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We study a trapped two-dimensional (2D) spin-imbalanced Fermi gas over a range of tempera-
tures. In the moderate temperature regime, associated with current experiments, we find reasonable
semi-quantitative agreement with the measured density profiles as functions of varying spin imbal-
ance and interaction strength. Our calculations show that, in contrast to the three-dimensional case,
the phase separation which appears as a spin balanced core, can be associated with non-condensed
fermion pairs. To shed light on the nature of 2D quasi-condensation we compute the momentum,
q, distribution of pairs, called nB(q); a pronounced low momentum peak is found, but importantly
there is no macroscopic condensate. Following the protocols of Jochim and collaborators, we com-
pute the characteristic temperature at which this peak disappears, thus providing a phase diagram
for a quasi-condensation onset temperature in the polarized case. Additional information about
nB(q) is reflected in the behavior of the density profiles when the trap is removed. We show how
quasi-condensed bosons have a distinctive signature; they evolve relatively slowly under time of
flight.

Ultracold Fermi gases are a valuable resource for learn-
ing about strongly correlated superfluids. Their utility
comes from their tunability [1] which allows the dimen-
sionality, band structure, interaction strength, and spin
imbalance to be freely varied. With these various param-
eters one can, in principle, simulate a number of impor-
tant condensed matter systems ranging from preformed
pair and related effects in the high Tc cuprates [2–4] to in-
trinsic topological superfluids [5–7] and other exotic pair-
ing states.

In this paper we focus on recent experiments [8, 9]
on two-dimensional (2D) spin-imbalanced Fermi gases.
These imbalance effects are believed [10] to have related
effects in studies of color superconductivity and quark-
gluon plasmas. In condensed matter systems, lower
dimensional imbalanced superfluids are thought to be
ideal for observing more exotic phases, such as the elu-
sive LOFF state [11], or Berezinskii-Kosterlitz-Thouless
(BKT) [12, 13] phase with algebraic order. At the heart
of the present paper is the challenge of understanding
the interplay between the dominant fluctuation effects,
which destroy true long range order [14], and spin imbal-
ance. The approach we use has been rather successful in
addressing 2D low temperature quasi-condensation [15]
in balanced Fermi gases.

In addition to addressing existing experiments, here
we present predictions for future very low temperature
experiments on these 2D gases. We follow the experi-
mental procedures outlined in Refs. [16, 17] for the bal-
anced case. Because of their relevance, we consider only
trapped gases; here phase separation effects predomi-
nate. Importantly, our calculations find no true long
range order. Nevertheless, as in Refs. [16, 17] we show
how the pair-momentum distribution, nB(q) contains im-
portant information about the phenomenon of “quasi-
condensation”. Additional information is provided by
studying how nB(q) affects the behavior of density pro-
files under time of flight analysis [9].

A central finding in this paper is that 2D spin-

imbalanced systems in a trap exhibit a new form of phase
separation involving non-condensed pairs. This is to be
contrasted with three-dimensional gases [18, 19] where
the phase separation is associated with a true condensate.
The implications of this phase separation can be seen
through a comparison with experiments [8] performed
at moderate temperatures for the in-situ density profiles
across the range of BCS to BEC. Because almost all the
pairs reside in the central portion of the trap, this leads
to a nearly balanced core, as observed in recent experi-
ments [8, 9]. As one goes to larger radii, there are one
(at low T ) or two (at moderate T ) additional shells. The
outermost shell is to be associated with a Fermi gas of
majority atoms. An intermediate shell (if it exists) is par-
tially polarized and consists of broken pairs with major-
ity and some minority atoms. Our calculations indicate
a necessary but not sufficient condition to reach the low
temperatures required for quasi-condensation is that a
partially polarized intermediate shell will not be present.
Instead, at these sufficiently low temperatures, there is
an abrupt transition from a balanced core to a normal
Fermi gas.

We stress that there is no unambiguous evidence for
true BKT physics in these cold (balanced) Fermi gases.
Even in solid state superconductors the situation is still
somewhat controversial [20, 21]. The concept of quasi-
condensation as we use it here derives exclusively from
concrete experimental considerations. The pair momen-
tum distribution, nB(q), exhibits a strong peak at low
momentum which disappears somewhat abruptly at a
fixed temperature. Below this temperature we say there
is “quasi-condensation”. This peak, confirmed in bal-
anced gases [16, 17] can, moreover, be probed from the
perspective of time of flight analysis [9]. Low momen-
tum pairs in this distribution, which may be thought of
as quasi-condensed, are relatively unchanged with vary-
ing time, as compared with the higher q pairs and the
fermions.

It is important to note that the BKT physics of bind-
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ing and unbinding of vortex pairs is not evident either
in these experiments or in our theory. Following experi-
ments then, we focus on the distribution nB(q) as a proxy
representing aspects of this 2D superfluidity.

Theoretical literature on imbalanced 2D superfluids
has focused either on the very low temperature region
(both the ground state [22, 23] and Kosterlitz-Thouless
regimes [24, 25]), on possible LOFF phases [26] and on
the polaronic limit [27, 28] where the spin imbalance is
extreme. Notable are Monte Carlo studies on square lat-
tices which report [29] that the LOFF phase is the ground
state. Additionally there are studies [30] of the effects of
Gorkov-Melik-Barkhudarov corrections on the mean-field
tri-critical transition temperature.

Thus, when considering the entire range of tempera-
tures and polarizations there are rather few theoretical
studies. Here we use a t-matrix scheme. We note that
t-matrix approaches, which have addressed the 2D limit
for the unpolarized case, [31–35] have the general ad-
vantage of including the effects of non-condensed pairs
which are missing from the alternative [24, 25] path in-
tegral schemes of the BCS-BEC crossover. An appropri-
ate t-matrix scheme must meet three important criteria.
Within this scheme: (i) One should be able to analyti-
cally verify that in two dimensions Tc = 0 in homoge-
neous systems. (ii) There are no difficulties or unphysi-
cal features associated with including polarization effects.
(iii) One should be able to incorporate trap effects while
addressing both the special physics of two dimensionality
and including polarization.

To address the first of these we quote from Ref. [4]
where it is stated that if one searches “for the Tc at which
long-range order sets in, one obtains zero in accordance
with the Mermin-Wagner theorem. In some sense this
is an excellent check whether one has a good solution to
the t-matrix equations: the correct solution should give
Tc = 0 in 2D.” As for the second point, we note that
introducing polarization in the widely used Nozieres and
Schmitt-Rink (NSR) [36] approach is known to lead to
inconsistencies even in the 3D case [37, 38].

We summarize this literature discussion by noting that
the present t-matrix scheme meets the three criteria listed
above; in particular, it is possible here to compare with
experiment because one can include both trap and polar-
ization effects.

I. THEORETICAL FORMALISM

The theory used here is based on the BCS-Leggett [39]
ground state now extended to include finite temperatures
and generalized to include polarization effects [40–43].
The associated polarized ground state was studied in ear-
lier work by other groups [22]. Moreover, for the case of
2D balanced gases there is a compatibility [15] with re-
cent experimental studies [16, 17]. Here one treats the
self energy of non-condensed pairs as having a broadened
BCS form associated with a pseudogap ∆pg which we,

henceforth call ∆. This model self energy avoids dealing
with the full and more complicated t-matrix associated
with BCS-Leggett theory. This approximation was in-
troduced only after extensive numerical studies [44]. An
alternative analysis [45], which presented physical impli-
cations without numerical details, has raised some con-
cern about its adequacy. Nevertheless, given its simplic-
ity, there is clearly value in using this “pseudogap ap-
proximation” to make progress in understanding recent
experiments [8, 9].

Without showing the details, which have appeared in
the recent literature [15], we present two coupled equa-
tions that define a self-consistent fluctuation theory:

∑
k

[
1− f (Ek↑)− f (Ek↓)

2Ek
− 1

2εk + εB

]
= a0µpair, (1)

∑
q

b

(
q2

2MB
− µpair

)
= a0∆2. (2)

Here, the two-band Bogoliubov quasiparticle dispersion
Ekσ = σ h +

√
ξ2
k + ∆2 (↑, ↓ correspond to σ = +1,−1

respectively) is constructed from the bare fermions with
excitation spectrum ξk = εk − µ and pairing gap ∆.
The fermions of mass m and momentum k = (kx, ky)
have a single particle excitation spectrum εk = k2/2m, a
fermionic chemical potential µ. An effective Zeeman field
h > 0 shifts the energy of (majority) spin-up relative to
the (minority) spin-down Fermi surfaces. We have also
introduced the usual Bose and Fermi distribution func-
tions b(x) and f(x), and included the two-particle bind-
ing energy εB [4] to regularize Eq. (1). Throughout this
paper we set ~ = 1.

The key physics in our system is captured by
Eqs. (1)-(2), which reflect the natural equilibrium be-
tween fermionic quasiparticles and non-condensed pairs
or bosons. Specifically, Eq. (2) introduces non-condensed
bosonic degrees of freedom which have momentum q,
mass MB , and chemical potential µpair. (MB and the
constant a0 are calculated from an expansion of a t-
matrix describing paired bosons. See the Supplemental
Material in Ref. [15] for a precise definition.)

These fluctuations are not present in the strict mean-
field theory of BCS; if one sets the pair chemical potential
µpair to zero, then Eq. (1) reduces to the usual mean-field
equation for a polarized gas, specifying the gap param-
eter ∆. Including these fluctuations then allows one to
solve for the two unknowns: ∆ and µpair. The fermions
are associated with the energy ∆ needed to break apart
pairs, and the non-condensed bosonic pairs have a self-
consistently determined chemical potential µpair, which
depends on the pairing gap ∆. Here the number density
of pairs (bosonic number) is given by nB = a0∆2. The
more non-condensed bosons which are present, the larger
the pairing gap. That these bosonic degrees of freedom
cannot condense (at finite T ) in 2D leads to the absence
of any finite temperature instability. We can think of
these as the introduction of fluctuation effects.
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FIG. 1. This figure contrasts the nature of phase separation
in a harmonic trap at low temperatures ((a) and (b)) where
quasi-condensation occurs (T/TF1 = 0.06) and moderate tem-
peratures ((c) and (d)) (T/TF1 = 0.22) more appropriate to
experiments [8, 9]; the binding energy is fixed at EF1/εB =
0.75 and the total polarization P = (N↑ −N↓)/(N↑ +N↓) =
0.5. Black lines represent the local density n(R) in (a) and (c),
while in (b) and (d) the pairing gap ∆(R) is black (dashed)
and the magnetization m(R) is red (solid). Panel (a) shows
the “two shell” structure: the core region, next to a fully po-
larized region, is occupied only by pairs. The radius at which
the gap turns off abruptly at low T is indicated as an inset in
(a). The density profile in panel (c) exhibits a “three shell”
structure: the almost balanced core region is followed by a
transition region that is partially polarized and the edge is
fully polarized. Finally panel (e) presents a phase diagram
where the color contours indicate the central balance ratio,
p̃(0) = n↓(0)/n↑(0), of minority to majority atoms at the
trap center. The three contours mark values of 99%, 98%,
and 97% for this ratio. The black dots mark the onset of
quasi-condensation, as defined in Eq. (4).

In experiments, the effective Zeeman field h and total
chemical potential µ derive from a magnetization m =
n↑ − n↓ and number density n = n↑ + n↓. Thus we
set the fermionic chemical potentials using the number
equation

nσ =
1

2

∑
k

[(
1 +

ξk
Ek

)
f (Ekσ) +

(
1− ξk

Ek

)
f (−Ekσ̄)

]
(3)

for the number density of species σ = −σ̄.
To account for the trapping potential, we apply the

local density approximation (LDA) to a system with to-
tal atom number N↑ (N↓) of majority (minority) carrier.
Here we replace µ → µ(R) ≡ µ0 − 1

2mω
2R2, and ∆ →

∆(R), where µ0, ω, and R represent the central fermionic
chemical potential, the trap frequency, and position re-
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FIG. 2. Comparison of integrated column density profiles
of (a) experiment [8] and (b) theory for a trapped system
with EF1/εB = 0.75 and T/TF1 = 0.22. The green, red,
and blue curves are the reduced densities (see [8] for defi-
nition) of the majority, minority, and magnetization (differ-
ence), respectively. The legend indicates the total balance

ratio P̃ = N↓/N↑. A transition to a nearly balanced core is
seen in both theory and experiment.
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FIG. 3. Comparison of theoretical and experimentally
measured [8] values of the central balance ratio p̃(0) =
n↓(0)/n↑(0). For theoretical results T/TF1 = 0.22. The
dashed curves give the ideal Fermi gas limit (εB = 0); the
solid black curves are guides to the eye.

spectively. Derived quantities such as the magnetization
m(R), number density n(R), and pair mass MB(R) gain
local dependence. However, the effective Zeeman field
is independent of position throughout the trap. Where
relevant we express energy and local position in units
of the majority spin Fermi energy, EF1 = ω

√
2N↑,

and Thomas-Fermi radius RTF1 =
√

2EF1/mω2 respec-
tively; we take ω/EF1 = 1/40 comparable to Ref. [8]. We
note here that the numerical results are independent of
the choice of ω/EF1.

In what follows it will be convenient to define a to-
tal polarization P = (N↑ −N↓) / (N↑ +N↓). To connect
with recent experiments [8], we will also define a “balance
ratio” p̃(R) = n↓(R)/n↑(R), and similarly for a total bal-

ance ratio P̃ = N↓/N↑.
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FIG. 4. Characteristics of quasi-condensation at a binding energy EF1/εB = 0.75. Pair chemical potential (a) for a polarized
(black, P = 0.5) and unpolarized (red) Fermi gas. The small and non-zero size of µpair reflects an exponential suppression at
low temperatures [15]. (b) This leads to a low-momentum peak in the pair momentum distribution n̄B(q) at low temperatures
for these two different global polarizations. The shaded region indicates where the bosons are quasi-condensed and we refer to
the non-shaded region as the thermal distribution n̄th(q), shown for P = 0.5 (see main text). The inset is an enlarged view of
the case P = 0.5. (c) The dependence of the n̄B(0) peak on temperature allows the extraction (dots) of Tqc in Eq. (4). The
inset shows the dependence of Tqc on P .

II. NUMERICAL RESULTS

Figure 1 serves to clarify the concept of phase separa-
tion in a trapped 2D gas for both low (T/TF1 = 0.06) and
moderate temperatures (T/TF1 = 0.22). The former are
applicable to the quasi-condensation regime discussed be-
low, while the latter are closer to the temperature range
studied experimentally [8, 9]. We consider an intermedi-
ate binding energy EF1/εB = 0.75. The density profiles
as a function of position in these two temperature regimes
are plotted in panels (a) and (c), along with a cartoon il-
lustration of the nature of the gas, as the radius changes.
Panels (b) and (d) provide useful information on the gap
profiles (black) and magnetization profiles (red). The
radius at which the gap turns off abruptly at low T is
indicated as an inset in (a).

At lower temperatures there is an abrupt boundary
separating a fully paired state in the core (indicated by
the paired spins in the cartoon) and a non-interacting
fully polarized gas of majority spins (also represented in
a cartoon fashion). We refer to these profiles as contain-
ing only “two shells”: composite bosons at the core and
majority fermions surrounding it. Importantly, one sees
that the magnetization in Fig. 1(b) and the gap both
change nearly discontinuously.

Although the number density profile in Fig. 1(c) be-
haves similarly to its low-T counterpart, one sees here
(using information about the calculated gap, local polar-
ization, and magnetization), that there are now “three
shells” in the structure, as shown in the cartoon. The
core region contains mostly non-condensed pairs with
very little magnetization. As one goes away from the trap
center, the local magnetization initally increases result-
ing in a middle shell. Finally, toward the edge of the trap
where the magnetization drops, the gas is non-interacting
(∆(R) = 0) and fully polarized. The presence of these
multiple shells was emphasized in Ref. [9]. The major
difference between two-shell and three-shell structures is
the appreciable magnetization just inside the phase sep-

aration radius.
These calculations suggest that the magnetization ver-

sus position R serves as a kind of thermometry. In partic-
ular, that we are able to associate the lower-T behavior
with the existence of a (quasi-)condensate, can be in-
ferred from the phase diagram plotted in Fig. 1(e). Here
the vertical and horizontal axes represent temperature
T , and total polarization P , respectively. As indicated
in the legend, the colors more precisely correspond to
the ratio of minority to majority spins at the trap cen-
ter. The three contours mark 99%, 98%, and 97% for the
ratio. The black dots on the phase diagram show where
we find pair (quasi-)condensation, as will be discussed
below. It should be clear that this quasi-condensate es-
sentially always appears in conjunction with our “two
shell” profiles.

III. COMPARISON WITH EXPERIMENT

The general picture described above has implications
which are directly relevant to recent experiments. We
now present comparisons with experimental data [8]. In
Fig. 2 we plot “column density” profiles for majority and
minority components in the trap along with the difference
profile (local magnetization), for three different values of

the balance ratio P̃ . (The total polarization increases as
one goes upward on the three panels). In the calculations,
we consider fixed moderate temperature T/TF1 = 0.22.
The counterpart experimental data is plotted on the left
along with theory curves on the right. That there is rea-
sonable semi-quantitative agreement suggests that phase
separation of a non-condensate, which was discussed in
Fig. 1, is reflected in these actual experiments.

Indeed, there is a particularly interesting indicator of
this form of phase separation. The ratios of minority
to majority 2D densities at the trap center have been
measured by Thomas and collaborators [8]. These ex-
periments investigate the variation as one crosses from
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more BCS to more BEC like behavior. They observe
(see Fig. 3, top panels) the somewhat striking result that,
away from the BCS regime, there is a rather abrupt tran-
sition from a balanced core to an unpaired phase at a
critical polarization (which is presumably temperature
dependent). The constancy of the data points indicates
the very strong tendency to maintain maximal pairing
until it is no longer possible. The abrupt drop occurs
presumably because one has crossed the so-called T ∗(P )
line. This temperature T ∗ marks the end-point of a nor-
mal state pairing gap, ∆, often called the pseudogap.

In Fig. 3 we present a comparison between theoret-
ical and experimental results, plotting the central bal-
ance ratio p̃(0) as a function of the total balance ratio

P̃ . In our theoretical analysis we fix the temperature
for all panels at T/TF1 = 0.22. In the stronger pairing
cases (with EF1/εB = 0.75 and EF1/εB = 2.1, as shown
in the two panels to the right) the persistence of a bal-
anced core for a range of total polarizations is observed.
The theory curves are not quite as flat as in experiment.
This might be explained if the theory temperatures are
slightly higher than in experiment. There are also sub-
tle but important effects [46] associated with special two
dimensional features in the profile shapes, which are not
captured in the present theory. Nevertheless, in both
Fig. 3(b) and Fig. 3(c) the downward departure, as in
experiment, is reasonably sudden.

These curves reflect simple changes in the trap profile;
as P̃ increases, the boundary between balanced and im-
balanced regions moves toward the trap center, (shown
in the inset to Fig. 1(a)) while not affecting the magne-
tization at the precise “center”. For smaller εB at finite
T , the balanced core is narrower and the magnetization
at the center also increases more rapidly as compared to
larger εB . At sufficiently high P , for this temperature
regime the system is driven normal and the profiles are
those of an ideal Fermi gas.

IV. QUASI-CONDENSATION AT VERY LOW
TEMPERATURES

We turn now to lower temperatures and to considera-
tions of quasi-condensation following the concepts intro-
duced in Ref. [9, 16]. The evidence from experiments [16,
17] on 2D spin-balanced Fermi gases suggests that the
bosonic degrees of freedom (accessed by rapid magnetic
field sweeps) exhibit strong |q| → 0 peaks in their mo-
mentum distribution, represented by a trap-average, de-
noted n̄B(q), of nB(q,R) = b

(
q2/2MB(R)− µpair(R)

)
appearing in Eq. (2). What is most significant [15] is
that these peaks disappear rather abruptly at a particu-
lar temperature, Tqc, which one associates with the onset
of quasi-condensation.

Following the same analysis for a spin-imbalanced
Fermi gas, in Fig. 4(a) we plot the pair chemical potential
µpair at the trap center for an unpolarized (in red) and
a polarized gas (in black, P = 0.5). We find µpair serves

to determine the size of the peak structure in n̄B(q) as
can be seen from Eq. (2). In both the balanced and im-
balanced cases, this pair chemical potential is found to
be very small at low temperatures and strictly vanishes
only in the ground state. This signifies a bosonic mo-
mentum distribution that is sharply peaked, but never
acquires a macroscopic condensate at T 6= 0. Moreover,
it is seen that the effects of spin imbalance are relatively
minor, resulting in only a small quantitative shift in µpair

compared to the balanced case.
Figure 4(b) presents the counterpart plots of n̄B(q)

versus q where the two curves correspond to P = 0 in
red and P = 0.5 in black. The latter is enlarged in the
inset, where the peak in the momentum distribution at
q = 0 is evident. The temperature dependence of this
peak is reflected in Fig. 4(c). The solid dots indicate the
temperature, Tqc, at which the pair chemical potential
begins to deviate from effectively zero. Taking the devi-
ation point as in Ref. [15] (which roughly corresponds to
about a 1% shift from the background) yields

kBTqc ≈
π

2.3

~2nB(T = Tqc)

MB(T = Tqc)
, (4)

where we use the Bose number density nB(T = Tqc) and
the pair mass MB(T = Tqc) at the trap center. The in-
set of Fig. 4(c) presents a plot of this quasi-condensation
temperature as a function of total polarization. The ef-
fects of polarization on this temperature are relatively
weak, presumably because of the phase separated and
fully balanced spin core.

These same results are summarized by the black dots
in Fig. 1(e) which presents a generalized phase diagram
indicating the P , T parameters at which there is phase
separation, as represented by the imbalance at the trap
center. We note that the characteristic inner-core ra-
dius, which is plotted as an inset in Fig. 1(a), shows that
for moderate polarizations the range in radii over which
one has pairing (and therefore quasi-condensation) is re-
stricted. This makes it difficult to perform the analysis
that addresses power laws vs exponential fitting func-
tions in the Fourier transform of n̄B(q), which was iden-
tified [17] with g1(r). For the unpolarized case, such an
analysis [15] further substantiated the identification of
Tqc with the expression in Eq. (4).

A. Time-of-flight behavior

In this subsection, we discuss the time-of-flight be-
havior of two-dimensional polarized fermions, making a
connection to recent experiments [9]. Of interest is the
time of flight evolution of the bosonic contribution to
the density profile. Figure 4(b) shows that the bosonic
momentum distribution exhibits a pronounced low mo-
mentum peak, at sufficiently low temperatures in 2D.
Importantly, this is what we associate with the concept
of quasi-condensation. As the authors of Ref. [9] have
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argued, one might learn about the degree of 2D con-
densation (or equivalently, the bosonic momentum dis-
tribution nB(q)) by positing that these quasi-condensed
bosons have a distinctive signature; they evolve relatively
slowly under time of flight.

To probe this conjecture, here we study the time-
dependece of the quasi-condensate defined as nqc(q,R) ≡
nB(q,R)−nth(q,R), where nth(q,R) is the correspond-
ing thermal fraction of the total density distribution (the
trap average of which, n̄th(q), is shown as the non-shaded
region in Fig. 4(b)) computed from the Boltzmann distri-
bution with the same MB(R) and µpair(R). This decom-
position into components has appeared in Ref. [15, 16].
The time of flight behavior should also provide an indica-
tion of the quasi-condensation temperature, Tqc. When
temperatures are below this onset, one can expect that
nqc is mainly made up of small q bosons and, during the
time-of-flight, the profile will not move significantly.

In the current LDA scheme, because the bosons do not
directly interact, we are able to semi-classically compute
the time dependence of nqc as functions of R after the
trap is released. If we define r ≡ R−R′, then we have

nqc(R, t) =

∫
d2qd2R′nqc(q,R′)δ2

(
q

MB(R′)
t− r

)
,

(5)
where t is expansion time and we assume that the func-
tional forms of the bosonic mass and pair chemical poten-
tial, MB(R) and µpair(R), appearing in nqc(q,R) remain
the same for the short time scales considered in experi-
ment; one presumes that t is on the order of the inverse
trap frequency, ω−1. From the above expression, it is
straightforward to show that the total number of quasi-
condensed bosons in a trap is independent of t:∫

d2Rnqc(R, t) =

∫
d2qd2R′nqc(q,R′). (6)

In Fig. 5 we plot nqc(R, t) at t 6= 0 and t = 0 for two
different global polarizations. Important is the contrast
between low and high temperatures, with the former plot-
ted in the left hand panels and the latter on the right.
Because the peaks in nB(q) are relatively sharper for the
case P = 0, we consider a slightly longer characteristic
time t = 4/ω. For finite global polarization P = 0.5, the
low momentum peak in Fig. 4(b) is not as pronounced;
that is, there are fewer quasi-condensed bosons in the
presence of polarization so for illustration purposes we
chose a slightly shorter characteristic time t = 1/ω. This
allows us to illustrate a meaningful contrast in the time-
of-flight behavior between low temperature T = 0.06TF1

and high temperature T = 0.22TF1. Note also that at
t = 0, the magnitude of nqc(R, t) at T = 0.06TF1 is
larger than that at T = 0.22TF1, reflecting the fact that
the non-thermal part decreases when temperature is in-
creased.

From Figs. 5(a) and 5(b), which represent the P = 0
case, we find that at finite time the profiles move outward
from the center, as one would expect. However, the first
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FIG. 5. Time-of-flight behavior of the quasi-condensate
nqc(R, t) (defined more precisely in the main text). The quan-
tity nqc at low and high temperature is plotted versus position
for two different times, t = 0 and t > 0. In the first row, the
global polarization P = 0 is considered while P = 0.5 for the
second row. For these two different P , the bosonic profiles
nqc at both low and high temperatures move outward from
the trap center with time. Notably, the profile varies more
dramatically with time at high temperatures, as indicated by
the shaded area.

of these figures shows relatively little change, reflecting
the large number of quasi-condensed pairs at low temper-
atures. By contrast the profile at high T changes rather
significantly, as indicated by the shaded area in Fig. 5.
This can be attributed to the fact that in momentum
space the bosonic density distribution is sharply peaked
at low T and these low momemtum states move very lit-
tle with time. In contrast, the non-thermal fraction at
high T is not as sharply peaked as low T and the profile
will move significantly.

For a finite global polarization P = 0.5, a similar be-
havior is observed; that is, nqc at high T disperses much
more quickly than low T as can be seen from the shaded
region. These observations support the notion that one
can learn about the momentum distribution of the quasi-
condensate from time-of-flight studies. We are not in a
position to argue that these studies establish the presence
of a true macroscopically occupied q = 0 condensate,
but rather that time-of-flight measurements provide use-
ful constraints on the momentum distribution of paired
states.

V. CONCLUSIONS

A goal of this paper has been to emphasize the distinc-
tion between the paired (normal state) and the lower tem-
perature quasi-condensed phase of a 2D spin-imbalanced
Fermi gas. We present a series of numerical results using
a theory of the 2D polarized gas in a trap with variable
temperature and polarization. Alternative theories such
as those based on the Nozieres Schmitt-Rink [36] schemes
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suffer from a shortcoming [37, 38] that polarization ef-
fects cannot be consistently accomodated, particularly
near unitarity.

We show that low and moderate temperatures are as-
sociated with a balanced or nearly balanced core, but the
nature of the related phase separation is somewhat dis-
tinctive, leading to more abrupt boundaries when quasi-
condensation is present. Proving the existence or non-
existence of true phase coherence would lead to a signif-
icant advance in the understanding of the physics of 2D

Fermi gases. As in previous work [15–17] true superfluid-
ity in 2D has not been established here or unambiguously
identified in experiments. This will require future exper-
imental probes related to coherence features, including
interference measurements, or detection of the presence
of collective modes in Bragg scattering.
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