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We describe a theoretical method, developed in the coupled-channel formalism, to study photo-
ionization of H atoms in a strong magnetic field of a size that is typical for magnetic white dwarfs.
The coupled Schrodinger equations are solved numerically using the renormalized Numerov method
proposed by Johnson [J. Chem. Phys. 67, 4086 (1977); ibid. 69, 4678 (1978)]. The distinct advantage
of this method is the fact that no overflow problems are encountered in the classically forbidden
region, and hence the method exhibits excellent numerical stability. Photoionization cross sections
are presented for magnetized H atoms in the ground and 2p excited states. The calculated results
are compared with those obtained by other theories. The present method is particularly useful for
explaining the complex features of continuous spectra in a strong magnetic field and hence provides
an efficient tool for modeling photoionization spectra observed in the atmosphere of magnetic white

dwarfs.

PACS numbers: 32.60.+1i, 03.65.Sq, 32.80.Fb, 97.20.Rp

I. INTRODUCTION

Investigations of spectra of magnetized atoms are of
special importance to understand the evolution of nor-
mal stars to magnetic white dwarf stars (magnetic fields
of 102—10° T) and neutron stars (10°—10° T). The initial
magnetic fields in stars are believed to increase with their
evolution [1]. The components of the atmospheres of
white dwarf and neutron stars, as well as the size of their
magnetic field strengths, may be determined by compar-
ing computed and observed spectrum lines. During the
past few decades, many astronomically observed spectra
of magnetized atoms have been reported, and a great deal
of effort has been devoted to developing theories and nu-
merical algorithms for describing the properties of mag-
netized atoms. Although steady progress has been made,
theories and computations are still far from meeting the
requirements for simulating the astronomically observed
spectra [2, 3]. Today, it is regarded a considerable suc-
cess to be able to accurately model the discrete spectra of
magnetized H atoms [4]. High-accuracy spectra for any
transition between bound states of H atoms in an ar-
bitrary magnetic field, obtained with several theoretical
methods, have been reported in the literature [4-7].

Going beyond atomic hydrogen, even the simulation
of the discrete spectra of multielectron atoms in a strong
magnetized field is highly challenging due to the theoret-
ical difficulties associated with an efficient and accurate
treatment of electron correlations in a strong magnetic
field. Most calculations of atomic structures of magne-
tized multielectron atoms published to date were per-
formed within the framework of Hartree-Fock theory (see,
for example, [8-11] and references therein). Only for the
light helium atom, electron correlations in a magnetic
field were effectively taken into account [12, 13].

Compared to discrete spectra of atoms in a magnetic
field of white-dwarf strength, their continuous spectra are
only sparsely reported in the literature. A few theoretical
and computational attempts were implemented. Alijah

et al. [14] constructed a coupled-channel theory to de-
scribe photoionization of strongly magnetized H atoms.
They expanded the total wave function in terms of Lan-
dau states. The resulting coupled Schrodinger equations
were solved with a stable numerical integration procedure
based on the logarithmic derivative method, proposed
by Johnson [15], with some modifications. The photo-
ionization spectrum was presented for the initial ground
state in a magnetic field of 2,000 T, and a Rydberg series
of resonance states was identified.

By combining a complex-rotation technique with a
Sturmian-type basis expansion, Delande et al. [16] de-
veloped a theoretical method to yield continuous spec-
tra of strongly magnetized H atoms, and they applied it
to calculations of photoionization from the ground state
in a magnetic field of 23,500 T. Today, this spectrum
has become the benchmark for testing the reliability of
later theories. Soon afterwards, Wang and Greene [17]
presented their R-matrix calculations of ground-state
H atoms in a strong magnetic field, based on a method de-
veloped within the framework of multichannel quantum-
defect theory (MQDT). However, they did not reproduce
the photoionization spectrum of Alijah et al. at 2,000 T,
but rather found a pronounced difference.

Based on the complex-rotation method combined with
a mixed Slater-Landau basis expansion, Zhao and Stan-
cil [18] also developed a computational scheme to de-
scribe the photoionization of atomic hydrogen in strong
magnetic fields. Since the basis expansion of this scheme
explicitly incorporates the physics of the strong-field
regime, it can more efficiently cover a wide field re-
gion than previously reported methods. The scheme was
successfully applied to photoionization calculations for
twelve initial states with magnetic field strengths from
2,350 T to 235,000 T [19]. Furthermore, Meinhardt and
coworkers [20] presented their coupled-channel results for
the continuous spectra of magnetized H atoms. They
found them to be in excellent agreement with those from
both the complex-rotation method [16] and the R-matrix



method [17], but once again not with those of Alijah et
al. [14].

More recently, Mota-Furtado and O’Mahony [21] pro-
posed an R-matrix propagation technique with adiabatic
bases to calculate the photoionization spectra of atoms
in magnetic fields. In their scheme, the configuration
space is divided into many subregions. In each sub-
region, the R matrix is propagated, and then continu-
ity of the wave functions and their derivatives is en-
forced at the boundaries between all subregions. While
this propagation technique was successful, it needs to be
generalized to deal with higher magnetic field strengths
that significantly distort the field-free wave functions of
the atoms in the inner region [21]. Since any complex-
rotation method fails to represent the overall perspective
of Rydberg structures due to the limitation of a finite ba-
sis, our previous method described in [18] cannot be uti-
lized to elucidate the remaining differences between the
photoionization spectra obtained by a variety of theoret-
ical methods. It is hence necessary to develop a different
method to effectively describe photoionization near the
ionization threshold. The work reported in this paper is
devoted to this goal.

This manuscript is organized as follows. Section II
describes the coupled-channel formalism for photo-
ionization of atomic hydrogen in a strong magnetic field
typical of magnetic white dwarf stars. The numerical
method to solve the coupled Schrodinger equations for
obtaining the wave functions of the final continuum states
is outlined, and solutions for the initial bound states in
a magnetic field are recapitulated. In Sect. III, we ap-
ply our method to study photoionization of magnetized
H atoms. Photoionization spectra for the ground and
some excited states are presented and comparison is made
with predictions from other theories. Section IV summa-
rizes our principal results and contains some concluding
remarks. Unless specified otherwise, atomic units (a.u.)
are used throughout this paper.

II. THEORETICAL METHOD

This section is devoted to the description of the
coupled-channel formalism for magnetized hydrogen
atoms, the outline of the numerical method to solve the
coupled Schrédinger equations for the continuum states,
and the sketch of the solutions for the bound states in a
magnetic field.

A. Coupled-channel formalism

In this section, we formulate the standing-wave solu-
tions as well as the incoming- and outgoing-wave solu-
tions of the coupled Schréodinger equations. Within the
framework of nonrelativistic theory, the hamiltonian of
H atoms in a uniform magnetic field B along the z axis

is given by
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Here v = B/ By is the magnetic field strength in atomic
units, i.e., in multiples of By ~ 2.35 x 10® T. Using cylin-
drical coordinates (p, z), /, and 3, are the operators for
the z components of the orbital and spin angular mo-
menta, respectively. The third term (linear in «y) is the
paramagnetic potential, while the fourth term (quadratic
in ) is the diamagnetic potential. Depending on the rel-
ative magnitudes of the Coulomb and diamagnetic poten-
tials, the symmetry of the system changes. The system
more resembles spherical symmetry if the Coulomb po-
tential dominates the diamagnetic potential, whereas it
is closer to cylindrical symmetry in the opposite case.
For strong magnetic fields, therefore, the system is most
conveniently described in cylindrical coordinates.

We expand the total wave function in terms of Landau

states as
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where R, (p, ¢) is the normalized wave function for the
Landau state with n > 0, given in [22] as
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with 1 F; denoting the confluent hypergeometric func-
tion and m the magnetic quantum number. Substituting
Eq. (2) into the Schrédinger equation with the hamilto-
nian (1) and projecting onto the basis R,,, we obtain the
set of coupled differential equations

1 d?
{deg - €n} Fn+ Z] Vo Fry = 0, (4)
where €, = F — F,,. Here E denotes the energy of the
free electron and F,, = v[n + (Jm| + m + 1)/2] the en-
ergy of the Landau state. For simplicity of notation, we
omit the energy E in the argument of F,, as well any
function below that is constructed from these continuum
solutions.

The matrix element V,,,,/(z) is given in [23] as
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As seen from Eq. (4), the presence of the Coulomb po-
tential couples the Landau channels. Since each linearly
independent solution should be a linear combination of
the channel wave functions, it is essential to introduce an
additional subscript n to identify these solutions. Thus
we adopt the indices n’ and n in F,, to identify the
channel and solution, respectively. Equation (2) is then
rewritten as
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It was shown in [14, 21] that the free electron feels a
Coulomb potential in the asymptotic region at large z.
Therefore, F,,/,(z) should asymptotically have the form

]:n’n = Snén’n + CnKn’na (8)

where s, and c,, respectively, are regular and irregular
Coulomb functions as defined by Seaton [24], and K,y
is the matrix element of the reactance matrix K.

In compact matrix notation, Eq. (8) reads

F=s+ck. (9)

If all channels are open, F represents a matrix of
the physical standing-wave solutions of the coupled
Schrédinger equations. However, F contains exponen-
tially growing terms in any closed channel, and these
correspond to unphysical solutions.

In order to formulate physically meaningful solutions,
therefore, the matrices F and I are each partitioned into
open-open, open-closed, closed-open, and closed-closed
submatrices, as suggested by Seaton [24]. Generically
denoting these matrices by A for simplification, we have
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Using these submatrices, physical standing-wave solu-
tions F are constructed by imposing physical boundary

conditions,
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where the subscripts o and ¢ denote the open and closed
channels, L,, is the identity matrix, and

Lco = — [tan(ﬂ'u) + ch]_l ICCOa (12)

with v denoting the effective quantum number. The
physical reactance matrix K,, (open channels only) is
given by

Koo = ICOO + K:ochm (13)

Finally, the incoming- and outgoing-wave solutions of the
coupled Schrédinger equations are expressed as

Ff=FiF(IFK) . (14)

Note that the parity of F(z) under the transforma-
tion z — —z (denoted by 7, = £1 for even or odd par-
ity) should be conserved. Hence, 7, and the other good
quantum number m (the projection of the orbital angu-
lar momentum on the z axis) together are adopted to
identify the hydrogen atomic states m”™ in a magnetic
field.

B. Numerical integration of the coupled equations

In matrix notation, the coupled-channel Schrédinger
equations (4) are written as

{Idd; + Q(z)} F(z) =0, (15)

where I denotes the identity matrix, and the matrix ele-
ments of () are given by

Qnn'(2) = 2€,0nm — 2 Vi (2). (16)
In the present work, we adopt Johnson’s algorithm [25]
to numerically integrate the coupled differential equa-
tions (15). This algorithm propagates the ratio of the
wave function at a given meshpoint and the adjacent
point, rather than the wave function itself. Since it ef-
ficiently avoids potential overflow problems of the wave
function in the classically forbidden region, it is appar-
ently superior to numerical methods that propagate the
wave function itself. In matrix notation, the ratio is de-
fined by

Ry =1~ Tn—i-l)]:n-&-l}—gl (- Tn)_l J (17)

where T,, = —?—;Qn with A being the step size of the
integration. Setting

Upy=(I—-T,) " (2I+10T,), (18)
the ratio matrix is propagated from the origin in terms
of the two-term recurrence relation

R,=U,—R',. (19)

The wave function at the origin is zero for states of odd
parity, while its derivative is zero at this point for states
with even parity. These properties of the wave functions
and their derivatives are exploited to obtain the ratio Ry
at the origin. It is determined to be

for odd parity;

Ro = for even parity. (20)
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In practical calculations, Ry for the odd-parity states
is taken as a large number, e.g., 1030, Our numerical in-
tegration begins from the origin and stops in the asymp-
totic region, where we match the numerical ratio ma-
trix R to the ratio matrix calculated with the asymptotic
forms given in Eq. (9) to extract the reaction matrix K.
We then apply the procedure described in the preced-
ing section to calculate the standing-wave solutions and
then construct incoming- or outgoing-wave solutions of
the coupled Schrodinger equations with physical bound-
ary conditions. Finally, the wave functions obtained in
this way are utilized to calculate dipole matrix elements,
photoionization cross sections, and oscillator strengths.

C. Solutions for bound states in a magnetic field

In magnetic fields of white-dwarf strength, it is in-
evitable to consider the influence of such strong fields
on the initial atomic states in photoionization. In or-
der to do this, we apply our finite-basis-set method with
B splines developed previously [26] to calculate the low-
lying atomic states in a strong magnetic field. Using
a representation in spherical coordinates, the total wave
functions are expanded in terms of a B-spline basis in the
radial direction and spherical harmonics for the angular
part. Due to the nonorthogonality inherent in a B-spline
basis, the solution of the resulting matrix equations is a
generalized eigenvalue problem involving the decomposi-
tion of the overlap matrices. Once the decomposition has
been done, standard routines for matrix diagonalization
are used to generate the eigenvalues and eigenvectors nu-
merically. Finally, the eigenvectors obtained in this way
are mapped to the cylindrical coordinate system and sub-
sequently applied to the calculations of the dipole matrix
elements.

D. Differential oscillator strength and cross
sections for photoionization

The numerically obtained wave functions for the initial
bound and final continuum states, denoted by ¥; and
W respectively, are then utilized to calculate differential
(with respect to energy and state) oscillator strengths
and cross sections for photoionization. The differential
oscillator strength for magnetized H atoms in the photo-
ionization process from an initial state with energy E; to
a final state with energy FE is given by

dfn,i
dE

where D is the dipole operator and ¥, is defined by
U (p,6,2) =Y Rur(p, §)Fy(2). (22)

= 2(E — E;)| (9| D|¥;) 7, (21)

The total differential (with respect to energy) oscillator
strength is an astronomically observable quantity. It is

obtained by summing the differential oscillator strengths
for photoionization into the individual state according to

dE — dE (23)

The photoionization cross section is related to the total
differential oscillator strength by

oi(E) = QWQQE, (24)
where a /= 1/137 is the fine-structure constant.

Looking at the literature in this field, we note that dif-
ferent authors preferred to present their results either as
cross sections or as oscillator strengths, in both cases usu-
ally with the independent variable chosen as the ejected
electron energy FE. The latter is related to the photon
energy w through £ = w + F;. To simplify the visual
comparison with previous works (numerical data are not
available, and the spectra are too complex for digitiz-
ing the graphs), we will generally adapt our presentation
below and follow previous authors.

III. RESULTS AND DISCUSSION

The coupled-channel formalism described above was
applied to study the photoionization of H atoms in strong
magnetic fields. First of all, we tested our method by
comparing the results with the accepted benchmark spec-
trum for photoionization from the ground state. We as-
sumed that H atoms in the ground state were placed
in a uniform magnetic field of strength B = 0.1 a.u.
(23,500 T). They were then irradiated by a beam of lin-
early polarized light with the polarization direction par-
allel to the magnetic field and ionized into the final con-
tinuum state with m™ =07.

We checked the convergence of the predicted photo-
ionization cross sections by varying the number of cou-
pled channels as well as 2,42, where the ratio matrix R
is matched to the asymptotic form to extract the reac-
tance matrices. We found that seven coupled channels
and zZmee = 30 a.u. were sufficient to obtain the con-
verged spectrum shown in Fig. 1.

While we do not have access to their actual data,
comparison with the figures shows excellent visual agree-
ment between our results and those from other theories
[16-18, 21]. On the other hand, the complex-rotation cal-
culations reported in Refs. [16, 18] fail to represent the
overall Rydberg structures near the ionization thresholds.
The detailed information about the complex structures
associated with high-lying Rydberg states is lost in the
complex-rotation calculations. This is not surprising in
light of the fact that the rotated continua are represented
by a set of discrete eigenvalues in the complex-rotation
method, and the imaginary parts of the discrete eigenval-
ues in close vicinity of a Landau threshold are very small.
It is simply impossible to describe an infinite Rydberg se-
ries with a finite basis.
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FIG. 1: Photoionization spectrum for magnetized hydrogen
atoms in a magnetic field of B = 0.1 a.u. (23,500 T). It is as-
sumed that the atoms in the ground state are irradiated by a
beam of linearly polarized light and, therefore, ionized to the
final state m™ = 07. The energy region covers a range from
the first up to third Landau threshold. The convergence of the
Rydberg series towards the second and third Landau thresh-
olds with energies of 0.15 a.u. and 0.25 a.u., respectively, is
clearly visible.

To further test our method, it is essential to compare
our results with other photoionization spectra. Figure 2
illustrates our spectra at B = 0.05 a.u. (11,750 T) for
photoionization from the ground state to the final contin-
uum states m™ = 1% and 0~. The two spectra display
regular patterns of broad resonances embedded in nar-
row dense resonances associated with high-lying Rydberg
states. Such a phenomenon was also noticed and dis-
cussed by Wang and Greene [17]. The resonances asso-
ciated with different Rydberg series interfere with each
other and hence generate very complex patterns in the
spectra. The two spectra due to photoionization from
the ground state into the final continuum states with
m™ =17 and 0~ are found to be in excellent agreement
with those presented in Ref. [17].

We now move on to the photoionization spectrum of
H atoms in a magnetic field with strength B = 0.0085 a.u.
(2,000 T). Here the spectrum of interest concerns photo-
ionization of magnetized ground-state hydrogen atoms
irradiated by a beam of circularly polarized light. The
final continuum state is thus m™ = 1. The ejected-
electron energy range shown in the insert of Fig. 3 covers
the narrow region from 0.0280 a.u. to 0.02977 a.u., i.e.,
between the second and third Landau thresholds.

Looking at the respective papers [14, 17, 20|, one will
notice a pronounced discrepancy between the spectra cal-
culated by three groups. Our calculations contain two
open and 12 closed channels. Choosing z,,.. = 80 a.u.
yields convergence of the predicted photoionization cross
sections. Alijah et al. [14], on the other hand, also in-
cluded two open but only eight closed channels, and they
set Zmae = D0 a.u.. While the authors claimed to have
obtained a convergent spectrum, we could not reproduce
the results of Alijah et al. with the same parameters.

The R-matrix method based on MQDT developed by
Wang and Greene [17] did not reproduce the spectrum
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FIG. 2: Photoionization spectra of magnetized hydrogen
atoms from the ground state to the final states m™ = 17 (a)
and m™ =0~ (b) at B = 0.05 a.u. (11,750 T). The ejected-
electron energies cover the range from the first to the sixth
Landau threshold. The dashed vertical lines indicate all the
Landau thresholds in this regime.
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FIG. 3: Photoionization spectrum for magnetized hydro-
gen atoms from the ground state into the final continuum
state m™ = 17 at B = 0.0085 a.u. (2,000 T). The insert cor-
responds to the energy regime used by Wang and Greene [17]
in the bottom part of their Fig. 6 to compare with the re-
sults of Alijah et al. [14]. For consistency, we use the same
energy scale in all our figures, and hence we subtracted the
electron paramagnetic spin energy of 0.0042553 a.u. from the
scale used by Alijah et al.



of Alijah et al. either, and neither did the direct numeri-
cal integration method of Meinhardt and coworkers [20].
The latter authors suspected that non-decaying closed-
channel solutions in [14] caused inaccuracies in their cal-
culations of the transition matrix elements. Unfortu-
nately, Meinhardt et al. only discussed the spectrum, but
no illustration was provided.

While we obtain at least qualitative agreement with
Wang and Greene [17] (see their Fig. 6), we do not agree
with them in all details of their predictions either. The
latter authors carefully tested the sensitivity of their cal-
culated spectrum to variations of the numerical parame-
ters, for example by increasing the cylindrical R-matrix
box size zy and by changing the number of coupled chan-
nel numbers. They found that the individual resonance
positions, widths, and shapes change substantially with
variations in those two parameters. Their predicted spec-
trum reaches convergence with zy = 80 a.u. and a total 12
of channels, which are essentially our parameters. Look-
ing at their Fig. 6 in detail, it appears as if Wang and
Greene did not resolve the detailed resonance structure
in this very narrow energy regime. They found the os-
cillator strength to oscillate around 0.7, which is in rea-
sonable agreement with our predictions if the latter were
convoluted with a Gaussian of realistic width.

Having found some quantitative disagreement with the
results of Wang and Greene [17], it seemed important to
investigate some more cases, particularly at lower field
strengths. Figure 4 exhibits our results for B = 0.01 a.u.
(2,350 T) for the initial 1sy state and the final contin-
uum states m™ = 17 and m™ = 0~. Since the energy-
resolved spectra are very complex, we follow Wang and
Greene and also present our results after convolution with
Gaussians of width 0.0025 a.u. and 0.0009 a.u., respec-
tively. The figure corresponds to about half the energy
range presented in Figs. 2 and 4 of Wang and Greene.
Looking at those figures and comparing with our results,
one will notice significant differences in the details. While
the convoluted results from their and our calculations are
still in qualitative agreement, they do not agree as well
with each other as even the unconvoluted results did at
the higher field strengths. Without knowing the numer-
ical details of their method, we refrain from speculating
about potential reasons for the remaining disagreement.
We note, however, that Wang and Greene themselves
expressed some caution regarding the reliability of their
results at relatively low field strengths.

Having gained sufficient confidence in our approach,
we now present additional results. The photoionization
cross sections from the 2pg excited state to the final state
with m™ =1~ at B = 0.1 a.u. (23,500 T) are shown in
Fig. 5 as a function of the ejected-electron energy. The
figure exhibits rich resonance structures converging to
the second and third Landau thresholds. Such resonance
structures have been observed in photoionization from
the ground state to the final continuum m™ = 07, as
shown in Fig. 1.

These resonances are associated with quasi-bound

5.0

>
=)

w
=)

N
[=)

Oscillator strength (a.u.)

=
=)

!

1 |

Il Il
0.015 0.025 0.035 0.045 0.055 0.065
Ejected electron energy (a.u.)

15

J

I

‘l "\ )’
I

|
I
I
I
I
| | |
| | |
1 | I
| | 1
0 Il Il Il
0.005 0.015 0.025 0.035 0.045 0.055
Ejected electron energy (a.u.)

,k
|

Oscillator strength (a.u.)

FIG. 4: (color online) Photoionization spectrum for mag-
netized hydrogen atoms from the ground state into the fi-
nal continuum states m™ = 11 (a) and m™ = 0~ (b) at
B = 0.01 a.u. (2,350 T). Similar to Wang and Greene [17],
the thicker (red) lines show our results after convolution with
a Gaussian of width 0.0025 a.u. for m™ = 1" and 0.0009 a.u.
for m™ = 07, respectively. The dashed vertical lines indicate
the Landau thresholds in this regime.

Coulombic states embedded in the Landau continua.
From the spectrum, one can obtain insight into inter-
actions between the Rydberg states and the Lan-
dau continuum states. For example, the first reso-
nance above the first Landau threshold displays a pro-
nounced asymmetric line shape, thus indicating a strong
resonance-background interference. Similarly asymmet-
ric line shapes are also seen above the second Landau
threshold in this figure. The detailed resonance struc-
ture over a narrow ejected-electron energy region from
0.34 a.u. to 0.35 a.u., just below the third Landau thresh-
old, is exhibited in the insert of the graph.

Figure 6 illustrates photoionization spectra from the
ground state to the final continuum state with m™ =0~
at B=10.5a.u. (117,500 T) and B = 1.0 a.u. (235,000 T).
The two spectra were calculated earlier with the complex-
rotation method [18], but then only the first few domi-
nant resonances were found to be stable against small
variations in the numerical details. Contrary to the
spectra from the complex-rotation method, for both
B =10.5 a.u. and B = 1.0 a.u., our coupled-channel for-
malism produces many resonances converging to the sec-
ond and third Landau thresholds. The regularity of these
resonance sequences is also visible in those two spectra.
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FIG. 5: Cross section for photoionization from the 2po excited
state to the final m™ = 17 state for B = 0.1 a.u. (23,500 T).
The insert displays the detailed resonance structure over
a narrow ejected-electron energy region from 0.34 a.u. to
0.35 a.u., just below the third Landau threshold.
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FIG. 6: Same as Fig. 5, except for photoionization from the
ground state to the final continuum state m™ = 0~ at B =
0.5 a.u. (117,500 T) (a) and B = 1.0 a.u. (235,000 T) (b). The
insert in each panel displays the detailed resonance structure
below the third Landau threshold.

IV. SUMMARY AND CONCLUSIONS

We have developed a theoretical method, based on the
coupled-channel formalism, to study photoionization of
H atoms in a strong magnetic field of strength typical
for magnetic white dwarf stars. After expanding the to-
tal wave function in Landau states, the resulting cou-
pled Schrédinger equations are solved numerically using
the renormalized Numerov method proposed by John-
son [25]. This algorithm propagates the ratio of the wave
function at two adjacent points, rather than the wave
function itself. Consequently, it effectively avoids over-
flow problems in the classically forbidden region. The
present theoretical method was applied to calculations
of continuous spectra due to photoionization from the
ground state and excited states at selected magnetic
fields.

Our calculations reproduced the benchmark spectra for
photoionization from the ground state to the final contin-
uum state with m™ = 0~ at B = 0.1 a.u. (23,500 T). The
spectra for a field strength of B = 0.05 a.u. (11,750 T)
for the transition from the ground state to the final states
with m™ = 17 and 0~ are also in excellent agreement
with those calculated using the R-matrix method based
on MQDT, as developed by Wang and Greene [17]. How-
ever, we found some differences in the photoionization
spectrum at B = 0.0085 a.u. (2,000 T) from the ground
state to the final continuum state with m™ = 17, when
calculated with our method or by other theories. Specif-
ically, like Wang and Greene [17] and Meinhardt and
coworkers [20], we disagree already in the qualitative en-
ergy dependence of the spectrum with the predictions of
Alijah et al. [14]. Regarding the predictions of Wang and
Greene [17], the qualitative agreement is satisfactory, al-
though some quantitative differences were found at the
lower field strengths of 2,000 T and 2,350 T.
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