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Experiments on quantum degenerate Fermi gases of magnetic atoms and dipolar molecules begin
to probe their broken symmetry phases dominated by the long-range, anisotropic dipole-dipole
interaction. Several candidate phases including the p-wave superfluid, the stripe density wave, and
a supersolid have been proposed theoretically for two-dimensional spinless dipolar Fermi gases. Yet
the phase boundaries predicted by different approximations vary greatly, and a definitive phase
diagram is still lacking. Here we present a theory that treats all competing many-body instabilities
in the particle-particle and particle-hole channel on equal footing. We obtain the low temperature
phase diagram by numerically solving the functional renormalization group flow equations and find
a new density wave phase at small dipolar tilting angles and strong interactions, but no evidence of
the supersolid phase. We also estimate the critical temperatures of the ordered phases.

Fermi gases and Fermi liquids play a fundamental
role in many-body physics. Many archetypical broken
symmetry phases ranging from superconductivity, charge
density waves to quantum liquid crystals may be under-
stood as instabilities of an underlying Fermi liquid in a
particular interaction channel. Historically, electron gas
with Coulomb interaction, liquid helium-3, and ultracold
Fermi gases of alkali atoms with contact interaction have
served as the testing grounds for many-body theories.
Recent experiments have ushered in a new class of in-
teracting Fermi gases — the quantum degenerate gases
of fermionic atoms with large magnetic moments such as
161Dy [1], 167Er [2], and 53Cr [3] and ground-state po-
lar molecules such as 40K87Rb [4, 5] and 23Na40K [6–8].
Their low temperature phases are dictated by the dipole-
dipole interaction which is long-ranged, anisotropic, and
attractive or repulsive depending on the relative orienta-
tion of the two dipoles. This unique interaction gives rise
to a rich variety of interesting quantum phases [9–11].

Take the single-species (spinless) dipolar Fermi gas
confined in two dimensions (2D) for example. Previ-
ous theoretical work has identified two broken symme-
try phases. A density wave (DW) is shown to develop
when the dipolar interaction is repulsive, e.g. when the
dipoles are aligned normal to the 2D plane by the ex-
ternal field, and sufficiently strong [12–18]. It features a
periodic modulation of particle density in the form of uni-
directional stripes. When the dipoles are tilted toward
the plane beyond a critical angle, the dipolar interaction
becomes partially attractive and supports Cooper pairing
[19]. A broad region of Bardeen-Cooper-Schrieffer (BCS)
superfluid phase with p-wave symmetry was predicted
[20–22]. In the limit of large tilting angle and strong at-
traction, the system becomes unstable: the compressibil-
ity becomes negative and the gas is believed to collapse
[12, 14, 20, 23]. While the qualitative picture of the com-
peting DW and BCS instabilities is agreed upon, there
is yet a consensus on a definitive phase diagram. For
example, the DW instability is predicted to occur when
the dimensionless interaction strength [defined below Eq.

(1)] gc = 1.45 within the conserving Hartree-Fock (HF)
approximation [13, 23]. By contrast, the Random Phase
Approximation (RPA) gives gc ∼ 0.7 [12, 15]. Ref. [14]
improved RPA by incorporating exchange correlations to
find a considerably larger gc ∼ 6. The fixed-node Monte-
Carlo calculation of Ref. [24] however did not find any
evidence for the stripe phase. Moreover, mean field the-
ory suggests a supersolid phase, i.e. the coexistence of
the BCS and DW order, in a finite region of the phase
diagram [25]. It remains unclear however whether the
supersolid phase can survive quantum fluctuations.

These discrepancies and open questions highlight the
challenges to develop an accurate theory for 2D dipolar
Fermi gas. Ideally, the theory should have the following
capabilities: (1) It keeps track of all many-body instabil-
ities in the particle-particle and the particle-hole channel
including the subtle interplay of the BCS and DW or-
der for intermediate dipole tilting angles. (2) It extracts
the momentum-dependent effective interactions between
quasiparticles [26, 27] on the Fermi surface systematically
from the bare dipolar interaction. (3) It takes into ac-
count thermal fluctuations to yield phase diagrams at low
temperatures of interest to experiments. (4) It describes
quantum fluctuations beyond HF and RPA.

In this letter, we present a theory that meets the re-
quirements (1)-(4) above. It is based on functional renor-
malization group (FRG) [28, 29], a powerful many-body
technique that gained considerable success in diverse sys-
tems including the Hubbard model [29, 30], the iron pnic-
tides [29, 31], and ultracold quantum gases [32–37]. FRG
can accurately predict the leading instability of the in-
teracting fermions without a prior bias, making it the
method of choice for problems with competing orders.
Our FRG analysis maps out the phase diagram of the 2D
dipolar Fermi gas at finite temperatures (Fig. 1) which
include a Fermi liquid, a p-wave superfluid, and two dis-
tinct density wave phases outside the “collapse” region.
In particular, FRG reveals a new DW phase with non-
trivial symmetry not discussed before.

Consider a continuum dipolar Fermi gas with chemical
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potential µ = EF = p2
F /2m, where pF is the Fermi mo-

mentum and m is the mass of the fermion. The dipole
moment d = dd̂ is aligned by external electric or mag-
netic field in the direction d̂ = (sin θ, 0, cos θ), i.e. titled
toward the x axis. The interaction between two dipoles
separated by a distance r is Vdd(r) = (d2/r3)[1−3(r̂ ·d̂)2].
Assume a tight harmonic confinement of frequency ωz in
the z direction, the effective interaction for two fermions
within the xy plane has the form [38]

v(q) = 2πd2|q|
[
(q̂ · x̂)2 sin2 θ − cos2 θ

]
/~, (1)

where q = |q|q̂ is the in-plane momentum transfer. Note
that Eq. (1) is only valid for |q| ≤ Λ < ~/l0 where
l0 =

√
~/mωz is the confinement length. We introduce

the dimensionless interaction strength g = md2pF /~3 as
the product of the typical interaction 2πd2pF /~ and the
density of states ν = m/2π~2. For brevity, we shall set ~
and kB to be unity below. Our goal is to find out which
phase is stabilized given the temperature T , the dipole
tilting angle θ, and the coupling strength g.

FRG implements Wilson’s renormalization group for
interacting fermions (see for example Ref. 39) in an exact
and succinct fashion by flowing a generating functional,
the average effective action Γk[ψ̄, ψ] where ψ and ψ̄ are
the fermionic fields, as a sliding momentum scale k is
varied [29, 40–42]. Thermal and quantum fluctuations
on different scales are separated by a device called the
infrared regulator Rk and dealt with successively at each
scale. We adopt Litim’s optimized regulator [43],

Rk(ξp) = [sign(ξp)k2/2m− ξp]Θ(k2/2m− |ξp|), (2)

where ξp = |p|2/2m − µ is the bare dispersion, p is the
momentum within the xy plane, and Θ is the Heaviside
step function. The evolution of Γk obeys the exact flow
equation [29, 40, 44]

∂kΓk[ψ̄, ψ] = −1

2
∂̃kTr ln

[
Γ̂

(2)
k [ψ̄, ψ] + R̂k

]
. (3)

Here Γ̂
(2)
k is the second order functional derivative of Γk

with respect to the fermionic fields, ∂̃k means k-derivative
only acting on R̂k = iσ̂yRk, and Tr denotes integra-
tion over the imaginary time τ ∈ [0, 1/T ], momentum
p, and trace over 2 × 2 matrices (denoted by hats) in
the so-called superfield space. The coarse-grained func-
tional Γk describes characteristic correlations up to scale
k, with all higher energy fluctuations integrated out. At
the bare scale Λ, Γk=Λ coincides with the microscopic
action. Thus, starting from the bare dispersion ξp and
bare interaction v(q) above and solving Eq. (3), one can
obtain an effective theory Γk→0 for the low-energy col-
lective behaviors of the interacting Fermi gas.

We expand Γk up to quartic order of ψ and ψ̄,

Γk = ψ̄1G
−1
k (p1)ψ1+

1

4
Γ

(4)
k (p1, p2, p3)ψ̄4ψ̄3ψ2ψ1+..., (4)

with the short hand notation ψi = ψ(pi), p = (p0,p)
where the Matsubara frequency p0 = (2n + 1)πT . By
momentum conservation p4 = p1 + p2 − p3 in the four-

point vertex Γ
(4)
k . Repeated indices in Eq. (4) are

summed over, i.e. T
∑
p0(2π)−2

∫
d2p is implied for each

pi. The inverse Green function is given by G−1
k (p) =

ip0 − ξkp − Σk(p) with ξkp = ξp+Rk(ξp) and Σk is the self-
energy. Substituting Eq. (4) into Eq.(3) and neglecting
higher order vertices, we obtain the coupled flow equa-

tions for Σk(p) and Γ
(4)
k (p1, p2, p3) [35].

Next we make a few standard approximations so that
the flow equations become numerically tractable. First,

we neglect the p0 dependence of Γ
(4)
k and set the exter-

nal Mastubara frequencies to be zero. Second, we as-

sume Γ
(4)
k only depends on the direction (not the mag-

nitudes) of the momenta p̂1, p̂2 and p̂3. This approx-
imation is similar to projecting the momenta onto the
Fermi surface in the widely used N-patch implementa-
tion of FRG for fermions on lattices. Finally, we ignore

the self-energy Σk. With these assumptions, Γ
(4)
k reduces

to Γk(p̂1, p̂2, p̂3) which obeys the following flow equation

∂kΓk(p̂1, p̂2, p̂3) =

1

2

∫
dϕp

2π
Γk(p̂1, p̂2, p̂

′)Γk(p̂′, p̂, p̂3)∂̃kΠ+
k (p̂, p̂′)

+

∫
dϕp

2π
Γk(p̂1, p̂, p̂

′)Γk(p̂′, p̂2, p̂3)∂̃kΠ−k (p̂, p̂′)

−
∫
dϕp

2π
Γk(p̂1, p̂, p̂

′)Γk(p̂′, p̂2, p̂4)∂̃kΠ−k (p̂, p̂′), (5)

where the angular integral is over ϕp, the polar angle of
the 2D momentum p. The three terms in Eq. (5) can be
represented diagrammatically as

BCS

1

2

3

4

p′

p

+

ZS

1

24

3
p′

p

−

ZS′

1

23

4

p′

p

which are known as the BCS, the zero sound (ZS, or di-
rect), and ZS′ (or exchange) diagrams respectively. The
internal momentum p′ is given by momentum conserva-
tion, p′ = p1 +p2−p for BCS channel, p′ = p+p2−p3

for ZS channel, and p′ = p + p1 − p3 for ZS′ channel.
The polarization bubbles in the particle-particle channel,
Π+
k , and the particle-hole channel, Π−k , are given by

Π±k (p̂, p̂′) = T
∑
p0

∫
d|p|2

4π

1

(ip0 − ξkp)

1

(∓ip0 − ξkp′)
. (6)

After performing the Matsubara summations analytically
and the radial integral numerically in Eq. (6), we find
that the main contribution to ∂̃kΠ±k comes from the in-
tersection area of two annuli in momentum space,

∂̃kΠ±k = ±ν
∫
dξfk(ξ,±ξ′)Θ(k̃2 − |ξ|)Θ(k̃2 − |ξ′|), (7)
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where k̃ = k/
√

2m, ξ = ξp, ξ′ = ξp′ , and the weight

function fk(ξ, ξ′) = [xk/2 cosh2(xk/2) − tanh(xk/2)]/k̃3

for ξξ′ > 0 and fk(ξ, ξ′) = −x2
k tanh(xk)/[2 cosh2(xk)k̃3]

for ξξ′ < 0 in terms of xk = k2/2mT . The vertex func-
tion at scale Λ is the antisymmetrized bare interaction,

ΓΛ(p̂1, p̂2, p̂3) =
1

2
[v(p̂3 − p̂1)− v(p̂2 − p̂3)] . (8)

Eqs. (5)-(8) are the main analytical results of our paper.
We solve the flow Eq. (5) with the initial condi-

tion (8) numerically by discretizing the sliding scale
k ∈ [0,Λ] and the polar angle ϕp ∈ [0, 2π]. We choose
Λ = 0.4pF , which corresponds to an energy scale much
larger than T [45, 46], and an angular grid of N = 48
patches. The evolution of Γk(p̂1, p̂2, p̂3), which con-
tains N3 = 110592 running coupling constants, is mon-
itored as k is reduced from Λ toward 0. To iden-
tify the many-body instabilities, we introduce the stan-
dard coupling matrices in various channels [31, 47], e.g.
VQ(p̂1, p̂2) by setting p3 = p1 + Q in Γk for given
Q. It turns out the leading instability occurs either
in the particle-particle channel with the coupling ma-
trix VBCS(p̂1, p̂2)=[Γk(p̂1,−p̂1, p̂2)+Γk(p̂2,−p̂2, p̂1)]/2
or in the particle-hole channel with the coupling matrix
VDW (p̂1, p̂2)=[Γk(p̂1, p̂2, p̂1) + Γk(p̂2, p̂1, p̂2)]/2.

Each channel coupling matrix V is diagonalized to find
its eigenvalues and eigenvectors,

∫
dϕ2

2π V (ϕ1, ϕ2)Ψ(ϕ2) =
λkΨ(ϕ1), where we have used the unit vector p̂i and its
corresponding polar angle ϕi interchangeably. For given
(θ, g, T ), if Γk develops no singular behavior as k is re-
duced, the gas is in the normal phase. If some λk values
diverge, the Fermi liquid is unstable. The most diverging
λk points to the channel in which the leading instability
occurs, while its eigenvector Ψ(ϕ) yields the symmetry
of the incipient long-range order. We define the critical
scale Λc as the value of k when the largest element of
Γk(p̂1, p̂2, p̂3) exceeds 102EF . It serves as a rough esti-
mation of the critical temperature Tc of the correspond-
ing broken symmetry phase.

Identifying the instability in the particle-hole channel
for a Fermi gas with circular Fermi surface requires some
care. VDW may look like the Q→ 0 limit of VQ. It how-
ever can be equivalently viewed as two fermions exchang-
ing momentum, (p1,p2) → (p2,p1), with a finite mo-
mentum transfer Q′ = p2−p1, due to the antisymmetry
of the vertex. In particular, scattering across the Fermi
surface, (p1,−p1)→ (−p1,p1), drives a DW (stripe) or-
der with ordering wave vector |Q′| = 2pF [16]. Within
our FRG scheme, we find that while the DW order does
have a dominant Q′ component, it cannot be character-
ized by a single wave vector [23].

Fig. 1a shows the phase diagram of 2D dipolar Fermi
gas for T = 0.01EF . It features four phases: the Fermi
liquid (FL), the BCS superfluid phase dominated by px-
wave symmetry, and two distinctive DW phases. For
completeness, we also indicated the “collapse” region ob-
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FIG. 1. (Color online) a) The phase diagram of two-
dimensional spinless dipolar Fermi gas at T = 0.01EF pre-
dicted by FRG. It displays a Fermi liquid (FL), a p-wave
superfluid (BCS) and two distinct density wave phases, DW1

and DW2. The colormap shows the critical scale Λc at which
the vertex diverges (see the main text). Three representa-
tive points P1, P2 and P3 on the phase diagram are chosen
to show the details of the FRG flow. b) The flows of the
largest eigenvalue of VBCS and the two largest eigenvalues
of VDW corresponding to the DW1 and DW2 order respec-
tively. c) The eigenvectors of the leading instability and the
corresponding channel matrices near the end of the flow.
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FIG. 2. The critical temperature Tc as a function of the dipole
tilting angle θ for fixed interaction g = 1.5 estimated from the
FRG flow. Dashed lines are the extensions of the fits to the
data points in the DW1 and DW2 region, resepectively.

tained by the same procedure as Ref. [23]. Three points
on the (θ, g) plane, P1, P2 and P3, are chosen to represent
the DW1, DW2, and BCS phase respectively. Their cor-
responding λk, Ψ(ϕ), and V (ϕ1, ϕ2) are shown in Fig. 1b-
1c.

Several features of Fig. 1a are in qualitative agreement
with previous phase diagrams in Refs. [14, 20, 23, 25].
For example, the BCS phase emerges beyond a critical
dipole tilting angle θc ≈ 0.26π, while the DW order only
develops beyond a critical coupling, e.g. gc = 1.1 for θ =
0. Fig. 1a shows that the BCS phase undergoes a direct
transition to DW2 instead of through an intermediate,
coexisting phase. Within our implementation of FRG,
the leading instability always occurs either in the BCS
or the DW channel. The case of degenerately diverging
λk in both channels is never observed, so there is no
evidence for a supersolid phase. We can identify DW2

as the stripe density wave discussed previously with a
density modulation along the y axis with period∼ ~/2pF .
As shown in Fig. 1c, the effective interaction VDW is
repulsive and diverging near the region p̂1 ∼ −p̂2 ∼ ŷ,
favoring the dominant ordering wave vector Q′ = 2pF ŷ.
Note that Ψ(ϕ) vanishes for ϕ = 0 and π, i.e. there is no
modulation along the x direction.

Our most significant finding is a new phase DW1 for
small θ. From the eigenvector Ψ(ϕ), it is clear that the
two DW phases are roughly related to each other by a
π/2 rotation. The density modulation is thus along the x
axis in the DW1 phase. In contrast to DW2, the DW1 or-
der is not expected from the bare interaction v(q) which
is almost isotropic for small θ. Only under the FRG
flow does the effective interaction vertex VDW become in-
creasingly anisotropic and drastically different from the
bare interaction. As k is reduced, the renormalized in-
teraction for two fermions with p̂1 ∼ −p̂2 ∼ x̂ grows
dominantly repulsive and eventually diverges. While the
translational symmetry breaking along the x direction

is counter-intuitive, a DW order along ŷ in the limit of
θ → 0, as previously believed, seems implausible because
all directions of Q′ are energetically degenerate.

Single channel renormalization group [39] and RPA are
widely used in the study 2D Fermi liquids, and their de-
ficiencies have been noticed [46, 48]. Neglecting the ZS′

channel (as in RPA) will violate the antisymmetry in the
forward scattering vertex [46]. Strong interference be-
tween ZS and ZS′ near the zero angle p̂1 ∼ p̂2 leads
to small angle anomalies and invalidates the ladder ap-
proximation [46]. The interference between the BCS and
ZS channel (relevant to the putative supersolid phase)
become important when p̂1 ∼ −p̂2 [39, 48]. The FRG
approach described here is capable of describing these
subtle interplays between the BCS, ZS, and ZS′ channels,
and the antisymmetry of Γk is respected throughout.

Now we comment on the requirements to observe the
broken symmetry phases experimentally. Fig. 1a suggests
that to access the BCS phase at T ∼ 0.01EF , which is
much lower than the temperatures T ∼ 0.2EF achieved
for Dy [1] and Er [2] gases, one needs go to relatively
strong interactions g > 0.5. For the NaK gas reported in
Ref. [6], g is on the order of 1.34 with d = 0.8Debye and
area density of 4×107cm−2. In principle, d can be further
increased to 2.7Debye, giving a ten-fold increase in g. At
higher temperatures, the phase boundaries are shifted to
the right by thermal fluctuations, so stronger interactions
are required to reach the BCS and DW phases. The
(color-coded) Λc values in Fig. 1a provides a rough guide
for the Tc. Note the Tc of the BCS phase is typically
higher than that of the DW phases. A more accurate
estimation of Tc is shown in Fig. 2 for fixed g = 1.5 as a
function of θ. It is obtained by solving the flow equation
at different T for given (θ, g) and identifying Tc as the
temperature at which a divergence in Γk develops. We
observe that Tc can be 5 to 10 percent of EF .

Our instability analysis is confined within the normal
phase, it does not directly describe the broken symmetry
phases including the proliferation of topological defects
which tends to suppress Tc to values much lower than es-
timated here. The Kosterlitz-Thouless transition of the
stripe (DW2) phase has been described in Ref. [49]. It
would be interesting to perform a similar analysis of all
candidate phases found here. The accuracy of our re-
sults can be improved by including the full momentum

dependence in Γ
(4)
k and Σk in the FRG flow. For exam-

ple, we expect the Fermi surface deformations [27, 50–52]
due to the self-energy correction may slightly reduce the
region of the DW1 phase and enhance the stability of the
supersolid. Such calculation is numerically much more
demanding and reserved for future work. We hope the
results reported here can stimulate further application of
FRG to interacting Fermi gases including spin 1/2 dipo-
lar Fermi gases [11, 53, 54].
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(1998).
[47] H. Zhai, F. Wang, and D.-H. Lee, Phys. Rev. B 80,

064517 (2009).
[48] N. Dupuis, The European Physical Journal B 3, 315

(1998).
[49] Z. Wu, J. K. Block, and G. M. Bruun, arXiv preprint

arXiv:1509.02679 (2015).
[50] K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensber-

gen, and F. Ferlaino, Science 345, 1484 (2014).
[51] T. Miyakawa, T. Sogo, and H. Pu, Phys. Rev. A 77,

061603 (2008).
[52] J.-N. Zhang and S. Yi, Phys. Rev. A 80, 053614 (2009).
[53] S. G. Bhongale, L. Mathey, S.-W. Tsai, C. W. Clark,

and E. Zhao, Phys. Rev. A 87, 043604 (2013).
[54] E. G. C. P. van Loon, M. I. Katsnelson, and

M. Lemeshko, Phys. Rev. B 92, 081106 (2015).

http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/ 10.1103/PhysRevLett.112.010404
http://dx.doi.org/ 10.1103/PhysRevA.91.011603
http://dx.doi.org/ 10.1103/PhysRevA.91.011603
http://dx.doi.org/ 10.1126/science.1163861
http://dx.doi.org/10.1039/b821298h
http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://stacks.iop.org/1367-2630/17/i=7/a=075016
http://stacks.iop.org/1367-2630/17/i=7/a=075016
http://dx.doi.org/ 10.1103/PhysRevLett.109.085301
http://pubs.acs.org/doi/abs/10.1021/cr2003568
http://dx.doi.org/DOI: 10.1016/j.physrep.2008.04.007
http://stacks.iop.org/0953-8984/26/i=49/a=493203
http://stacks.iop.org/0953-8984/26/i=49/a=493203
http://dx.doi.org/ 10.1103/PhysRevA.82.013643
http://dx.doi.org/ 10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevB.84.235124
http://dx.doi.org/10.1103/PhysRevB.84.235124
http://dx.doi.org/10.1103/PhysRevLett.108.145304
http://dx.doi.org/10.1103/PhysRevLett.108.145304
http://dx.doi.org/10.1103/PhysRevB.82.075105
http://dx.doi.org/10.1103/PhysRevB.82.075105
http://dx.doi.org/10.1103/PhysRevB.90.155102
http://dx.doi.org/10.1103/PhysRevB.90.155102
http://stacks.iop.org/1367-2630/14/i=10/a=105006
http://stacks.iop.org/1367-2630/14/i=10/a=105006
http://dx.doi.org/10.1103/PhysRevA.92.023614
http://dx.doi.org/10.1103/PhysRevA.92.023614
http://dx.doi.org/10.1103/PhysRevA.60.2324
http://dx.doi.org/10.1103/PhysRevLett.101.245301
http://dx.doi.org/10.1103/PhysRevLett.101.245301
http://dx.doi.org/10.1103/PhysRevA.66.013606
http://dx.doi.org/10.1103/PhysRevA.81.063642
http://dx.doi.org/10.1103/PhysRevA.84.063633
http://dx.doi.org/10.1103/PhysRevA.84.063633
http://dx.doi.org/10.1103/PhysRevLett.109.200401
http://dx.doi.org/10.1103/PhysRevLett.109.200401
http://dx.doi.org/10.1103/PhysRevB.91.224504
http://dx.doi.org/10.1103/PhysRevB.91.224504
http://dx.doi.org/10.1103/PhysRevA.85.023614
http://dx.doi.org/10.1103/PhysRevA.85.023614
http://dx.doi.org/ 10.1103/PhysRevA.81.023602
http://dx.doi.org/ 10.1103/PhysRevA.81.023602
http://dx.doi.org/ 10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/PhysRevB.61.13609
http://dx.doi.org/10.1103/PhysRevB.61.13609
http://dx.doi.org/10.1080/00018732.2013.862020
http://dx.doi.org/10.1080/00018732.2013.862020
http://dx.doi.org/10.1103/PhysRevLett.97.030601
http://dx.doi.org/10.1103/PhysRevLett.97.030601
http://dx.doi.org/10.1103/PhysRevB.75.174516
http://dx.doi.org/10.1103/PhysRevB.75.174516
http://dx.doi.org/10.1103/PhysRevA.89.053630
http://dx.doi.org/10.1103/PhysRevA.89.053630
http://ptep.oxfordjournals.org/content/2014/4/043I01.abstract
http://ptep.oxfordjournals.org/content/2014/4/043I01.abstract
http://dx.doi.org/ 10.1103/PhysRevLett.108.145301
http://dx.doi.org/ 10.1103/PhysRevLett.110.155301
http://dx.doi.org/10.1103/PhysRevA.73.031602
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/ http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1142/S0217751X94000972
http://dx.doi.org/10.1142/S0217751X94000972
http://dx.doi.org/ http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://www.sciencedirect.com/science/article/pii/S0370269300007486
http://dx.doi.org/http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1103/PhysRevB.52.13487
http://dx.doi.org/10.1103/PhysRevB.52.13487
http://dx.doi.org/10.1103/PhysRevB.57.1444
http://dx.doi.org/10.1103/PhysRevB.57.1444
http://dx.doi.org/10.1103/PhysRevB.80.064517
http://dx.doi.org/10.1103/PhysRevB.80.064517
http://dx.doi.org/10.1007/s100510050318
http://dx.doi.org/10.1007/s100510050318
http://dx.doi.org/ 10.1126/science.1255259
http://dx.doi.org/10.1103/PhysRevA.77.061603
http://dx.doi.org/10.1103/PhysRevA.77.061603
http://dx.doi.org/10.1103/PhysRevA.80.053614
http://dx.doi.org/ 10.1103/PhysRevA.87.043604
http://dx.doi.org/10.1103/PhysRevB.92.081106

	Competing many-body instabilities in two-dimensional dipolar Fermi gases
	Abstract
	Acknowledgments
	References


