral density function

W (0)(ρ1,ρ2) = 〈U (0)∗(ρ1)U
(0)(ρ2)〉, (A-1)

where the superscript (0) indicates the source plane. If the scatterer is located far away from the

source, then the incident cross-spectral density of the incident field equals17 (Eq. 5.3-4)

W (in)(r1u1, r2u2) =

(

k

2π

)2 exp[ik(r2 − r1)]

r1r2
cosα1 cosα2

×

∫∫

z=0
W (0)(ρ1,ρ2)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d
2ρ1d

2ρ2, (A-2)

where u1⊥ and u2⊥ are the transverse parts of the directional unit vectors u1 and u2. These two

vectors are under an angle α1 and α2, respectively, with the positive z axis. The scatterer is a

distance ∆z from the source. Because the linear dimensions of the scatterer may be assumed to

be much smaller than ∆z, the angles α1 and α2 are both small and hence cosα1 ≈ cosα2 ≈ 1.

Furthermore, the factor k(r2 − r1) where ri = |(ρi, zi)|, with i = 1 or 2, can then be expressed as

k(r2 − r1) ≈ k[z2(1 + ρ22/2z
2
2)− z1(1 + ρ21/2z

2
1)], (A-3)

≈ k(z2 − z1), (A-4)

where we have used the fact that ρ1 and ρ2 are both bounded by the transverse size of the scatterer.

In addition, the finite size of the scatterer implies that the factor 1/r1r2 does not vary appreciably

over its domain, i.e.,

1

r1r2
≈

1

(∆z)2
. (A-5)

On making use of these approximations in Eq. (A-2) we obtain the expression

W (in)(r1u1, r2u2) =

(

k

2π∆z

)2

exp[ik(z2 − z1)]

∫∫

z=0
W (0)(ρ1,ρ2)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d
2ρ1d

2ρ2. (A-6)
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Finally, Eq. (A-6) must be expressed in terms of the primed variables defined in Fig. 1. This is

done by noting that

z2 − z1 = z′′ − z′, (A-7)

u1⊥ ≈ ρ
′/∆z, (A-8)

u2⊥ ≈ ρ
′′/∆z, (A-9)

and hence we obtain

W (in)(r′, r′′) =

(

k

2π∆z

)2

exp[ik(z′′ − z′)]

∫∫

z=0
W (0)(ρ1,ρ2)

× exp[−ik(ρ′′ · ρ2 − ρ
′ · ρ1)/∆z] d2ρ1d

2ρ2, (A-10)

which is Eq. (14).
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