
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Atom-interferometric gravitational-wave detection using
heterodyne laser links

Jason M. Hogan and Mark A. Kasevich
Phys. Rev. A 94, 033632 — Published 28 September 2016

DOI: 10.1103/PhysRevA.94.033632

http://dx.doi.org/10.1103/PhysRevA.94.033632


Atom interferometric gravitational wave detection using heterodyne laser links

Jason M. Hogan and Mark A. Kasevich
Department of Physics, Stanford University, Stanford, California 94305

(Dated: August 22, 2016)

We propose a gravitational wave detection method based on heterodyne laser links and light-pulse
atom interferometry that enables high sensitivity gravitational wave detection in the 0.1 mHz to 1 Hz
frequency band using a single, long (> 108 m), detector baseline. The detection baseline in previous
atom-based proposals was constrained by the need for a reference laser to remain collimated over the
optical propagation path between two satellites. Here we circumvent this requirement by employing
a strong local oscillator laser near each atom ensemble that is phase referenced or phase locked to the
reference laser beam. Longer baselines offer a number of potential advantages, including enhanced
sensitivity, simplified atom optics, and reduced atomic source flux requirements.

I. INTRODUCTION

Atom interferometry offers a potential strategy for
high-sensitivity gravitational wave detection in the 0.1
mHz to 1 Hz frequency band. Strengths of the atom
interferometric approach include phase multiplication
through multiple pulse sequences, proof mass resilience
[1], laser frequency noise immunity and quantum back-
action noise immunity [2].

In previous proposals, technical considerations have
limited the possible baseline length of the detector. In
this article, we describe a method which enables antenna
operation with substantially longer baselines. This re-
sults in designs whose sensitivities exceed those of exist-
ing proposals (e.g. LISA [3]), but which do not require
significant advances in the state-of-the-art for atom in-
terferometry. For example, we describe an antenna with
10 times the sensitivity of the LISA antenna that invokes
12 photon recoil atom optics.

In a single-baseline atom interferometric detector, the
light pulses are sent back and forth across the baseline
from alternating directions, driving single-photon tran-
sitions in the atoms on both ends [2]. Momentum re-
coil from the interactions generates the interferometers,
whose phases reflect the relative motion of the atoms
with respect to the optical phase fronts. The phase dif-
ference between the two interferometers is sensitive to
variations of the light travel time across the baseline,
so by monitoring the phase difference it is possible to
detect travel time fluctuations induced by GWs. Previ-
ous proposals have assumed that the atom optics laser
beam is collimated, constraining the allowed baseline
length L to no larger than the Rayleigh range zR of the
laser: L ≤ 2zR = 2πw2/λ, where λ is the laser wave-
length and w is the radial beam waist [2, 4]. Assuming
(Ω/2π) ∼ kHz Rabi frequencies with 1 m telescopes and
10 W laser power sets a practical limit for baseline length
of L ∼ 103 km [2, 4].

Although atom interferometric detectors operating at
1000 km have the potential to reach comparable sensi-
tivity to LISA [4], the advantages of increasing the base-
line are tantalizing. Generally, a local acceleration noise
source δa results in an effective strain response ∝ δa/L,

so longer baselines reduce the technical requirements
needed to control a wide class of backgrounds. Further-
more, at the same target GW signal strength, increasing
the baseline reduces the need to use large momentum
transfer (LMT) and other phase enhancement techniques
[2, 5], simplifying the interferometer operation. Finally,
enhanced strain sensitivity allows for increased science
reach.

II. HETERODYNE LASER LINK

A. Setup

In our proposal, intense local lasers are used to op-
erate the atom interferometers at each end of the base-
line. To connect these otherwise independent local lasers,
reference laser beams are transmitted between the two
spacecraft, and the local lasers are phase referenced or
phase locked to the incoming wavefronts of these ref-
erence lasers. In this scheme, the reference beams do
not need to be collimated, since the phase locks can be
done using much less intensity than is required to drive
the atomic transitions. This allows the baseline to be
extended to LISA-like lengths with only a modest tele-
scope size and reference beam power. Critically, since
the phase-referenced/locked local laser tracks the noise of
the incoming reference laser, this arrangement maintains
the essential common-mode laser phase noise cancellation
between the two interferometers that allows for single
baseline operation. This noise immunity is a fundamen-
tal difference from other proposals that use heterodyne
links for extended baselines [3, 6]. The current proposal
effectively decouples the phase noise rejection require-
ment from the atom optics intensity demands, allowing
the flexibility to independently optimize the baseline and
atomic transition rate.

A schematic is shown in Fig. 1. Each satellite contains
an atom interferometer that is implemented using alter-
nating laser pulses traveling along the positive and nega-
tive z directions. Both satellites contain their own mas-
ter laser (M1 and M2) that has enough intensity to drive
transitions in the local atom interferometer. After inter-
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FIG. 1. Schematic of the proposed design. M1 and M2 are the master lasers, with beams depicted as dotted and solid lines,
respectively. The reference beams propagating between the satellites are denoted R1 (dotted) and R2 (solid). LO1 and LO2 are
local oscillator lasers (dashed beam lines) that are phase locked to the incoming reference laser beams (R2 and R1, respectively).
PD1 (PD2) is a photodetector used to measure the heterodyne beat note between the incoming reference beam R2 (R1) and
the local oscillator laser LO1 (LO2) in order to provide feedback for the laser link. BS is a (non-polarizing) beamsplitter where
the heterodyne beat note is formed. Tip-tilt mirrors (TTM) allow for fine control of the pointing direction of each laser. All
adjacent parallel beams are nominally overlapped, but for clarity they are shown here with a small offset.

acting with the local atom cloud, the master laser beam
exits the satellite through a beamsplitter and then prop-
agates across the baseline towards the opposite satellite.
We refer to the beams propagating between the satellites
as reference beams: R1 and R2 are the reference beams
originating from satellite 1 and 2, respectively.

The reference beams are not assumed to be collimated
when they reach the opposite satellite, so for very long
baselines the received reference beam intensity is ex-
pected to be too low to directly drive an atomic tran-
sition. To address this, local oscillator lasers (LO1 and
LO2) are phase referenced to the incoming reference
beams, and these lasers have sufficient intensity to drive
transitions in the local atom interferometers. The phase
reference for laser LO1 is implemented by detecting the
heterodyne beatnote formed by the incoming reference
beam R2 with laser LO1 on the beamsplitter BS in satel-
lite 1 (and analogously for LO2 in satellite 2). In addition
to a photodetector for measuring the phase difference be-
tween the two beams, a quadrant detector (or camera)
may be used to characterize the spatial interference pat-
tern. This allows the pointing direction and spatial mode
of the two lasers to be well matched using appropriate
feedback, as discussed later. Finally, note that the two
lasers on a given satellite (e.g., M1 and LO1) do not
have to be tightly locked together, because noise from
each laser direction independently cancels in the phase
difference between the two interferometers [7].

B. Laser phase noise

An essential consideration is the required noise perfor-
mance of the phase reference measurement between the
reference beam and the local oscillator in each satellite.
Any noise added by the phase reference is not common

between the interferometers and so must be sufficiently
small.

Consider the laser phase noise arising from one of the
pulses in the interferometer sequence. For concreteness,
we analyze a pulse propagating in the positive z-direction
from satellite 1 to satellite 2. During the pulse, the phase
of the maser laser M1 generally evolves in time as φM (t).
When this pulse later arrives at satellite 2 after propa-
gating across the baseline, the received reference beam
R1 will also vary as φM (t), while the local oscillator laser
LO2 evolves as φLO(t). For a pulse of duration τ be-
ginning at time t0, the atom records a weighted average

of the laser phase evolution 〈φ(t)〉 ≡ 1
τ

∫ t0+τ

t0
w(t)φ(t) dt,

where w(t) ≡ Ω(t)τ
2 sin

(∫ t

t0
Ω(t′)dt′

)
is a dimensionless

weighting function[8], and Ω(t) is the time-dependent
Rabi frequency that defines the pulse envelope [9, 10].
Thus 〈φM (t)〉 and 〈φLO(t)〉 are imprinted on the atoms
in satellite 1 and 2, respectively, and the phase differ-
ence between the atom interferometers has a laser noise
contribution δφL = 〈φM (t)〉 − 〈φLO(t)〉.
This noise can be suppressed by incorporating the op-

tical phase reference measurement, which in this example
is the heterodyne signal present on PD2. The heterodyne
beat note on PD2 evolves as ∆ΦPD(t) = φM (t)− φLO(t)
during the pulse. In one possible implementation, this
measurement can be used to lock the phase of LO2 in real
time to the reference beam[11], ensuring φM (t) = φLO(t).
In the case of a phase lock we then have 〈φM (t)〉 =
〈φLO(t)〉, so the laser noise contribution δφL to the inter-
ferometer phase difference vanishes. Alternatively, LO2
can be left to evolve freely, and the heterodyne signal
can be used as a phase reference that is later combined
with the atom signals to remove the noise δφL. In this
case, the heterodyne data may need to be time averaged
with the appropriate weighting function w(t) to accu-
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rately match the atom response. This corresponds to
matching the optical heterodyne and atomic phase trans-
fer functions in the frequency domain.

C. Vibration Noise

Another source of phase noise could arise from motion
of the beamsplitter (BS). The beamsplitter is assumed
to be rigidly connected to the satellite bus, so any plat-
form vibration noise will affect the beamsplitter as well.
However, it turns out that the proposed scheme is in-
sensitive to phase noise introduced by vibration of the
beamsplitters.

To see this, assume that the heterodyne reference is
operated in a phase locked mode, and that the incoming
reference laser has phase φR at the nominal position r = 0
of the beamsplitter. Due to vibration of the satellite,
the beamsplitter may be displaced by some amount ∆r,
so upon reflection from the beamsplitter the reference
beam will instead have phase φ′

R = φR + k · ∆r, where
k is the wavevector of the incoming reference beam. On
the other hand, the LO beam that transmits through
the beamsplitter is not impacted by the displacement,
so the heterodyne signal between the lasers encodes the
vibration noise ∆r. When the phase lock is engaged,
the phase of the LO laser φLO at r = 0 is locked to
the phase of the reflected reference beam, resulting in
φLO = φR + k · ∆r. Finally, consider the phase φ′

LO of
the LO beam that reflects off the beamsplitter and that is
subsequently incident on the atoms. Since the LO beam
reflects off the opposite side of the beamsplitter compared
to the reference beam, the reflected LO beam at r = 0 has
phase φ′

LO = φLO − k ·∆r. This implies that φ′
LO = φR

as desired, so the vibration noise does not affect the light
reaching the atoms. A similar argument holds when the
heterodyne signal is used as as phase reference rather
than a phase lock, since any phase shift added to the LO
upon reflection off the beamsplitter will also be present
on the heterodyne signal, and so can later be subtracted.

D. Photon Shot Noise

The phase reference is ultimately limited by photon
shot noise of the received reference beam light. This is a
new constraint that has not been present in past designs
based on collimated beams. Since both atom interferom-
eters are driven using high intensity local lasers, photon
shot noise does not directly contribute to phase noise
of the atom interferometer signals. Rather, photon shot
noise limits the ability to measure the heterodyne beat
note ∆ΦPD(t) during the finite duration of each interfer-
ometer pulse. To avoid limiting the strain resolution, the
photon shot noise contribution to the detector noise bud-
get must be less than the contribution from atom shot
noise.

For the time-average heterodyne phase measurement
〈∆ΦPD(t)〉, the variance is given by the number of pho-
tons Nγ received during a pulse: Var(〈∆ΦPD(t)〉) =
1/Nγ. This may be written as a product of the pulse
bandwidth and the phase noise power spectral density
(PSD) of the shot noise Ssh = hν/Pr, where Pr is
the power of the received reference beam and ν = c/λ
is the light frequency. For an interferometer consist-
ing of np (uncorrelated) pulses, the RMS phase uncer-
tainty contributed by the heterodyne reference is then
δφ2

rms = Var(〈∆ΦPD(t)〉) = npSshΩ, where we take the
Rabi frequency Ω as the effective bandwidth of a single
pulse. Assuming an atom interferometer repetition rate

of fR, the associated noise PSD is δφ
2

γ = δφ2
rms/fR.

For a Gaussian beam with power Pt and radial waistwt

at the transmitting satellite, the received power collected
by a telescope with diameter d is Pr ≈ 1

2Pt(d/wr)
2 for

d ≪ wr, where wr ≈ Lλ/πwt is the reference beam waist
after propagating a distance L ≫ zR to the receiving
satellite location. The Rabi frequency Ω = Γ

√
It/2Isat

is set by the intensity It = Pt

πw2
t /2

at the transmitting

satellite. The final noise amplitude spectral density is
then

δφγ =
4

√
1536 ~c

π5

n
1/2
p Γ1/4λ5/4L

f
1/2
R P

1/4
t d5/2

(1)

where the telescope diameter is taken to be d = 2wt.
In this expression, we assume a two-level transition with
saturation intensity Isat = 2π2

~cΓ/3λ3 (Γ is the transi-
tion natural linewidth). By comparison, the phase noise

PSD of atom shot noise is δφ
2

a = 1/Ṅa, where Ṅa is the
mean number of detected atoms per unit time that par-
ticipate in the atom interferometer signal. In designing
the laser link phase reference we require that δφγ ≤ δφa.
Assuming the Sr clock transition, the telescope diameter
is constrained to be

d = 28 cm
(

L
2·109 m

)2

5
(
1 W
Pt

) 1

10
(
0.2 Hz/7
fR/np

)1

5
(

δφa

10−3/
√
Hz

)2

5

(2)

where np = 7 corresponds to a 2~k interferometer [2].

III. GRAVITATIONAL WAVE PHASE SHIFT

Here we outline the calculation of the phase shift in
the atom interferometer in response to a passing gravita-
tional wave. We assume the usual gradiometer configura-
tion [4] for gravitational wave detection and compute the
differential phase shift between two atom interferometers
separated by a baseline of length L. The interferometers
are assumed to use single-photon transitions, and large
momentum transfer (LMT) atom optics are implemented
by driving transitions from alternating directions [2]. In
order to model interleaved interferometer operation, we
use realistic pulse sequences that allow for multiple con-
current atom interferometers. The pulse timings for a
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single interferometer are therefore chosen with appropri-
ate gaps so that these other concurrent interferometers
can be simultaneously addressed with minimal crosstalk.
The basic calculation method is described in previ-

ous work [2, 4]. Here we apply those methods to an
interleaved LMT single-photon interferometer sequence.
The interferometer phase shift nominally consists of three
parts: the propagation phase, laser phase, and separation
phase. However, for the interferometers considered here,
the only important contribution to the gravitational wave
signal comes from propagation phase.
In a gradiometer between two single-photon interfer-

ometers sharing the same laser pulses, the laser phase as-
sociated with every pulse is common to both interferom-
eters, and cancels on a pulse-by-pulse basis in the phase
difference between them [2]. Thus for calculating the GW
signal we can ignore laser phase. Separation phase can
arise in a single-photon interferometer in response to a
gravitational wave, but it is usually much smaller than
the primary GW signal and can be neglected. To see
this, note that the separation phase can be attributed
to a differential acceleration between the two paths of
the interferometer that leads to an offset between the
wavepackets at the end of the sequence. The differential
acceleration between the paths from a GW of strain h and
frequency ω is roughly ∼ h∆xω2, where ∆x is the sepa-
ration between the interferometer paths (the wavepacket
separation). By comparison, the typical GW differential
acceleration signal between the two interferometers in the
gradiometer of baseline L is∼ hLω2 [2]. Since L ≫ ∆x in
the configurations we consider here, we can typically ne-
glect any signal that could arise from separation phase.
This approximation can be verified by explicit calcula-
tion of the separation phase, but here we omit this for
simplicity.
The relevant GW signal in the gradiometer therefore

originates from propagation phase. The signal may be
qualitatively understood in the following way. As the
atom’s internal state is modulated by the sequence of
laser pulses, the two paths of the atom interferometer
spend slightly different amounts of time in the excited
state due to the GW. Indeed, the nominal symmetry be-
tween the two paths in a three pulse accelerometer se-
quence (π/2 − π − π/2 and its LMT generalizations) is
broken by the gravitational wave. The GW modulates
the time it takes light to cross the baseline between the
two interferometers. This changes the arrival time of the
light pulses, which in turn affects the amount of time that
the atoms spend in the excited state, leading to a phase
shift [2].
For the phase shift calculation we use the following

metric written in the TT gauge for a plane gravitational
wave traveling the z-direction:

ds2 = c2dt2−dx2 − dy2 − dz2

+ h+(t)(dx
2 − dy2)− 2h×(t)dxdy (3)

where h+(t) = h+ cos (ω(t− z
c ) + φ0) and h×(t) =

h× cos (ω(t− z
c ) + φ0) are the strain amplitudes for plus

and cross polarization, respectively, ω is the GW fre-
quency, and φ0 is an arbitrary reference phase. To
model the response to GW sources arriving with arbi-
trary direction, we keep the metric fixed and orient the
baseline of the interferometer along the unit 3-vector
n = (sin θ cosφ, sin θ sinφ, cos θ).
Calculating the propagation phase shift amounts to

first determining the geometry of the interferometer by
finding the intersection points of the light geodesics with
the atom geodesics. These intersection points define the
boundaries of a series of interferometer path segments.
For each path segment, we calculate the proper time in-
terval along the segment using the metric and then mul-
tiply by the appropriate internal energy (rest mass) as-
sociated with that path segment.
As an additional simplification, we can typically ne-

glect photon recoil effects on the atom trajectories and
simply assume the two atom paths of the interferometer
are at a fixed coordinate position. Note that in the chosen
coordinate system, a fixed coordinate position is a valid
solution to the geodesic equation for an atom. In reality,
due to the exchange of momentum with the light at each
pulse, the two paths of the interferometer do not stay on
this initial geodesic and there is a finite wavepacket sepa-
ration. However, ignoring this effect once again amounts
to neglecting a very small correction to the GW signal
that is proportional to the wavepacket separation ∆x.
Therefore, neglecting recoil effects, the geodesics

for the two atom interferometer paths are both ade-
quately approximated by xµ

atom = (t,n r), where r =√
x2 + y2 + z2 is the constant coordinate distance of the

atom from the origin. The propagation phase along the
ith segment of the interferometer then reduces to

δφi =
c

~

∫
mids =

mic
2

~
∆ti (4)

where ∆ti is the coordinate time difference between the
start and end of the segment and mi is the atom mass
along the segment (including internal energy). This re-
sult follows from the fact that along the atom geodesic
xµ
atom we have dx = dy = dz = 0, and so from the metric

ds = cdt. The total propagation phase shift is then

∆Φprop =
∑

{ui}
δφi −

∑

{li}
δφi (5)

where the sums are over the set of all upper segments
{ui} and lower segments {li} of the interferometer.
Without loss of generality, we take the baseline of the

detector to run through the origin along the direction
given by n. The laser pulses are assumed to originate
at radial position rin and rout along this same line, with
rin < r < rout. Light pulses that depart from the laser
at rin must propagate in the (+n) direction to reach the
atom at r, while pulses from rout must propagate in the
(−n) direction. The pulses leave from each laser at sched-
uled proper times intervals as measured by each laser lo-
cally. However since both lasers are also on geodesics
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with dx = dy = dz = 0, the proper time of the lasers is
equal to the coordinate time t.
To determine the geometry of the interferometer seg-

ments and their time durations ∆ti, we must calculate
the arrival times at the atom position of the null geodesics

of the light pulses. Solutions to the geodesic equations
derived from metric Eq. 3 are well known [12] and will
not be reproduced here in the interest of brevity. For a
null geodesic leaving the laser at coordinate time t0, the
arrival time at the atom is found to be

t± = t0 +
|r − r0|

c
+

1∓ cos θ

2ω

(
h+ cos 2φ+ h× sin 2φ

)[
sin
(ω|r−r0|

c + ωr
c cos θ + ωt0 + φ0

)

− sin
(
ωr0
c cos θ + ωt0 + φ0

)]
(6)

where r0 is the initial radial position of the null geodesic
(either rin or rout) and r is once again the position of
the atom. Here t+ is the arrival time for a light pulse
propagating in the (+n) direction from rin and t− is for
a pulse propagating in the (−n) direction from rout.
The pulse sequence for a 2~k interferometer using sin-

gle photon transitions is shown in Table I. The pulse
timing for this sequence accounts for the light propaga-
tion delay L/c across the baseline and assumes a duration

τ for each pulse. Given these initial pulse times t0 we
can determine the arrival time of each of the pulses using
Eq. 6 and then subsequently determine the propagation
phase by substituting the resulting ∆ti into Eq. 5. We
are ultimately interested in the differential phase between
two atom interferometers, which we call the gradiometer
phase response. Taking one interferometer to be located
at r = rin and the other at r = rout, the final 2~k gra-
diometer phase response is

∆Φgrad
2~k (θ, φ) =

8ωa

ω
sin
(
ωT
2

)[
cos2 θ

2 sin
(
ωL
c sin2 θ

2

)
sin
(
ω
(
T
2 − L

c − τ
))

+ sin2 θ
2 sin

(
ωL
c cos2 θ

2

)
sin
(
ωT
2

)](
h+ cos 2φ+ h× sin 2φ

)
cos φ̃0 (7)

where φ̃0 ≡ (φ0 + ωT + ωL
c cos2 θ

2 + ωrin
c cos θ) encodes

the phase of the GW at the start of the interferometer
and we take rout = rin + L. This result represents the
general 2~k interferometer phase response to GWs with
arbitrary angle of incidence and polarization.

To compute the instrument sensitivity function, we cal-
culate the average response of the detector over all angles
and polarizations. Since we are interested in the magni-

tude of the signal, we may drop the cos φ̃0 oscillatory

term (or equivalently, we sum the signal quadratures in
the frequency domain to get the magnitude of the re-
sponse). The rms response averaged over angle and po-
larization is

∆Φrms
2~k =

√√√√1

2

∑

+,×

(
1

4π

∫ 2π

0

∫ π

0

∣∣∣∆Φgrad
2~k (θ, φ)

∣∣∣
2

dθdφ

)

(8)
where the sum indicates the average over both possible
polarizations. Performing the integrals yields

∆Φrms
2~k =

√
8hrms

ωa

ω
sin2

(
ωT
2

)
[(

c3

2ω3L3 sin
(
2ωL
c

)
− c2

L2ω2 + 2
3

)(
1 +

sin2
(
ω
(
T
2 − L

c − τ
))

sin2
(
ωT
2

)
)

+2
(

c3

ω3L3 sin
(
ωL
c

)
−
(

c2

ω2L2 + 1
3

)
cos
(
ωL
c

)) sin
(
ω
(
T
2 − L

c − τ
))

sin
(
ωT
2

)
]1/2

(9)

where hrms =
√
(h2

+ + h2
×)/2 is the rms GW strain. The phase response given by Eq. 9 shows that the de-
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Pulse Area Time t0 r0 Direction Detuning [ωr] Upper Path Lower Path

1 π/2 0 rin → 1 |g, 0〉 → |e, ~k〉 |g, 0〉

2 π L

c
+ τ rout ← −3 |e, ~k〉 → |g, 2~k〉 |g, 0〉

3 π T − L

c
− τ rout ← −3 |g, 2~k〉 → |e, ~k〉 |g, 0〉

4 π T rin → 1 |e, ~k〉 → |g, 0〉 |g, 0〉 → |e, ~k〉

5 π T + L

c
+ τ rout ← −3 |g, 0〉 |e, ~k〉 → |g, 2~k〉

6 π 2T − L

c
− τ rout ← −3 |g, 0〉 |g, 2~k〉 → |e, ~k〉

7 π/2 2T rin → 1 |g, 0〉 → |e, ~k〉 |e, ~k〉 → |g, 0〉

TABLE I. Pulse sequence for a 2~k interferometer using single photon transitions. The initial coordinate time and position
of the null geodesic associated with each pulses is given by t0 and r0, respectively. The direction of the pulse propagation is
indicated by an arrow, where ← means propagation in the −n direction and → means propagation in the +n direction. The
detuning of each pulse with respect to the transition resonance is given in units of the recoil frequency ωr and assumes the
atom is initially at rest and that there is zero relative velocity between the lasers. The right two columns show the state of
the atom along each path of the interferometer and indicate the transitions that are caused by each pulse. In addition to the
momentum of the atom, the internal state is labeled by ‘g’ for the ground state and ‘e’ for the excited state.

tector is insensitive at frequencies spaced by integer mul-
tiples of 2π/T . This results in well-known nodes in the
response curve at these frequencies, which can be undesir-
able. To mitigate this effect, it is possible to periodically
change the value of T used by the interferometer. This
moves the node frequencies around and ensures that, on
average, the detector is not blind to any frequencies in
the detection band. To model this procedure, we com-
pute the rms of the phase response using several different
T values:

∆Φrms,T
2~k =

√√√√ 1

n

n∑

i=1

∣∣∣∆Φrms,
2~k (Ti)

∣∣∣
2

(10)

This average over multiple sensitivity functions with dif-
ferent T is a valid description of the detector response on
time scales longer than the cycle time through the set of
Ti. In practice it is sufficient to use n ∼ 4 to effectively
smooth out the sensitivity curve, so the Ti cycle time is
likely a small multiple of the detector sampling interval.
Note that the particular choice of the Ti is important for

optimizing the detector response. For instance, none of
the Ti should be related by an integer multiple to any
other in order to avoid having nodes in common.

To generate the sensitivity curve from the phase re-
sponse, we find the minimum rms strain hrms that can
be resolved in the presence of a certain level of rms phase

noise δφrms. This amounts to solving ∆Φrms,T
n~k = δφrms

for hrms using either Eq. 9 or Eq. 11 for 2~k or 12~k,
respectively. The sensitivity curve can also be expressed
as a strain amplitude spectral density by replacing δφrms

with the phase noise amplitude spectral density δφa.

Following the same procedure, we also calculate the de-
tector response for a 12~k interferometer using the pulse
sequence given in Table II. This pulse sequence allows for
LMTmultiplexing, so multiple simultaneous interferome-
ters can be operated concurrently with minimal crosstalk
between velocity channels. Given the complexity of the
intermediate expressions, here we simply give the final
result of the phase response after performing the average
over polarization and direction:

∆Φrms
12~k =

√
8hrms

ωa

ω
sin2

(
ωL
c

)
[(

sinc (Lω
c )− cos (Lω

c )
)( 26∑

i=1

Λ2i−1 cos
(
(2i−1)Lω

c

))

+
(
sinc (2Lω

c ) + Cin (2Lω
c )− 1

)(Λ0

2
+

26∑

i=1

Λ2i cos
(
2iLω
c

)
)]1/2

(11)

Here Cin (x) ≡
∫ x

0
1−cos t

t dt is an alternate form of the
cosine integral [13]. The 53 coefficients Λn that appear in
the sums in Eq. 11 are integers and are shown in Fig. 2.
Equation 11 assumes that the interferometer time T is
set to the minimum value allowed by the propagation
time of the pulses back and forth across the baseline:

T = 27(Lc + 2τ). The 12~k sensitivity curve shown in
Fig. 3 in the main text represents an average of several T
just like the 2~k case, but here for simplicity we only give
the result using the minimum T . For similar reasons, we
have also taken τ ≪ L

c in writing Eq. 11.
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Pulse Area Time t0 r0 Direction Detuning [ωr] Upper Path Lower Path

1 π/2 −L

c
rin → 1 |g, 0〉 → |e, ~k〉 |g, 0〉

2 π −τ rout ← 1 |e, ~k〉 |g, 0〉 → |e, − ~k〉

3 π τ rout ← −3 |e, ~k〉 → |g, 2~k〉 |e, − ~k〉

4 π L

c
rin → −3 |g, 2~k〉 |e, − ~k〉 → |g, − 2~k〉

5 π T

9
− L

c
− 2τ rout ← 5 |g, 2~k〉 |g, − 2~k〉 → |e, − 3~k〉

6 π T

9
− τ rin → −7 |g, 2~k〉 |e, − 3~k〉 → |g, − 4~k〉

7 π T

9
+ τ rin → 5 |g, 2~k〉 → |e, 3~k〉 |g, − 4~k〉

8 π T

9
+ L

c
+ 2τ rout ← −7 |e, 3~k〉 → |g, 4~k〉 |g, − 4~k〉

9 π 2T

9
− L

c
− 2τ rin → 9 |g, 4~k〉 → |e, 5~k〉 |g, − 4~k〉

10 π 2T

9
− τ rout ← −11 |e, 5~k〉 → |g, 6~k〉 |g, − 4~k〉

11 π 2T

9
+ τ rout ← 9 |g, 6~k〉 |g, − 4~k〉 → |e, − 5~k〉

12 π 2T

9
+ L

c
+ 2τ rin → −11 |g, 6~k〉 |e, − 5~k〉 → |g, − 6~k〉

13 π 5T

9
− L

c
rout ← −11 |g, 6~k〉 → |e, 5~k〉 |g, − 6~k〉

14 π 5T

9
− τ rin → −11 |e, 5~k〉 |g, − 6~k〉 → |e, − 5~k〉

15 π 5T

9
+ τ rin → 9 |e, 5~k〉 → |g, 4~k〉 |e, − 5~k〉

16 π 5T

9
+ L

c
rout ← 9 |g, 4~k〉 |e, − 5~k〉 → |g, − 4~k〉

17 π 7T

9
− L

c
rout ← −7 |g, 4~k〉 → |e, 3~k〉 |g, − 4~k〉

18 π 7T

9
− τ rin → −7 |e, 3~k〉 |g, − 4~k〉 → |e, − 3~k〉

19 π 7T

9
+ τ rin → 5 |e, 3~k〉 → |g, 2~k〉 |e, − 3~k〉

20 π 7T

9
+ L

c
rout ← 5 |g, 2~k〉 |e, − 3~k〉 → |g, − 2~k〉

21 π T − 2L

c
− 3τ rin → −3 |g, 2~k〉 |g, − 2~k〉 → |e, − ~k〉

22 π T − L

c
− 2τ rout ← 1 |g, 2~k〉 |e, − ~k〉 → |g, 0〉

23 π T − L

c
− τ rout ← −3 |g, 2~k〉 → |e, ~k〉 |g, 0〉

24 π T rin → 1 |e, ~k〉 → |g, 0〉 |g, 0〉 → |e, ~k〉

25 π T + L

c
+ τ rout ← −3 |g, 0〉 |e, ~k〉 → |g, 2~k〉

26 π T + L

c
+ 2τ rout ← 1 |g, 0〉 → |e, − ~k〉 |g, 2~k〉

27 π T + 2L

c
+ 3τ rin → −3 |e, − ~k〉 → |g, − 2~k〉 |g, 2~k〉

28 π 10T

9
− L

c
− 2τ rin → 5 |g, − 2~k〉 |g, 2~k〉 → |e, 3~k〉

29 π 10T

9
− τ rout ← −7 |g, − 2~k〉 |e, 3~k〉 → |g, 4~k〉

30 π 10T

9
+ τ rout ← 5 |g, − 2~k〉 → |e, − 3~k〉 |g, 4~k〉

31 π 10T

9
+ L

c
+ 2τ rin → −7 |e, − 3~k〉 → |g, − 4~k〉 |g, 4~k〉

32 π 11T

9
− L

c
− 2τ rout ← 9 |g, − 4~k〉 → |e, − 5~k〉 |g, 4~k〉

33 π 11T

9
− τ rin → −11 |e, − 5~k〉 → |g, − 6~k〉 |g, 4~k〉

34 π 11T

9
+ τ rin → 9 |g, − 6~k〉 |g, 4~k〉 → |e, 5~k〉

35 π 11T

9
+ L

c
+ 2τ rout ← −11 |g, − 6~k〉 |e, 5~k〉 → |g, 6~k〉

36 π 14T

9
− L

c
rin → −11 |g, − 6~k〉 → |e, − 5~k〉 |g, 6~k〉

37 π 14T

9
− τ rout ← −11 |e, − 5~k〉 |g, 6~k〉 → |e, 5~k〉

38 π 14T

9
+ τ rout ← 9 |e, − 5~k〉 → |g, − 4~k〉 |e, 5~k〉

39 π 14T

9
+ L

c
rin → 9 |g, − 4~k〉 |e, 5~k〉 → |g, 4~k〉

40 π 16T

9
− L

c
rin → −7 |g, − 4~k〉 → |e, − 3~k〉 |g, 4~k〉

41 π 16T

9
− τ rout ← −7 |e, − 3~k〉 |g, 4~k〉 → |e, 3~k〉

42 π 16T

9
+ τ rout ← 5 |e, − 3~k〉 → |g, − 2~k〉 |e, 3~k〉

43 π 16T

9
+ L

c
rin → 5 |g, − 2~k〉 |e, 3~k〉 → |g, 2~k〉

44 π 2T − L

c
− 2τ rin → −3 |g, − 2~k〉 → |e, − ~k〉 |g, 2~k〉

45 π 2T − τ rout ← 1 |e, − ~k〉 → |g, 0〉 |g, 2~k〉

46 π 2T + τ rout ← −3 |g, 0〉 |g, 2~k〉 → |e, ~k〉

47 π/2 2T + L

c
+ 2τ rin → 1 |g, 0〉 → |e, ~k〉 |e, ~k〉 → |g, 0〉

TABLE II. Pulse sequence for a 12~k multiplexed interferometer. The conventions used here are the same as defined in Table I.
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FIG. 2. Integer coefficients Λn that appear in Eq. 11. Even
and odd coefficients are shown as a solid and open circles,
respectively.

FIG. 3. Strain sensitivity for a 2~k Sr interferometer with
baseline L = 2 × 109 m (green) as well as a 12~k inter-
ferometer with baseline L = 6 × 108 m (blue). The strain
responses have been averaged over gravitational wave propa-
gation direction and polarization. The 2~k curve represents
an average of three alternating interferometer interrogation
times: T = 160 s, 100 s, 40 s. The 12~k curve is an average
of T = 75 s, 69 s, 59 s, 53 s, limited at the low end by the
light travel time. The interrogation time average regularizes
the detector response by suppressing well known notches in
single interferometer transfer functions [4]. The LISA strain
curve is shown for reference [3].

IV. SENSITIVITY

Figure 3 shows the strain sensitivity curves for two
long-baseline designs using Sr atoms. The more con-
servative design (green) uses an L = 2 × 109 m base-
line and the photon shot-noise limited laser link assumes
1 W laser power, a d = 30 cm diameter telescope, and
a repetition rate fR = 0.2 Hz [14]. The long baseline
allows for high sensitivity even though the design as-
sumes conservative 2~k atom optics and atom shot-noise
of δφa = 10−3 rad/

√
Hz. A long interrogation time of

T = 160 s is used to support low frequency sensitivity,

but despite this long drift time the maximum wavepacket
separation is bounded to < 2 m. The atom source design
assumes ensembles of 7× 106 atoms with a 20 pK longi-
tudinal temperature, allowing for a Ω/2π = 60 Hz Rabi
frequency. Such design criteria are readily met using ex-
isting technology [15].
LMT techniques allow for enhanced sensitivity, as

shown by the second strain sensitivity curve (blue) in
Fig. 3. This design is based on a 12~k interferome-
ter sequence with an L = 6 × 108 m baseline and im-
proved phase noise δφa = 10−4 rad/

√
Hz. Photon shot

noise requirements are met using 1 W laser power and a
d = 50 cm diameter telescope, giving Rabi frequency
Ω/2π = 40 Hz. The design has a sampling rate of
fR = 1 Hz. The increased phase sensitivity of this design
allows for improved low frequency response even using a
smaller interrogation time. Using T = 75 s, the maxi-
mum wavepacket separation is < 4 m.

V. NOISE ANALYSIS

A. Timing Jitter

Another source of noise is timing delay and jitter in the
pulses emitted by the phase-locked local oscillator laser.
Referring to Fig. 1, consider a pulse emitted from M1 at
time t that arrives at the satellite 2 beam splitter at time
ta. If the pulse emitted from LO2 is offset by some time
td with respect to the arrival of the reference pulse, the
laser phase φLO(ta + td) imprinted on interferometer 2
will be different from the phase φM (t) written onto in-
terferometer 1 by the amount φLO(ta + td) − φM (t) =

ωtd + δφ, where ω ≡ 1
td

∫ ta+td
ta

ω(t′)dt′ is the average

frequency of laser LO2 during the timing delay and
δφ ≡ φLO(ta)−φM (t) quantifies any imperfection in the
phase lock between R1 and LO2. In addition, the time
skewed transition in interferometer 2 implies that inter-
ferometer 1 spends a different time in the excited state by
comparison, leading to an extra differential phase ωAtd
for excited state energy ~ωA [16]. The total differential
phase is then ∆φdelay = (ω − ωA)td + δφ. Noise in δφ
from an imperfect phase reference was discussed above
(Eq. 1). Additional noise due to the delayed pulse can
arise from either timing jitter δtd or frequency noise δω,

giving a noise PSD of δφ
2

delay = (N td δω)
2 + (N ∆ δtd)

2,
where ∆ = ω − ωA is the pulse detuning and N is the
LMT phase enhancement factor. Keeping each term be-
low δφa requires noise amplitude spectral densities of

δω =2π×80 Hz√
Hz

(
2
N

)(
1 µs
td

)(
δφa

10−3 rad/
√
Hz

)
(12)

δtd =1.3 µs√
Hz

(
2
N

)(
60 Hz
∆/2π

)(
δφa

10−3 rad/
√
Hz

)
(13)

at frequencies in the GW detection band. In particular,
this shows that the long-time frequency stability require-
ments of the LO laser can be reduced by ensuring that
the pulses from the LO are well synchronized with the
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incoming reference pulses, keeping td small. In practice,
td ∼ 10 ns with RMS noise δtd ∼ 1 ns appears straight-
forward, suggesting that LO pulse timing constraints are
manageable.

B. Pointing Jitter

Satellite and laser beam pointing jitter can also in-
troduce noise. Consider a beam propagating approxi-
mately along the z axis in Fig. 1 from satellite 1 towards
satellite 2 that is tilted by a small angle θy about the
y-axis. Near satellite 1, the phase of the Gaussian beam
varies with position as Φ1(x, z) ≈ kz + kθyx, where the
center of rotation of the beam is taken to be x = 0,
z = 0. By comparison, the phase near satellite 2 is
Φ2(x, z) ≈ k(z + L) + kθy(zR/L)

2x for baseline length
L much longer than the Rayleigh range zR. Here a
long baseline is advantageous since when zR ≪ L the
beam arriving at satellite 2 is approximately a spher-
ical wave, so the dependence of the phase on angle is
greatly suppressed. In this limit, the pointing jitter con-
straint is set by the Φ1 coupling and has noise amplitude

δφθ = 4kN∆x δθ, where δθ
2
is the angle noise PSD and

∆x is the transverse position offset of the atom relative
to the baseline [17, 18]. The pointing requirement is then

δθ = 10 nrad√
Hz

(
2
N

)(
1 mm
∆x

)(
δφa

10−3 rad/
√
Hz

)
. (14)

To avoid introducing additional pointing noise, the LO
laser beam incident on the atoms must point in the same
direction as the incoming reference laser pulse. This can
be facilitated by monitoring the relative angle between
the two beams at the beam splitter. In addition to mea-
suring the beat note for the phase reference, a position
sensitive detector such as as quadrant photodiode can
be used to record the spatial interference pattern be-
tween the reference and LO beams. Feedback applied
to a tip-tilt mirror (show as TTM in Fig. 1 before the
BS) can then be used to control the angle of the LO
laser. Similarly, the angle of the master laser itself can
be controlled by comparing it to the LO laser direction
and using another tip-tilt mirror. The interference signal
between the LO and the master can be generated using
a Michelson interferometer geometry, inserting an addi-
tional beam splitter at any point along the path where
the two beams are counter-propagating. In this configu-
ration, the pointing stability of all the beams is tied to the
stability of the incoming (nearly) spherical wavefronts of
the reference beam.
The performance of the angle control loop is ultimately

limited by the shot noise of the received reference wave-
front. To estimate this, note that the power difference
∆P between the two sides of a quadrant detector due to
the spatial interference pattern caused by a small angle
∆θ between the LO and the reference beam is ∆P ≈
4
√
2π

√
PLOPr∆θ wt/λ for a telescope diameter d = 2wt

and received powers PLO and Pr from the two beams

[19]. The noise in ∆P is dominated by the strong LO

beam, giving a noise PSD of δ(∆P )
2 ≈ δP

2

LO = hνPLO

assuming shot noise for the LO optical power noise. The
shot noise limit for a measurement of ∆θ is then given
by amplitude spectral density

δ(∆θ) =
√
Ssh

4
√
2π

λ
wt

≈ 1 nrad√
Hz

(
10 cm
wt

)(
δφa

10−3 rad/
√
Hz

)
(15)

where Ssh = hν/Pr is the phase noise PSD of the refer-

ence beam and we assume a design with Ssh = δφ
2

a as
before. Comparing this with the requirement in Eq. 14
suggests that the angle can be sufficiently well measured
to control the LO pointing direction. This also suggests
that overall satellite bus pointing requirements are mod-
est (∼ 10−6 rad/

√
Hz, limited by the dynamic range of

the pointing servos), and substantially reduced from pre-
vious proposals.

C. Wavefront Aberrations

Past atom-based designs have required large momen-
tum transfer to reach design sensitivity. The designs
proposed here operate at lower momentum transfer and
thus place much less stringent constraints on laser phase
front stability. For example, here we require a phase
stability of λ/30 for the telescope. Following references
[4, 18, 20, 21], laser wavefront aberrations δλ/λ couple to
satellite transverse position noise δx, resulting in phase
noise amplitude δφλ = 16π2N(δλ/λ)δx/Λ, where Λ is
the aberration wavelength [17]. The estimated wavefront
requirement for the interferometer beam is then [22]

δλ = λ
30

(
2
N

)(
Λ

1 cm

)(
δφa

10−3 rad/
√
Hz

)(
1 µm/

√
Hz

δx

)
. (16)

For example, a δx = 1 µm/
√
Hz satellite transverse po-

sition jitter implies a telescope mirror quality of λ/30.
This suggests modest satellite bus jitter and telescope
mirror polish requirements.

D. Local Forces

Instrument constraints imposed by backgrounds that
have their origin in spurious forces or phase shifts (due to,
for example, magnetic field gradients, blackbody shifts,
AC Stark shifts or gravitational gradients) are signifi-
cantly eased due to the longer baseline. Since previ-
ous shorter baseline designs could meet these require-
ments [23], in the longer baseline designs proposed here
these backgrounds can be brought to levels where they
do not impact instrument performance. Tight (∼ 0.1
mK/Hz1/2) thermal control over the temperature of the
beamsplitter is required to suppress thermally induced
path length fluctuations of the glass [24].
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E. Gravity Gradient Noise

Acceleration noise arising from the gravitational gradi-
ent of the spacecraft [18, 25, 26] is an important consider-
ation in the current design, since unlike previous propos-
als here the atoms are kept inside the spacecraft. How-
ever, with appropriate design of the spacecraft mass dis-
tribution, the gravity gradient can be reduced to < 10 E
in the interferometry region, allowing for sufficient noise
suppression with only modest spacecraft jitter require-
ments (see Fig. 4).
The gravitational interaction between the atoms and

the spacecraft can cause spurious acceleration noise due
to uncontrolled motion of the satellite. To model this, we
consider an atom at position r and take the nominal grav-
itational potential from the spacecraft at this point to be

φ̃(r). If the source of φ̃(r) (the spacecraft) is displaced
by some amount +δR(t), then the potential at position
r is translated such that the atom will see a potential

φ(r, t) = φ̃(r− δR(t)). (17)

We assume the displacement noise is small so that we can
expand to first order in δR(t),

φ(r, t) ≈ φ̃(r) + g̃(r) · δR(t) (18)

where g̃(r) ≡ −∇φ̃(r) is the nominal gravitational field
of the spacecraft. The ith component of the gravitational
field at the point of the atom (g = −∇φ) is then

gi(r, t) = g̃i(r) + Tij(r) δRj(t) (19)

where Tij(r) = ∂i∂jφ(r) is the gravity gradient tensor at
the position of the atom.
A local acceleration g(r, t) applied to only one of the

atom interferometers will not be common mode sup-
pressed in the gradiometer signal and will contribute to
the background noise of the detector. The phase response
to a local acceleration can be calculated in a straightfor-
ward manner by first determining the modified trajec-
tory of the atom. We assume a sinusoidal position jit-
ter δRz(t) = δR cos (ωt− φ0) and consider the response
along the sensitive axis of the detector, which here we
take to be the z-axis. The resulting acceleration causes
the atom path to deviate from the fixed coordinate po-
sition assumed in Section III, effectively changing the
baseline distance between the two interferometers. This
affects the arrival times of the photon geodesics at the
position of the atom, which in turn changes the amount
of time the atom spends in the excited state.
For the 2~k interferometer, the rms gravity gradient

phase shift amplitude due to δRz(t) jitter at frequency ω
is

∆Φgg = 8
ωa

c

Tzz δR

ω2
sin2

(
ωT
2

)
(20)

where for simplicity we assume τ ≪ T and L/c ≪ T . For
comparison, the GW signal given by Eq. 9 in the same

FIG. 4. Spacecraft jitter requirement due to gravity gradi-
ent noise. The two curves are for the 2~k (green) and 12~k
(blue) interferometer modes. The constraints assume a resid-
ual gravity gradient after compensation of Tzz = 10 E.

limit is

∆Φrms
2~k ≈ 8√

15

ωa

c
hrmsL sin2

(
ωT
2

)
(21)

where we also have taken ωL/c ≪ 1. The constraints on
δR follow from setting ∆Φgg = ∆Φrms

2~k for a given tar-
get hrms(ω). To achieve the sensitivity curves in Fig. 3 of
the main text, the constraints for the 2~k and 12~k inter-
ferometer modes are shown in Fig. 4. These constraints
assume a target gravity gradient in the interferometer re-
gion of Tzz = 10 E. The spacecraft can be designed to
reduce the gravity gradient to this level.
The gravity gradient that the atoms experience is de-

pendent on the mass distribution of the spacecraft. As-
suming a design in which the atom interferometer science
instrument is attached adjacent to a conventional space-
craft bus, there can be a significant gravity gradient aris-
ing from the bus. Trim masses can be use to compensate
for this gravity gradient to reduce Tzz to required levels.
Figure 5 shows one particular arrangement of trim masses
and the resulting gravity gradient. This model uses a
spacecraft bus with realistic size and mass and assumes
that the interferometer vacuum tube and trim masses are
made out of titanium (density 4.5 g/cm3). All elements
in the model are assumed to be cylindrically symmetric
about the detector baseline direction (here the z-axis).
This shows that with appropriate choice of trim mass ge-
ometry it is possible to reduce the gravity gradient in the
interferometer region to Tzz ∼ 10 E.

VI. DISCUSSION

Several variations of the basic laser link concept are
possible. For example, by employing a second laser link
on each satellite, a dedicated reference laser can be used
to generate the reference beams instead of relying on the
transmitted master laser light as shown in Fig. 1. In this
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FIG. 5. Gravity gradient compensation model. (a) Gravity
gradients Tzz due to the spacecraft bus, interferometer vac-
uum tube, and trim masses (solid curve). The dashed curve
shows the gravity gradient from the spacecraft bus alone with-
out any compensation masses. The blue shaded area is the
2.5 m long atom interferometer region where the compensated
rms gravity gradient is less than 10 E. (b) Example spacecraft
design leading to the gravity gradient shown in (a). The sizes
and masses of the spacecraft bus (gray), atom interferometry
tube (blue), and two trim masses (black and red) are shown.
All elements are assumed to be cylindrically symmetric about
the z-axis, which is also the sensitive axis of the atom interfer-
ometer. The AI tube and both trim masses are taken to have
the density of titanium. For clarity, the radial dimensions
(here x) of the trim masses are shown exaggerated.

modified setup, the heterodyne signal between the master
laser and the new reference laser is formed on the existing
beam splitter (BS) such that the reflected reference laser
beam is directed towards the opposite satellite.

Generalizing further, if the reference beam is a sepa-
rate laser then in principle its wavelength can be different
from that of the atomic transition. An optical frequency
comb would then be used to implement the heterodyne
lock, spanning the frequency difference between the refer-
ence laser and the lasers responsible for interrogating the
atoms. Changing the reference wavelength could lead to
lower optical shot noise (∼ λ5/4 in Eq. 1) or could exploit
existing laser technology at particular wavelengths.

The degree to which polarization and sky position
information of a gravitational wave source is available
with a single-arm detector depends on the lifetime of the
source and the orbit period of the detector, and requires
further analysis. This information is also available using
constellations of multiple pairs of single-baseline instru-
ments.
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