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We show that the wave function in one the spatial sector x1 < x2 < · · · < xN (with xi being the
coordinate of ith particle) of a one dimensional spinor gas with contact s-wave interaction, either
bosonic or fermionic, can be mapped to the direct product of the wave function of a spinless Fermi
gas with short-range p-wave interaction and that of a spin system governed by spin parity projection
operators. Applying this mapping to strongly interacting spinor gases, we obtain a generalized spin
chain model that captures both the static and dynamics properties of the system. Using this spin
chain model, we investigate the breathing mode frequency and the quench dynamics of strongly
interacting harmonically trapped spinor gases.
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I. INTRODUCTION

Strongly interacting many-body systems exhibit rich
physics, but in general pose as tremendous theoretical
challenges. Under certain circumstances, a system can be
mapped into another one much more amenable to theo-
retical study. The Bose-Fermi mapping is one such exam-
ple [1, 2]. It maps a system of one dimensional (1D) spin-
less bosons with infinite repulsive two-body contact inter-
action to a system of spinless non-interacting fermions.
This mapping is based on the idea that, due to the infi-
nite interaction, the relative wave function between two
identical bosons must vanish when xi = xj , which mim-
ics the quantum statistics between two identical fermions.
This mapping was later generalized by Cheon and Shege-
hara [3, 4] who mapped a system of spinless bosons with
s-wave contact interaction characterized by strength g

Vs = g
∑

i<j

δ(xij) , xij ≡ xi − xj , (1)

to a system of spinless fermions interacting with each
other via a short-range p-wave interaction of strengh 1/g,
whose pseudo-potential form can be written as [5–9]

Vp = −4

g

∑

i<j

←−
∂ xij

δ(xij)
−→
∂ x−

ij
. (2)

Much richer physics can be obtained if the particles
possess spin degrees of freedom. The goal of the cur-
rent work is to present a general mapping that works for
a 1D quantum gas with arbitrary spin. Applying this
mapping to a strongly s-wave interacting spinor quan-
tum gas, we show that we can construct an effective spin
chain model that accurately captures both the static and
dyanmic properties of the system. 1D cold atomic sys-
tems have been realized in experiments by strongly con-
fining the atoms along two transverse directions such that
the transverse dynamics is frozen into the single-particle
ground state. For two recent reviews, see Refs. [10, 11].

The paper is organized as follows. In Sec. II, we
present the generalized mapping, in which the wave func-
tion of a 1D s-wave interacting spinor quantum gas in one
spatial sector is mapped to a direct product of the wave
function of a spinless fermions with p-wave interaction
and that of a spin system. In Sec. III, we apply this
mapping to a system of strongly interacting spinor quan-
tum gas and construct effective multi-branch spin chain
models. In Sec. IV, we further consider the spin chain
model for a harmonically trapped system, and show that
the multi-branch spin chain Hamiltonian leads to an ef-
ficient way of calculating the breathing mode frequency.
More details of the breathing mode frequency of strongly
interaction Bose and Fermi gases are presented in Sec. V.
In Sec. VI, we investigate the quench dynamics using the
multi-branch spin chain model, demonstrating its utility
in a dynamical situation. Concluding remarks are pre-
sented in Sec. VII. Some technical details are presented
in the three Appendices.

II. GENERALIZED BOSE-FERMI MAPPING

Generalizing the original Bose-Fermi mapping of Gi-
rardeau to spinor systems was first proposed by Gi-
rardeau and Olshanii [12, 13] who showed that 1D spinor
Fermi gas and Bose gas can be mapped into each other,
where the even-wave interaction (e.g., Vs) in one is
mapped to the odd-wave interaction (e.g., Vp) in the
other. This mapping can be understood as follows: The
even relative spatial wave function under Vs and the odd
relative spatial wave function under Vp satisfy exactly the
same boundary condition: limxij→0+ gψ(xij) = 2ψ′(xij) .
Motivated by these past works, here we present a dif-

ferent, but related, mapping as follows: A 1D spinor gas,
either bosonic or fermionic, interacting with contact s-
wave two-body interaction, governed by Hamiltonian

H = H0 + Vs =
N
∑

i=1

[

−∂2i /2 + V (xi)
]

+ Vs , (3)
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where H0 is the single-body Hamiltonian with V repre-
senting the external trapping potential, can be mapped to
the direct product of a spinless p-wave interacting Fermi
gas and a spin chain system under the Hamiltonian

HF = H0 +Hp , (4)

where

Hp = −4N !

g

N−1
∑

i=1

←−
∂ iδ(xi − xi+1)θ

1−→∂ i− ⊗ P̂ s,a
i . (5)

Note that this mapping is defined in one spatial sector
defined by θ1, which is the sector function (i.e., gen-
eralized Heaviside step function) of spatial coordinates,
whose value is one in spatial sector x1 < x2 < · · · < xN ,
and zero otherwise. The operators P̂ s,a

i = (1 ± Ei,i+1)/2
are spin projection operators that project out symmet-
ric and antisymmetric spin states, respectively, where Eij
is the exchange operator that exchanges the ith and jth

spins. If the original spinor gas is bosonic (fermionic),

one should take P̂ s
i (P̂ a

i ).
To see how this mapping works, let us consider a 1D

spinor quantum gas with a total of N particles governed
by Hamiltonian (3). The N -body wave function can be
written as

Ψ(x1, x2, ..., xN , σ1, σ2, ..., σN ) =
∑

P (±1)PP
(

Ψ1(x1, x2, ..., xN , σ1, σ2, ..., σN )
)

, (6)

where σ’s are the spin variables, P represents permuta-
tion, and Ψ1 = Ψθ1 is the wave function in the spatial
sector θ1. Equation (6) is a manifestation of a special
property of 1D system that the spatial domain of the
wave function can be separated intoN ! disconnected sub-
domains labeled by various spatial orders, and the wave
function in one spatial sector (say, Ψ1 as defined in spatial
sector θ1) has the complete information of the total wave
function, as the values of the wave function in different
subdomains are related by permutation operation [14].
Furthermore, in the θ1 spatial sector, the wave function
Ψ1 can be represented as:

Ψ1(x1, x2, ..., xN , σ1, σ2, ..., σN ) =
∑

α,β Aαβ ϕα(x1, x2, ..., xN )χβ(σ1, σ2, ..., σN ) , (7)

where Aαβ are superposition coefficients, ϕ’s and χ’s are
spatial and spin wave functions, respectively.
Now we map the wave function (6) in the original rep-

resentation into the following one:

∑

α,β

Aαβ

∑

P

(−1)PP (ϕα)⊗ χβ . (8)

The mapped system is governed by the Hamiltonian HF

in Eq. (4). Its spatial wave function describes a spinless
p-wave interacting Fermi gas, while the spin wave func-
tion is the eigenstate of spin projection operator P̂ s,a

i .
This mapping is defined in the spatial sector θ1, as only

in this spatial sector, the boundary conditions can be
mapped into each other in the two representations. In
the original representation whose wave function is repre-
sented by Eq. (6), at the sector boundaries xi = xi+1,
the parities of the spatial wave function ϕα and that of
the spin wave function χβ are linked as the total parity
has to be odd (for fermions) or even (for bosons). In
the mapped representation (8), however, this link is not
present as the spatial wave function is always odd. The
quantum statistics of the original system is taken care of
by the spin parity project operator P̂ s,a

i in the mapped
Hamiltonian HF . In Appendix A, we use a simple ex-
ample of two atoms to further justify the form of Hp in
Eq. (5).

We emphasize that this mapping is exact and valid for
arbitrary values of g > 0 [15]. However, it is particu-
larly useful for systems with large interaction strength
g, for which the mapped system is a weakly interacting
p-wave spinless Fermi gas, which can be calculated per-
turbatively. This allows us to gain valuable insights into
the original strongly interacting systems. Furthermore,
By mapping the spinor system into the direct product of
a spinless fermionic system and a spin chain, the size of
the Hilbert space is significantly reduced, hence efficient
numerical tools can be constructed to study the system.
In the following, we will present a more detailed study to
showcase the application of this mapping.

III. MULTI-BRANCH SPIN CHAIN MODEL

Consider a trapped spinor gas with N total atoms gov-
erned by Hamiltonian (3). Although our theory is valid
for arbitrary V , we will focus on harmonic trapping po-
tential V (x) = x2/2, which not only is the most exper-
imentally relevant, but also possesses special symmetry
properties that we will exploit later. We have adopted a
dimensionless unit system where ~ = m = ω = 1, with
m and ω being the atomic mass and the trap frequency,
respectively. The interaction Hamiltonian of the mapped
system is given by Hp in (5).

For large g, we work on this mapped system, and treat
Hp as a perturbation to the single-body Hamiltonian H0.
The unperturbed system is simply an ideal Fermi gas,
whose ground state is formed by putting one atom in
each of the lowest N single-body states, as schematically
shown in Fig. 2(a), with energy E(0) = N2/2, and the
ground state wave function is a Slater determinant which
we denote as ϕ0. In the context of the original spinor
system, this corresponds to the Tonks-Girardeau (TG)
limit with g = ∞, for which the ground state possess
spin degeneracy as its energy is completely independent
of the spin configuration. For large but finite g [16], to
first order in Hp (i.e., in 1/g), we can readily derive an
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effective Hamiltonian:

H(0)
sc = E(0)+〈ϕ0|Hp|ϕ0〉 = E(0)−1

g

N−1
∑

i=1

C
(0)
i (1±Ei,i+1) ,

(9)

with the coefficients C
(0)
i given by

C
(0)
i = 2N !

∫

dx1...dxN |∂iϕ0|2 δ(xi − xi+1)θ
1 . (10)

This is exactly the inhomogeneous spin chain Hamilto-
nian for a 1D strongly interacting quantum gas recently
derived by several groups using different methods [17–19].
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FIG. 1: (color online) The red dots represent results from the

LDA approximation for C
(0)
i using Eqs. (13) and (14). The

blue solid lines are exact integral of C
(0)
i by a method similar

to calculating ρ(i)(z) in [14]. The comparison are for particle
numbers run from 2 (bottom) to 15 (top).

AnN -dimensional integral is involved in evaluating the

local exchange coefficients C
(0)
i . A numerically efficient

way of calculating C
(0)
i has recently been provided in

Ref. [20, 21]. Here, we develop a local density approxi-

mation (LDA) method to calculate C
(0)
i for particles in a

harmonic trap in a semi-analytical way. Under the LDA,

C
(0)
i are approximated as [17, 22–24]

C
(0)
i =

π2

3
n3
TG(yi), i = 1, 2, ..., N − 1 , (11)

where nTG(x) = 1
π

√
2N − x2 is the Tonks-Girardeau

density profile which is the same as the density profile
of a spinless Fermi gas, and yi are defined as

∫ yi

−
√
2N

dx nTG(x) = i , (12)

which is the average boundary of the ith and (i + 1)th
particle. Equations. (11) and (12) are equivalent to

C
(0)
i =

1

3π
(2N)3/2 sin3

(αi

2

)

, (13)

where αi is the solution of equation

αi − 2π
i

N
= sin(αi) . (14)

The comparison with the exact C
(0)
i calculated by a simi-

lar method as calculating ρ(i)(z) in [14] is shown in Fig. 1,
from which we see that even for very few particles the
LDA results agree with the exact values very well.

FIG. 2: (color online) Schematic representation of the ground
state (a), the first excited state (b), and the second excited
states (c) of a harmonically trapped ideal spinless Fermi gas.

Previous works have established that the spin chain
model represented by Hamiltonian (9) describes rather
accurately the ground state properties of the strongly in-
teracting spinor gas to order 1/g. To provide a more
complete description of the system, and in particular of
the dynamical properties of the system which has largely
been neglected in previous works [25], we now extend
the calculation to include excited eigenstates of the un-
perturbed Hamiltonian H0 to construct a multi-branch
spin chain model.
The excited eigenstates of the non-interacting system

governed by H0 can be easily constructed. The first ex-
cited state, with wave function denoted as ϕ1 and repre-
sented in Fig. 2(b), is obtained by promoting the atom at
the Fermi level in the ground state ϕ0 to the next single-
particle state. Treating Hp as a perturbation on this
manifold leads to the following spin-chain Hamiltonian:

H(1)
sc = E(1) − 1

g

N−1
∑

i=1

C
(1)
i (1± Ei,i+1) , (15)

where E(i) = E(0)+i is the energy of the ith excited state

of the ideal Fermi gas, and the coefficients C
(1)
i are given

by Eq. (10) with ϕ0 replaced by ϕ1.
The second excited state of the unperturbed system, as

represented in Fig. 2(c), is two-fold degenerate with wave
functions denoted as ϕ2a and ϕ2b, respectively. In gen-
eral, higher degree of degeneracy is expected for higher
excited states. In the presence of degeneracy, the per-
turbation Hp can in principle mix different degenerate
spatial states, leading to spin-orbit coupling between the
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charge (i.e., spatial) and the spin sectors. When this is
the case, such excited manifold cannot be described by
a spin-chain Hamiltonian. However, in the following, we
will show that the special symmetry properties of har-
monic trapping potential allows us to construct the spin
chain model for low-lying excited manifolds. Further-
more, the local exchange coefficients Ci for these low-
lying excited manifolds can be obtained from the corre-
sponding coefficients for the ground manifold [Eq. (10)]
without any extra calculations. This provides significant
insights into the low-lying collective excitation modes for
harmonically trapped spinor quantum gases.

IV. SYMMETRY PROPERTIES OF HARMONIC
TRAP

Consider first an ideal gas of harmonically trapped N
spinless fermions under Hamiltonian H0. The center-of-
mass (COM) motion can be separated from the relative
internal motion. The COM dipole mode can be excited
by the operator Q† = (K− iP )/

√
2, where K and P cor-

respond to the COM position and momentum operators,
respectively. (For the detailed definition and properties
of these operators, see Appendix B.) The internal states
can be classified into irreducible representations of the
SO(2,1) algebra obeyed by the internal operators [26–
29]. The first excited state ϕ1 (Fig. 2(b)), represents the
lowest COM dipole excitation and is generated from the
ground state ϕ0 (Fig. 2(a)) by applying Q† once, i.e.,
ϕ1 = Q† ϕ0. Whereas the second excited manifold can
be generated from ϕ0 in two different ways:

ϕQ = (Q†)2 ϕ0 , ϕB = B† ϕ0 , (16)

where ϕQ represents the second COM dipole excitation
and ϕB the first internal breathing excitation. ϕQ and

ϕB have the same energy E(2) and are in fact linear su-
perpositions of ϕ2a and ϕ2b represented by Fig. 2(c).
For the mapping we discussed earlier, the charge de-

grees of freedom of a strongly interacting harmonically
trapped spinor gas is mapped to a spinless Fermi gas in-
teracting with the p-wave pseudo-potential Hp given in
Eq. (5). Since Hp only affects in the internal degrees of
freedom, the separation of the COM motion and inter-
nal motion discussed above remains valid. An immedi-
ate conclusion one can draw is that Hp would not affect
the energies of the COM dipole states generated by Q†

as [Hp, Q
†] = 0. Consequently, the COM dipole excita-

tion frequencies are not shifted by the interaction. This
is simply the manifestation of the Kohn-Sham theorem
for a system of harmoincally trapped particles. A di-
rect consequence of this is that the coefficients in the

spin chain Hamiltonian H
(1)
sc for the first excited state

(see Eq. (15)) are the same as the corresponding coef-

ficients in H
(0)
sc for the ground state (see Eq. (9)), i.e.,

C
(1)
i = C

(0)
i . Hence H

(1)
sc and H

(0)
sc only differ by a con-

stant shift of E(1) − E(0) = 1, which is the frequency of

the lowest COM dipole mode.
Now let us turn to the second excited manifold which

contains two degenerate states ϕQ and ϕB defined in
Eq. (16). Due to the fact that Q† is a COM operator,
and both B† and Hp affect only the internal motion, the
interaction does not couple ϕQ and ϕB. As a result, we
can write down the effective spin chain Hamiltonians for
these two states separately:

HQ,B
sc = E(2) − 1

g

N−1
∑

i=1

C
(Q,B)
i (1± Ei,i+1) . (17)

Furthermore, for the same reason that C
(1)
i = C

(0)
i , we

also have C
(Q)
i = C

(0)
i . Quite amazingly, there also exists

a simple relation between CB
i and C

(0)
i which can be

proved using a recursion relation for the SO(2,1) algebra
[29, 30] (for a detailed derivation, see Appendix C):

CB
i

C
(0)
i

= 1+
3

2(N2 − 1)
, (18)

which means that H
(B)
sc and H

(0)
sc , apart from a constant

shift of E(2) − E(0) = 2, only differ by a constant fac-
tor given in Eq. (18). The energy difference between

the ground states of H
(B)
sc and H

(0)
sc , which gives the fre-

quency of the lowest breathing mode ωB, is therefore

ωB = 2 +
3

2(N2 − 1)
Eg , (19)

whereEg = 〈H(0)
sc 〉−E(0) is the ground state energy of the

spin chain Hamiltonian H
(0)
sc measured with respect to

E(0). Hence, unlike the COM dipole mode, the breathing
mode frequency receives an interaction-dependent shift
away from the non-interacting value of 2. In the strongly
interacting regime, this shift δωB ≡ ωB − 2 ∝ 1/g and
vanishes exactly in the TG limit of g = ∞. We note
that the breathing of 1D quantum gases have been inves-
tigated in several recent experiments [31, 32].

V. BREATHING MODE FOR HARMONICALLY
TRAPPED QUANTUM GAS

Let us now take a further look at the breathing mode,
whose frequency ωB is completely determined by the

ground state energy of the spin chain Hamiltonian H
(0)
sc .

For a system of spinor Bose gas with arbitrary spin
and arbitrary population distribution among spin com-

ponents, it is quite obvious that the ground state of H
(0)
sc

is obtained by arranging the atoms into a fully spin sym-
metric configuration such that 〈Ei,i+1〉 = 1, and corre-
spondingly the ground state energy is given by

Eboson
g = −2

g

N−1
∑

i=1

C
(0)
i , (20)
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which, for a given trapping potential, only depends on
the total number of atoms N . Taking N →∞, using the

LDA result Eq. (13) for C
(0)
i , and converting the sum in

Eq. (20) into an integral:

Eboson
g ≈ −1

g

(2N)
5/2

3π

∫ 1

0

dβ sin3
[

α(β)

2

]

= −1

g

128
√
2

45π2
N5/2 ≈ −1

g
0.408N5/2 , (21)

where β = i/N ∈ (0, 1). This result is consistent with
the previous result obtained for spinless bosons near the
TG limit [33–35], which gives another indication that our

LDA approximation for C
(0)
i is excellent. Correspond-

ingly, the interaction-induced shift of the breathing mode
frequency is

δωboson
B =

3

2(N2 − 1)
Eboson

g ≈ −1

g

64
√
2

15π2
N1/2 . (22)

ω
B

N N

(a) (b)

(d)(  )c

FIG. 3: (color online) Ground state energy (a, b) and breath-
ing mode frequency shift (c, d) as functions of N . In (a) and
(c), we present results for bosons and spin-1/2 fermions with
various N↑/N . In (b) and (d), we present results for bosons,
and fermions with different spin s and equal population in
each spin component. For bosons, the ground state energy
and the breathing mode frequency shift are independent of
spin. The black solid lines represent the analytic LDA results
for bosons given in Eqs. (21) and (22).

The fermionic case is more complicated. For a spin-s
Fermi gas with a fully spin antisymmetric configuration,
its ground state energy is the same as in the bosonic case,
given by Eq. (20), as the two systems possess the same
spatial wave function. This spin configuration, how-
ever, can only occur if the number of spin components
2s+1 ≥ N and no more than 1 fermions occupy the same
spin component [36]. In Fig. 3(a), we plot the spin chain
ground state energy Eg as functions of N , with the corre-
sponding breathing mode frequency shift δωB plotted in
Fig. 3(c). The symbols are obtained by numerically cal-

culate the coefficients C
(0)
i and then diagonalize the spin

chain Hamiltonian H
(0)
sc . The red dots are the results for

bosons. We also plot the analytical results based on the
LDA (Eqs. (21) and (22)) as black solid lines. As one can
see, the LDA results agree very well with the numerical
results even for small N . Other symbols in the figure
correspond to Eg and δωB for spin-1/2 Fermi gas with
different population distribution in the two spin compo-
nents. In Fig. 3(b) and (d), we plot respectively Eg and
δωB as functions of N for Fermi gases with different spin
s and equal population in each spin component. As one
can see, for fixed N , as s increases, the fermionic results
approach the bosonic ones. As 2s + 1 ≥ N , the two re-
sults matches exactly. This behavior has been recently
seen in the experiment [32].

VI. QUENCH DYNAMICS

Finally, we demonstrate the application of multi-
branch spin chain model to simulate the dynamics of the
system. To this end, we consider a spin-1/2 Fermi gas
initially prepared in a harmonic trap subject to a spin-
dependent magnetic gradient that separates the COM
position of the two spin components (see the left pan-
els of Fig. 4). In the presence of such a spin-dependent
magnetic gradient, the Hamiltonian is given by

H =

N
∑

i=1

[

−∂2i /2 + V (xi)−Gxiσz
i

]

+ g
∑

i<j

δ(xij) ,

where G is the strength of the magnetic gradient. The
corresponding spin chain Hamiltonian for the ground
manifold now takes the form

H(0)
sc = E(0) − 1

g

N−1
∑

i=1

C
(0)
i (1± Ei,i+1)−G

N
∑

i=1

D
(0)
i σz

i ,

(23)
where

D
(0)
i = N !

∫

dx1...dxN xi|ϕ0|2θ1, i = 1, 2, ..., N (24)

D
(0)
i has a physical meaning of the average position of

ith particle, which naturally leads to a LDA expression:

D
(0)
i =

∫ yi

yi−1

dxxnTG(x) = C
(0)
i−1 − C

(0)
i . (25)

This relation can even be numerically proven to be true

for exact C
(0)
i and D

(0)
i for arbitrary particle numbers N

without envoking the LDA.
At t = 0, the magnetic gradient is suddenly quenched

to zero [37] and we plot the COM separation between the
two spin components, ∆, in the right panels of Fig. 4 as
a function of time. The upper panel considers a situation
with N↑ = N↓ = 2. This situation is examined in our ear-
lier work [19] using the single-branch spin chain Hamilto-

nian H
(0)
sc , benchmarked with the numerically unbiased
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FIG. 4: (color online) Evolution after a sudden quench of the
spin-dependent magnetic gradient for a harmonically trapped
spin-1/2 Fermi gas. Upper Panel: N↑ = N↓ = 2 and g =
100. The left panel shows the spin density profiles for spin-up
(dashed line) and spin-down (solid line) component before the
quench. The right panel shows the after-quench evolution of
∆, the center-of-mass separation of the two spin species. The
blue dashed line is obtained from the multi-branch spin chain
model by including 8 excited branches. The red solid line is
the TEBD result. The lower panel is the same as the upper
panel except that N↑ = 1 and N↓ = 3.

TEBD calculation. The TEBD result, which takes a few
days to obtain on a laptop, is reproduced here as red
solid lines. The result from the multi-branch spin chain
model, which takes less than a minute to obtain, is plot-
ted as blue dashed lines and is in perfect agreement with
the TEBD result. For the short time scale we plotted,
∆ decreases in time. The single-branch spin chain result
(see Fig. 6 of Ref. [19]) captures this behavior, but could
not produce the small-amplitude oscillations that can be
clearly seen in the TEBD simulation. Analysis shows
that the small-amplitude oscillation is mainly due to the
coupling to the lowest breathing mode which can only be
captured if the second excited manifold is included in the
spin chain model. The lower panel of Fig. 4 considers a
similar quench dynamics with N↑ = 1 and N↓ = 3. Here
we again observe the small-amplitude oscillations on top
of an overall decrease of ∆. These oscillations are due
to the coupling to both the lowest dipole and the low-
est breathing modes. The coupling to different collective
modes due to the different spin population distribution
may be regarded as a manifestation of spin-orbit cou-
pling.

VII. CONCLUSION

We have presented an exact mapping that maps a 1D
spinor quantum gas of arbitrary spin with contact s-wave
interaction to the direct product of a spinless Fermi gas
interacting with a short-range p-wave pesudo-potential
and a spin parity projection operator. This mapping al-
lows us to construct straightforwardly the multi-branch
spin chain model for strongly interacting spinor gases,

using which we calculated the interaction-induced shift
of the lowest breathing mode frequency, as well as the
quench dynamics of a spin-1/2 Fermi gas. Our work
demonstrates that the multi-branch spin chain model can
accurately capture both the static and the dynamical
properties of the system.
From a conceptual point of view, the mapping allows

us to gain new insights into the strongly interacting 1D
systems, in particular, the interplay between the charge
and the spin degrees of freedom. For example, the multi-
branch spin chain model can be intuitively understood
under the framework of first-order perturbation theory
using the mapped system. Furthermore, as the mapping
itself is exact, one may in principle take the perturbation
calculation to higher orders in order to obtain more ac-
curate results. From a technical point of view, this map-
ping significantly reduces the size of the effective Hilbert
space. As a result, we can construct very efficient nu-
merical tools to investigate the properties of the system.
Our study will thus open up many avenues of research in
the study of 1D systems.
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Appendix A: Derivation of Hp using a two-particle
system

In this Appendix, we use a two-particle system to de-
rive the form of Hp in Eq. (5). Let us consider a system
consisting of two fermions governed by Hamiltonian

H =
∑

i=1,2

[−∂2i /2 + V (xi)] + gδ(x12) . (A1)

The non-trivial eigenstates must have even spatial wave
function and, correspondingly, odd spin wave function.
Due to s-wave interaction term in the form of a Dirac
δ-function, the relative spatial wave function ψ(x12) sat-
isfies the boundary condition:

lim
x12→0+

gψ(x12) = 2ψ′(x12) . (A2)

Now consider the Hamiltonian HF = H0 +Hp with

Hp = −4

g

←−
∂ x12

δ(x12)
−→
∂ x12

⊗ P̂ a
1 , (A3)

where the single particle part acts on the spinless fermion
space, and the interaction part decribes a p-wave interac-
tion and contains the spin projection operator P̂ a

1 which
projects out the anti-symmetric spin states (if the origi-
nal system consists of bosons, we should use the symmtric
spin projection operator P̂ s

1 instead). The relative spa-
tial wave function of eigenstates of HF , which we denote
as ψF (x12), must be an odd function of x12. In fact,
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they can be constructed from the even eigenfunctions of
Hamiltonian H in Eq. (A1) as follows:

ψF (x12) = sgn(x12)ψ(x12) , (A4)

It is straightforward to show [5–8, 12, 13] that ψF satisfies
the same boundary condition (A2).
We can insert a sector function θ1 = θ(x2 − x1), to-

gether with a normalization factor 2! to the spatial part
of the p-wave interaction term in Hamiltonian (A3):

Hp = −4 · 2!
g

←−
∂ x12

δ(x12)θ
1−→∂ x12

⊗ P̂ a
1 . (A5)

Doing this is not of much relevance for two particles,
since for two-particle systems, there are only two spatial
sectors defined as x1 ≤ x2 and x1 ≥ x2, and accordingly
there is only one boundary at x1 = x2 shared by the two
sectors. However, the inclusion of the sector function is
essential for generalization into more particles, as in this
case, the boundaries of different spatial sectors are differ-
ent [38], and our mapping is defined only in one spatial
sector. Generalizing (A5) to an N -particle system, we
can write down the p-wave pseudopotential term as

Hp = −4N !

g

N−1
∑

i=1

←−
∂ xi,i+1

δ(xi,i+1)θ
1−→∂ xi,i+1

⊗ P̂ s,a
i .

(A6)
By using ∂xi,i+1

= 1
2∂i − 1

2∂i+1 together with the fact
that the relative spatial wave function is odd, it is easy
to show that Eq. (A6) is equivalent to Eq. (5) in the main
text.

Appendix B: SO(2,1) algebra for harmonic oscillator

We use the same convention as in [28]. The generators
for the center-of-mass (COM) harmonic oscillator alge-
bra and the SO(2,1) algebra can be made of generators
from Schrödinger algebra, for which all the commutation
relations are known [28]. The operators we use include

K =

∫

dxxn(x) , P =

∫

dx j(x) , D =

∫

dxxj(x) ,

(B1)

H = −1

2

∫

dxψ†(x)∂2ψ(x) , C =

∫

dx
x2

2
n(x) ,

(B2)
where j(x) = − i

2 (ψ
†(x)∂ψ(x) − ∂ψ†(x)ψ(x)) is the cur-

rent density. Here K represents the COM coordinate, P
the total momentum, H the kinetic energy, C the trap-
ping potential, and D the generator for scaling trans-
formation. Again we have used the trap units with
~ = m = ω = 1. We can define COM ladder operators

(without normalization) Q and Q†, and COM Hamilto-
nian Hc

0 as

Q =
K + iP√

2
, Q† =

K − iP√
2

, Hc
0 =
{Q,Q†}

2N
.

(B3)

These three operators form a harmonic oscillator algebra
for the COM motion.

The operators for the relative motion can be con-
structed as:

B =
1

2
[H − C + iD]− Q2

2N
, (B4)

B† =
1

2
[H − C + iD]− Q†2

2N
, (B5)

H i
0 = H + C −Hc

0 , (B6)

which form a closed SO(2,1) algebra as they obey the
following commutation relations:

[H i
0, B] = −2B , [H i

0, B
†] = 2B† , [B,B†] = H i

0 .
(B7)

These three operators only act on the internal degree of
freedom. As a result, the internal degrees of freedom can
be classified into irreducible representations (IRs) of this
SO(2,1) algebra. Each IR is a tower of states with energy
level spacing 2. Together with the COM harmonic alge-
bra, we can construct several lowest excited manifolds by
acting Q† and B† on the ground state manifold. The five
lowest manifolds are listed in Table I.

degeneracy charge states

5 Q†4 |0〉 Q†2B† |0〉 B†2 |0〉 Q† |α〉 |β〉

3 Q†3 |0〉 Q†B† |0〉 |α〉

2 Q†2 |0〉 B† |0〉

1 Q† |0〉

1 |0〉

TABLE I: Several lowest manifolds constructed by acting lad-
der operators Q† and B† on the ground state. |0〉 stands for
the ground state. |α〉 and |β〉 stand for the beginning states
of other SO(2,1) towers.

We know that the fourth manifold is three-fold degen-
erate, but from Q† and B† we can only construct two
states. So we need to introduce a new state denoted as
|α〉 having the property Q |α〉 = B |α〉 = 0. This is where
another SO(2,1) IR tower begins. Similarly we need to
introduce |β〉 for the fifth excited manifold. The basis
of each manifold can be constructed in this way by act-
ing Q† and B† on lower states and introducing beginning
states for new towers.
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Appendix C: Derivation of recursion relation Eq. (18)

When we want to write down the first order perturbation of Hp in the nth manifold, we may need to calculate
matrix elements whose most general form is

〈α0, χ|QpBmHpB
†nQ†q |β0, χ′〉

√

〈α0, χ|QpBmB†mQ†p |α0, χ〉 〈β0, χ′|QqBnB†nQ†q |β0, χ′〉
(C1)

where χ and χ′ stands for two spin states. α0 and β0 stands for two arbitrary beginning states of two SO(2,1) IR
towers and also with no COM excitation. They are excited by B† and Q† to the energy of the manifold we are
considering. Since we are doing first order perturbation, the relation of Eα0

+ p+ 2m = Eβ0
+ q + 2n must be hold.

Equation (C1) can be simplified as follows. Since Q commute with Hp and B, Eq. (C1) is only nonzero when p = q
and Q operators in the numerator and denominator are canceled. So we only need to consider

Hsc,α0β0,mn =
〈α0, χ|BmHpB

†n |β0, χ′〉
√

〈α0, χ|BmB†m |α0, χ〉 〈β0, χ′|BnB†n |β0, χ′〉
(C2)

where Eα0
+ 2m = Eβ0

+ 2n must be hold. It is possible that α 6= β and Hsc,αβ,mn nonzero, under this case Hp will
couple different charge states. In the first four manifolds listed in Table I, we do not need to consider this as it can be
straightforwardly shown that matrix elements of Hp between two different states within the same manifold all vanish.
However, this is no longer true for the fifth and higher manifolds since 〈β|HpB

†2 |0〉 in general is nonzero. If we are
only concerned with the first 4 manifolds, we can further simplify Eq. (C2) to

Hsc,m =
〈0, χ|BmHpB

†m |0, χ′〉
〈0, χ|BmB†m |0, χ′〉 (C3)

where 0 stands for the charge ground state. Equation (C3) can be written into a recursion relation [29] by using the
known commutation relations of operators in the Schrödinger algebra [28]. Since all we use to derive this recursion
relation is using commutation relations among the operators defined in Eqs. (B1) and (B2), as well as Hp, and their
action on the charge degree of freedom, in the following we suppress the spin states χ and χ′. By switching B and
Hp twice and denoting 〈...〉 = 〈0|...|0〉, we can arrive at

Hsc,m =

〈

BmHpB
†m〉

〈BmB†m〉

=

〈

Bm−1(HpB + [B,Hp])B
†m〉

〈BmB†m〉

= Hsc,m−1 +

〈

Bm−1[B,Hp]B
†m〉

〈BmB†m〉

= Hsc,m−1 +

〈

Bm−1(B†[B,Hp] + [[B,Hp], B
†])B†m−1

〉

〈BmB†m〉

= Hsc,m−1 +

〈

Bm−1B†m−1
〉2

〈Bm−2B†m−2〉 〈BmB†m〉 [Hsc,m−1 −Hsc,m−2] +

〈

Bm−1[[B,Hp], B
†]B†m−1

〉

〈BmB†m〉

(C4)

Let us next consider the last term. Since Q commutes with Hp and B, we can ignore all the Q parts in B [see
Eq. (B4)]. Consider the commutator [B,Hp]. First let us prove [C,Hp] = 0. Since Hp is in first quantized form, we
also use the first quantized form of C, with which we have

[C,Hp] =

[

N
∑

i=1

1

2
x2i ,−

4N !

g

N−1
∑

i=1

←−
∂ iδ(xi − xi+1)θ

1−→∂ i ⊗ P̂ s,a
i

]

(C5)

In this expression, note that each term in the spatial part of Hp only acts on relative coordinate xii+1 = xi − xi+1,
and C can also be separated into one part containing relative coordinates xii+1 and another part containing the COM
coordinate

∑

xi/N . The nonzero contribution can only come from the commutator

[

x2,
←−
∂ δ(x)θ(x)

−→
∂
]

= 2xδ(x)θ(x)
−→
∂ −←−∂ δ(x)θ(x)2x , (C6)
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which is 0 since xδ(x) = 0. Here we have also ignored the regularization point splitting in ∂−, since in the derivation
of the recursion formula, we only need to consider continuous wavefunctions. Therefore we have proved that

[C,Hp] = 0 . (C7)

Next we consider Hp’s scaling dimension. Since Hp is made of two spatial derivatives and a delta function (also a θ
function whose scaling dimension is 0), it has scaling dimension 3, which means

[D,Hp] = i∆Hp
Hp, ∆Hp

= 3 . (C8)

Using Eqs. (C7) and (C8), the commutator [B,Hp] can be written as

[B,Hp] =
1

2
[H,Hp] +

1

2
∆Hp

Hp . (C9)

Now consider its commutation relation with B†

[

[B,Hp] , B
†] =

1

4

[

[H,Hp] + ∆Hp
Hp, H − C + iD

]

=
1

4

[

[H,Hp] + ∆Hp
Hp, Hosc

]

− 1

2
[[H,Hp] , C] +

1

4
[[H,Hp] , iD] +

1

4
∆2

Hp
Hp .

(C10)

In the second step we have used [C,Hp] = 0 and [D,Hp] = i∆Hp
Hp. And we introduce Hosc = H + C which

is the harmonic oscillator Hamiltonian. Using Jacobi identity followed by the commutation relations [C,H ] = iD,
[D,H ] = 2iH , [C,Hp] = 0 and [D,Hp] = i∆Hp

Hp, the second and third terms of Eq. (C10) can be written as

[[H,Hp] , C] = − [[Hp, C] , H ]− [[C,H ] , Hp] = − [iD,Hp] = ∆Hp
Hp ,

[[H,Hp] , iD] = − [[Hp, iD] , H ]− [[iD,H ] , Hp] = −
[

∆Hp
Hp, H

]

+ [2H,Hp] = −
[

∆Hp
Hp, Hosc

]

+ [2Hosc, Hp] .

(C11)

Since we are going to calculate 〈0|Bm−1[[B,Hp], B
†]B†m−1 |0〉 and B†m−1 |0〉 is an eigenstate of Hosc, all the terms

which are commutators with Hosc vainsh. Only the second and forth term in Eq. (C10) remain. Finally the last term
in Eq. (C4) can be written as

〈

Bm−1[[B,Hp], B
†]B†m−1

〉

〈BmB†m〉 =
1

4
∆Hp

(∆Hp
− 2)

〈

Bm−1B†m−1
〉

〈BmB†m〉 Hsc,m−1 (C12)

The normalization can also be easily evaluated by using [B,B†] = H i
0, from which we have

Sm =

〈

Bm+1B†m+1
〉

〈BmB†m〉 = (m+ 1)(m+ Ei
0) . (C13)

where Ei
0 = N2/2−1/2 is the ground state internal energy. Putting Eqs. (C4), (C12), and (C13) together, a recursion

relation is obtained

Hsc,m −Hsc,m−1 =
(m− 1)(m− 2 + Ei

0)

m(m− 1 + Ei
0)

[Hsc,m−1 −Hsc,m−2] +
1

4

∆Hp
(∆Hp

− 2)

m(m− 1 + Ei
0)
Hsc,m−1 . (C14)

The spin chain Hamiltonian for the first excited manifold and for the dipole state of the second excited manifold,
which correspond to m = 0, are the same as ground state spin chain Hamiltonian (when a constant shift is neglected):

H(1)
sc = H(Q)

sc = Hsc,0 = H(0)
sc . (C15)

The spin chain Hamiltonian for breathing state of the second excited manifold, which corresponds to m = 1, is
proportional to the ground state spin chain Hamiltonian:

H(B)
sc = Hsc,1 =

[

1 +
3

2(N2 − 1)

]

Hsc,0 =

[

1 +
3

2(N2 − 1)

]

H(0)
sc . (C16)

We stress here that we cannot obtain a similar recursion formula like Eq. (C14) for the most general matrix elements
Hsc,α0β0,mn (Eq.(C2)) for arbitrary α0 and β0 case. This is because Hp may couple different charge states within the
same manifold, resulting in an entanglement between the spatial and the spin sectors.
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