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Lattice bosons with infinite range checkerboard interactions

Bhuvanesh Sundar and Erich J. Mueller
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Motivated by experiments performed by Landig et al. [1], we consider a two dimensional Bose
gas in an optical lattice, trapped inside a single mode superradiant Fabry Perot cavity. The cavity
mediates infinite range checkerboard interactions between the atoms, which produces competition
between Mott insulator, charge density wave, superfluid and supersolid phases. We calculate the
phase diagram of this Bose gas in a homogeneous system and in the presence of a harmonic trap.

PACS numbers: 37.30.+i, 67.85.Hj, 05.65.+b

I. INTRODUCTION

Introducing long range interactions between bosonic
atoms in an optical lattice provides the opportunity to
explore novel phases, driven by the competition between
short range interactions, long range interactions, and
quantum tunneling. Interactions mediated via an optical
cavity provide an avenue to explore this physics [1, 2].
In this paper, we calculate the phase diagram of bosonic
atoms experiencing such cavity-mediated long range in-
teractions. We find a rich phase diagram with superfluid
(SF), supersolid (SS), Mott insulator (MI) and charge
density wave (CDW) phases. We find a breakdown of
the local density approximation (LDA), and good agree-
ment with experiments [1].

By trapping 87Rb atoms in a transversely pumped sin-
gle mode optical cavity and tuning the cavity into the
superradiant phase, Landig et al. have produced infinite
range interactions between bosonic atoms [1]. Interfer-
ence between the pump beam and the light scattered into
the cavity results in a checkerboard intensity pattern,
whose strength is proportional to the number of atoms
on the high intensity sites. Integrating out the photons
yields a long range checkerboard interaction. By chang-
ing the lattice depth and the cavity detuning, the exper-
imentalists can independently tune the strengths of the
short range and long range atomic interactions relative
to the tunneling strength. Adding these long range inter-
actions to a Bose Hubbard model, we use a variational
ansatz to produce a phase diagram. We consider both
a homogeneous and a harmonically trapped system. In
addition to SF order, characterized by off-diagonal long
range order in the single particle density matrix, the sys-
tem can also display CDW order, where the occupations
on the even and odd sites differ. Coexistence of both or-
ders results in a SS, and the absence of both orders a MI.
All four of these phases are found in our calculations, and
were seen in experiments as well [1]. We predict that a
reanalysis of existing experimental data will reveal pre-
viously undetected phase transitions.Some of our results
for homogeneous systems have been seen in other theo-
retical studies [3–6].

This paper is organized as follows. In Sec. II, we
introduce our model for a homogeneous Bose gas, and
present the phase diagram. In Sec. III, we analyze the

FIG. 1: Schematic of the experimental setup. A trapped cloud
of bosonic 87Rb atoms sits in an off-resonant optical cavity.
The atoms are pumped from the side, and scatter light into
the cavity. A second laser enters the cavity along its axis,
producing an optical lattice.

harmonically trapped case. We conclude in Sec. IV.

II. HOMOGENEOUS GAS

In this section, we explore the phase diagram of a ho-
mogeneous Bose gas in an optical lattice, trapped inside
a single mode optical cavity. We calculate the ground
state of the bosons by minimizing the energy of a vari-
ational many body wavefunction. We obtain the phase
boundaries through a combination of numerical and an-
alytical means. This section is organized as follows. In
Section IIA, we introduce our model for a homogeneous
Bose gas in an optical lattice, including cavity-mediated
infinite range interactions. In Section II B, we introduce
our variational ansatz and calculate the energy of the
system. In Section II C, we present the phase diagram of
our model.

A. Model

We consider an ultracold gas of bosons tightly confined
to the x-y plane, where they experience a 2D optical
lattice. The atoms are coupled to the fundamental mode
of a high finesse Fabry Perot cavity oriented along the
x-direction, and illuminated by a pump beam along the
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y-direction (see Fig. 1). The pump light scattered by
the atoms into the cavity mediates an effective infinite
range atom-atom interaction. The effective atom-atom
interactions are derived in [7], producing a Hamiltonian

Ĥ = Ĥlat + Ĥcav. (1)

The term Ĥlat models the trap, tunneling of atoms, and
on-site interactions in the two dimensional optical lattice:

Ĥlat =
∑

〈ij〉

−Jĉ†i ĉj + h.c +
∑

i

U

2
ĉ†i ĉ

†
i ĉiĉi − µiĉ

†
i ĉi. (2)

The operator ĉ†i (ĉi) creates (annihilates) a boson at lat-
tice site i. The hopping strength J can be tuned by con-
trolling the intensity of the laser creating the optical lat-
tice. The on-site interaction strength U can be controlled
via the laser intensity and the transverse confinement, or
by tuning the magnetic field near a Feshbach resonance.
The last term in Eq. (2) models the trap, where µi is an
effective spatially dependent chemical potential,

µi = µ− 1

2
mω2

(

x2i + y2i
)

, (3)

where xi and yi denote the co-ordinates of lattice site i
in integer multiples of the lattice constant. For a homo-
geneous gas, we set ω = 0.
The term Ĥcav models the infinite range interactions

mediated by the light in the Fabry Perot cavity,

Ĥcav = −U
′

K

(

∑

i

(−1)xi+yi ĉ†i ĉi

)2

, (4)

where K is the total number of lattice sites. The ef-
fective long range interaction strength U ′ is related to
experimental parameters as

U ′ ≃ −K h̄η2

∆c
(5)

where η is the two-photon Rabi frequency, and ∆c is the
detuning of the optical lattice laser from the fundamental
mode of the Fabry Perot cavity [7]. In this paper, we only
work in a regime where U ′ > 0. When at fixed density,
the long range interaction energy scales as K2, while all
other energies scale as K. Thus, to achieve a reasonable
thermodynamic limit, we fix U ′ while K → ∞.

B. Gutzwiller ansatz

The model in Eq. (1) breaks the symmetry between
two kinds of sites: those for which xi + yi is even (which
we call even sites), and for which xi + yi is odd (which
we call odd sites). We make a variational ansatz which
includes this asymmetry:

|ψ〉 =
(

∑

i∈even

∞
∑

n=0

an√
n!

(

ĉ†i

)n
)





∑

j∈odd

∞
∑

n=0

bn√
n!

(

ĉ†j

)n



 |0〉 ,

(6)

where |0〉 is the vacuum of atoms. Our ansatz in Eq.
(6) is an extension of the Gutzwiller ansatz for the
Bose Hubbard model [8, 9]. Normalization dictates that
∑∞

n=0 |an|2 =
∑∞

n=0 |bn|2 = 1. The average energy of our
variational wavefunction is

Evar =K

(

−zJ
(

∑

n

√
nanan+1

)(

∑

n

√
nbnbn+1

)

+
∑

n

(

U

4
n(n− 1)− µ

2
n

)

(|an|2 + |bn|2)

−U
′

4

(

∑

n

n(|an|2 − |bn|2)
)2


 ,

(7)

where z is the number of nearest neighbors to a lattice
site. In our case of a two dimensional square lattice,
z = 4.

C. Phase diagram

1. J = 0

In the case of a deep optical lattice (J = 0), the varia-
tional wavefunction which minimizes the energy describes
an insulator with parameters

an = δn,ne
,

bn = δn,no
.

(8)

Here, δm,n is the Kronecker delta, and ne and no are
integers obtained by minimizing the energy in Eq. (7).
If ne = no, the ground state is a Mott insulator (MI).
If ne 6= no, the ground state is a charge density wave
insulator (CDW). The phase diagram for J = 0 is plotted
in Fig. 2. All the phase transitions in this phase diagram
are of first order.
We define the imbalance in the ground state to be

I =

∣

∣

∣

∣

∣

∣

∑

i(−1)xi+yi

〈

ĉ†i ĉi

〉

∑

i

〈

ĉ†i ĉi

〉

∣

∣

∣

∣

∣

∣

. (9)

For J = 0, the ground state is balanced (I = 0) or par-

tially imbalanced (I < 1) for U ′

U < 1
2 , and fully imbal-

anced (I = 1) for U ′

U > 1
2 . The wavefunction collapses to

a state with infinite particles on every site for U ′ > U .

2. J 6= 0, 0 ≤ U ′ ≤ U/2

For finite tunneling strength J , we minimize the energy
in Eq. (7) numerically. The ground state is a superfluid
(SF) if 〈ci〉 is uniform and non-zero. The ground state
is a supersolid (SS) if 〈ci〉 6= 〈cj〉 6= 0, where i and j
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FIG. 2: Phase diagram of a homogeneous Bose gas in the
absence of tunneling between lattice sites. The label MIn
denotes a Mott insulating phase with n atoms on each lattice
site, and CDWnm denotes a charge density wave phase with
n and m atoms on even and odd sites, or vice versa. The
parameters U and U ′ are the strengths of the short and long
range interactions, while µ is the chemical potential.

are even and odd sites. Phase diagrams for four different
values of U ′ are plotted in Fig. 3.

For 0 < U ′

U < 1
2 , partially imbalanced CDW and SS

phases (with I < 1) appear in regions where nU − U ′

2 <

µ < nU + U ′

2 , where n is any integer. In these phases,
the density on even and odd sites is unequal, and the
symmetry between even and odd sites is spontaneously
broken. In most regions of the CDW lobes, the CDW
phase undergoes a second order phase transition to the SS
phase as J is increased at constant µ and U ′. We define Ω
to be the determinant of the Hessian of the free energy in
Eq. (7), computed at the optimal variational parameters
in Eq. (8). At the second order phase transition from SS
to CDW, Ω = 0. This yields a simple analytic expression
for the phase boundary,

J =
1

z

√

(U ′2 − (µ− Un)2) ((U − U ′)2 − (µ− Un)2)

(µ+ U)2 − U ′2
,

(10)
where n is the occupation number on lattice sites with
fewer atoms, in the CDW phase at J = 0. Our numerics
confirm this result. Upon increasing J further, the SS
phase undergoes a first order phase transition to the SF

phase. Near the edges of the CDW lobes (µ ∼ nU ± U ′

2 ),
the CDW phase directly undergoes a first order phase
transition to SF. There are no analytic expressions for
these first order phase boundaries.

3. J 6= 0, U/2 < U ′ < U

In this regime, the ground state is always a fully im-
balanced (I = 1) CDW phase at J = 0. In this ground
state, all the odd sites are empty, and the even sites have

n = ⌈µ+U/2
U−U ′

⌉ atoms each, or vice versa. The ground state
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FIG. 3: Phase diagram of a homogeneous Bose gas for four
different values of the long range interaction strength U ′. SS
denotes supersolid, and SF denotes superfluid. Dashed lines
indicate second order phase transitions, and solid lines indi-
cate first order. The parameter J is the tunneling strength
between lattice sites.
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undergoes a first order phase transition between different
CDW phases periodically as µ is increased at constant
J . For U ′ near U/2, the CDW regions are partially sur-
rounded by SS lobes (see Fig. 3c). As U ′ is increased
further, the SS lobes grow in size and connect together
to form a continous SS region (see Fig. 3d). In Figs. 3c
and 3d, the second order transitions from CDW to SS
are indicated by a dashed line. The phase boundaries of
these second order transitions are given by

J =
1

z

√

(U ′n− µ) ((U − U ′)n− µ) (µ+ U − (U − U ′)n)

U + µ+ U ′n
.

(11)
The SS undergoes a first order phase transition to SF as
J is increased further.

III. INHOMOGENEOUS GAS

In this section, we explore the phase diagram of a Bose
gas in a harmonic trap, in the presence of infinite range
interactions mediated by an optical cavity. In experi-
ments, the number of atoms N can be a control param-
eter. Further, the total number of sites K is not well-
defined. Thus, it is convenient to define V = U ′ N

K , and
rewrite Eq. (4) as

Ĥcav = −V

N

(

∑

i

(−1)xi+yi ĉ†i ĉi

)2

. (12)

To find the ground state of this model, we generalize Eq.
(6), writing

|ψ〉 =
∑

i

∞
∑

n=0

ani√
n!

(

ĉ†i

)n

|0〉 . (13)

The variational energy is then

Evar =− J
∑

〈ij〉

(

∑

n

√
nanian+1,i

)(

∑

n

√
nanjan+1,j

)

+
∑

n,i

(

U
n(n− 1)

2
− µin

)

|ani|2

− V

(

∑

n,i(−1)xi+yin|ani|2
)2

∑

n,i n|ani|2
.

(14)

We minimize Evar with respect to all the variational
parameters. Due to the presence of infinite range in-
teractions in our model, traditional methods of treating
spatially varying potentials, such as the local density ap-
proximation (LDA), fail. We demonstrate the failure of
the local density approximation in the insulating phases
in Sec. III A. We present our numerical results for the
phase diagram in Sec. III B
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FIG. 4: (a) A n = 1 Mott insulating core of radius rA, sur-
rounded by a CDW10 ring from radius rA to rB. (b) Scaled
energy Evar as a function of scaled radius rA for two cases:

V = 0 (solid) and V = Nmω
2
a
2

2π
(dotted).

A. J=0

In the absence of tunneling, every lattice site has an
integer number of atoms. For most of the experimentally
relevant parameters, it suffices to consider only zero or
one atom on every site. One expects the cloud to have a
MI1 core of radius rA with unit filling, as shown in Fig.
4a. This core is expected to be surrounded by a CDW10

ring extending from radius rA to radius rB. The CDW10

ring is surrounded by vacuum. In the limit of a slowly
varying trap, the variational energy can be approximated
as

Evar =
1

a2

∫ rA

0

2πrdr

(

1

2
mω2r2 − µ

)

+

1

a2

∫ rB

rA

πrdr

(

1

2
mω2r2 − µ

)

− V

N

(

π(r2B − r2A)

2a2

)2

=
πmω2

8a2
(r4A + r4B)−

πµ

2a2
(r2A + r2B)−

V

N

(

π(r2B − r2A)

2a2

)2

.

(15)

Fixing the number of particles N = π
2a2 (r

2
A + r2B), the

variational energy is

Evar =

(

mω2a2

4π
− V

N

)(

N − πr2A
a2

)2

+
N2mω2a2

4π
−µN.
(16)

This variational energy is plotted as a function of rA in
Fig. 4b. The energy minimum occurs at

rA =

{

0 if V > Nmω2a2

4π ,
√

Na2

π = rB if V < Nmω2a2

4π .
(17)

The ground state transitions from a completely Mott in-
sulating gas to a completely checkerboarded gas at the

critical value V = Nmω2a2

4π , where the imbalance between
even and odd sites undergoes an abrupt jump from 0 to
1 (see solid line in Fig. 5). We contrast this result to
the predictions of LDA (which are not valid because of
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FIG. 5: Comparison of LDA and full theory. Vertical axis
shows the particle imbalance I between even and odd sites.
Horizontal axis shows the strength of the long range interac-
tion. LDA (dashed line) shows a continuous growth of the
imbalance, while the full theory (solid line) shows a disconti-
nuity.

the long range interactions). In traditional LDA, the lo-
cal phase at position ~r is that of a homogeneous system
with chemical potential µ(~r). As seen in Fig. 2, this
implies that unless V = 0, one always has a CDW ring.
A straightforward calculation of the imbalance between
even and odd sites shows that within this approxima-
tion, the imbalance grows gradually as V is increased.
The dashed line in Fig. 5 depicts the imbalance obtained
from this LDA calculation, with K = 2N lattice sites.

B. Phase diagram

In this section, we use numerical methods to calculate
the phase diagram of an inhomogeneous Bose gas in a
harmonic trap. We work in a relatively small density
regime, and truncate the ansatz to allow 0, 1 or 2 atoms
per site. For a 35×35 square lattice, we numerically min-
imize the variational energy in Eq. (14) with respect to
2450 independent variational parameters. In the ground
state, the atoms arrange in concentric shells of insulat-
ing (MIn/CDWmn) and conducting (SS/SF) regions. We
label the state of the gas at every point in the phase di-
agram by listing the phases of the atoms in these shells,
in the order that they occur outwards from the center of
the cloud. For example, SF denotes that the entire cloud
is superfluid, and MI1-SF denotes that the center of the
cloud is in the Mott insulating phase with unit filling,
surrounded by a superfluid ring. In Fig. 6, we show the
phase diagram for µ = 0.5U andmω2a2 = 0.01U . For the
range of hopping and long-range interaction that we con-
sider, we find six different ways that the atoms arrange,
namely SF, MI1-SF, SS, SS-CDW10-SS, CDW10-SS, and
CDW20-SS-CDW10-SS. We find similar results for other
parameters, but the exact locations of the phase bound-
aries differ. Below, we discuss some of the interesting
features in the phase diagram in Fig. 6.
The MI1-SF and SF phases have no sublattice imbal-

ance, I = 0. In these phases, the long range interaction
term involving V does not contribute to the free energy.
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FIG. 6: Phase diagram for an inhomogeneous Bose gas in
a harmonic trap and an optical lattice, plotted against (a)
model parameters, and (b) experimentally relevant parame-
ters. Region I denotes MI1-SF phase, II is CDW10-SS, III is
SS-CDW10-SS, and IV is CDW20-SS-CDW10-SS. Thick lines
denote phase boundaries measured in experiments [1]. The
chemical potential is chosen to be µ = 0.5U , and the trap
frequency is such that mω2a2 = 0.01U . In (b), V0 is the lat-
tice depth, and ∆c is the detuning of the pump laser from the
fundamental cavity mode. The Rabi frequency is chosen to be

η =
√

2π

N

ER

h̄
, the scattering length is 100 a0, and the lattice

constant and lattice depth in the z-direction are 670 nm and
25ER, as consistent with experiments [1].

Therefore in this regime, the phase boundary between SF
and MI1-SF does not depend on V , and the boundary is a

vertical line at J = µ(U−µ)
z(U+µ) ≃ 0.04U for our parameters.

In the absence of tunneling and for a fixed chemical
potential µ, the size of the cloud in the MI1-SF phase is

r =
√

2µ
mω2 . The free energy (from Eq. (16)) is Evar =

− πµ2

mω2a2 . In the CDW10-SS phase, the cloud extends up

to r =
√

2(µ+V )
mω2 . The free energy of the CDW10-SS phase

is Evar = −π(µ+V )2

2mω2a2 . By comparing the free energies in
the two phases, we find that the phase boundary between
MI1-SF and CDW10-SS approaches V =

(√
2− 1

)

µ ≃
0.2U as J → 0. Numerically, we find that this is a good
approximation even for J 6= 0.

A CDW20 core appears inside the CDW10 region if it
is energetically cheaper to add atoms to the center rather
than the edge of the cloud. In the absence of tunneling,
the energy cost of adding an atom to an occupied site in
the centre of a CDW10 cloud is U − µ− V . There is no
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energy cost for adding an atom at the edge of a CDW10

cloud. Therefore in the absence of tunneling, the phase
boundary between CDW10-SS and CDW20-SS-CDW10-
SS occurs at V = U − µ = 0.5U . Numerically, we find
that this is a good approximation even for J 6= 0.
The phase diagram in Fig. 6 exhibits a multicritical

point at J ∼ 0.04U, V ∼ 0.2U . At this multicritical
point, the SF, MI1-SF, CDW10-SS, and SS-CDW10-SS
phases coexist. We find two other tricritical points at
J ∼ 0.06U, V ∼ 0.27U , and J ∼ 0.018U, V ∼ 0.5U .

C. Comparison to experiment

Experimentalists in Zurich attempted to generate a
phase diagram similar to Fig. 6 [1]. By monitoring the
intensity in the cavity, they could detect a transition from
a state with no sublattice imbalance to one in which
imbalance is present. For example, this technique can
find the transition from SF to SS. The researchers also
monitored the condensate fraction as a function of lat-
tice depth, finding kinks which they interpreted as phase
transitions. Indeed, the appearance of an insulating re-
gion should generate such a kink. In generating their
figures, the researchers only include the kink at largest
J/U . The resulting phase diagram agrees well with the
thick lines in Fig. 6b. Further analysis of their data
should reveal the other curves in Fig. 6b.

IV. SUMMARY

We calculated the phase diagram of a two dimensional
Bose gas with short range, and long range checkerboard
interactions in an optical lattice. The long range checker-
board interactions are produced by trapping the Bose gas
in a single mode Fabry Perot cavity, and illuminating it
with a laser beam in the transverse direction. We found
that, in the presence of these interactions, the Bose gas

exhibits four phases - a Mott insulator with integer fill-
ing, a charge density wave with different integer fillings
on even and odd sites of the lattice, a superfluid with
off-diagonal long range order, and a supersolid with SF
and CDW orders. We presented numerical results for the
phase diagram of this homogeneous gas, and obtained an-
alytical expressions for all the second order phase bound-
aries. We also presented numerical results for the phase
diagram of an inhomogeneous gas in a harmonic trap.
Our numerical phase diagram agrees well with the phase
diagram that was experimentally measured recently [1].
We predict that further analysis will reveal more phases
in their data.

The system considered in this study is interesting for
several reasons. First, due to long range interactions,
LDA fails. Second, the experiments in [1] made the first
detection of a supersolid phase. One caveat is that this
supersolid phase is a bit unusual, as it breaks only a
global symmetry and not a local symmetry. Thus one
would never expect to see domain walls in the checker-
board order, unless they are imposed by using a cavity
mode with nodes [10]. Beyond this system, atoms cou-
pled to optical cavities provide a new avenue to control
atom-atom interactions. Similar setups which trap atoms
in multimode cavities could be used to produce con-
trollable medium range interactions between atoms [10].
Multimode cavities can also be used to create phonon-like
excitations in the lattice. Atomic clouds trapped in cavi-
ties can be used to explore novel non-equilibrium phases
[11], and nontrivial phase transitions in driven dissipative
quantum systems [12–14].
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