
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Rotational relaxation of molecular ions in a buffer gas
Jesús Pérez-Ríos and F. Robicheaux

Phys. Rev. A 94, 032709 — Published 21 September 2016
DOI: 10.1103/PhysRevA.94.032709

http://dx.doi.org/10.1103/PhysRevA.94.032709


Rotational relaxation of molecular ions in a buffer gas
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The scattering properties regarding the rotational degrees of freedom of a molecular ion in the
presence of a buffer gas of helium is investigated. This study is undertaken within the framework
of the infinite order sudden (IOS) approximation for rotational transitions, which is shown to be
applicable to a large variety of molecular ions in a buffer gas of helium at fairly low temperatures.
The results derived from the present approach can have potential implication in cold chemistry and
molecular quantum logic spectroscopy.

I. INTRODUCTION

The development of hybrid ion-neutral trap technol-
ogy has revolutionize the field of cold chemistry, al-
lowing the study of atomic ion-neutral chemical pro-
cesses, such as charge exchange reactions [1–8], radiative
association[1, 2, 4] and three-body recombination reac-
tions [9]. However, driven by the possibility of state se-
lective chemistry [5, 10], sympathetic cooling of trapped
molecular ions [11–13], spectroscopy of buffer-gas-cooled
trapped molecular ions [14] and molecular quantum logic
spectroscopy [15–17], molecular ion-neutral collisions are
becoming more relevant. In molecular ion-atom colli-
sions the translational degrees of freedom are coupled to
the internal states of the molecule (rotation, vibration
and electronic) through the anisotropy of the potential
energy surface (PES). As a consequence atom-molecule
collisions may induce changes in the internal quantum
state of the molecule as sketched in Fig. 1 for the case
of rotation. This process is the core of the thermaliza-
tion mechanisms and transport in gases, known as relax-
ation phenomena [18–21]. Therefore, relaxation phenom-
ena will play an important role in the control of internal
degrees of freedom of molecular ions brought in contact
with neutrals.

In principle, for low collision energies ∼ 1 K, hav-
ing the potential energy surface of the system under
consideration, one could solve the coupled-channel (CC)
Schrödinger equations by means of the PES, as Soecklin
et al. [13] have recently accomplished for the study of vi-
brational quenching of molecular ions in the presence of
a buffer gas, leading to accurate but computationally ex-
pensive results. For thermal energies ∼ 300 K the prob-
lem is computationally intractable within the CC method
due to the huge size of the Hilbert space needed to guar-
antee the convergence of the calculations. Nevertheless,
it is possible to assume some approximation regarding
the translation-rotation (TR) energy transfer which will
simplify the theoretical treatment without losing accu-
racy and predictive power, such as the coupled states ap-
proximation [22, 23] and the infinite order sudden (IOS)
approximation [24–28].

In this paper, a study of rotational relaxation for
molecular ion-atom collisions relevant for cold chem-
istry experiments is presented. The scattering calcu-
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FIG. 1. (Color online) Rotational relaxation mechanism. An
atom C collides with a molecular ion AB+ (assumed to be at
rest, for simplicity), through the atom-molecule interaction.
This interaction is the responsible of the coupling between
the rotational and translational degrees of freedom. As a
consequence, the molecule can be found in a different rota-
tional state |j′m′〉 after the collision, but with the constrain
Ef +Bej

′(j′ + 1) = Ei +Bej(j + 1) due to the conservation
of energy, where Be stands for the rotational constant.

lations are developed within the IOS framework. The
atom-molecule interaction is characterized by a realistic
anisotropic long-range potential whereas the short-range
is treated through a model potential. The IOS approach
is explained and its range of validity analyzed for a large
number of molecular ion-atom collisions relevant for cold
chemistry experiments.
The paper is structured as follows: in Sec. II, the in-

elastic rotational cross section within the IOS framework
is introduce and its validity is presented for molecular
ions relevant for atom-ion hybrid trap setups. In Sec.
III, the IOS framework is applied to the study of rota-
tional relaxation of molecular ions in a He buffer gas. In
particular, results for MgH+ and BaH+ as examples of
1Σ-He will be presented and for SiO+ as an example of
2Σ-He collisions. In the same section, a general study
of the rotational relaxation cross section as a function of
the molecular dipole moment and mass of the ion is pre-
sented. Finally, in Sec. IV, the outlook and conclusions
are presented.

II. INFINITE ORDER SUDDEN

APPROXIMATION

Let us assume a molecular ion-atom collision, by treat-
ing the molecular ion as a rigid rotor and the interaction
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potential between the colliding partners is fully specified
by two degrees of freedom V (R, δ). Where R is the dis-
tance between the atom and the center of mass (CM)
of the molecular ion, i.e., the scattering coordinate, and
δ stands for the relative angle between R and the rigid
rotor as shown in Fig. 2. In the space-fixed frame of
reference (SF) where the orientation of the rigid rotor
is described as ωSF = (θSF , φSF ) (see Fig. 2) and the
relative orientation of the atom with respect to the CM
of the molecular ion is ωa = (θa, φa) (see Fig. 2), the
scattering wave function is expressed as [29]

Ψ(ωSF , ωa, R) =
∑

NlJM

uJM
Nl (R)

R
ψNlJM (ωSF , ωa), (1)

where the total angular momentum J and its projection
in to the laboratory axis M are conserved quantities due
to the absence of external fields, and

ψNlJM (ωSF , ωa) =
∑

mNml

CJM
lmlNmN

Y ml

l (ωa)Y
mN

N (ωSF ).

(2)
Here, Y (ω) represent the spherical harmonics and in par-
ticular, Y mN

N (ωSF ) denotes the rotational wave function
for the rigid rotor. By substituting Eq. (1) into the
Schrödinger equation, and neglecting the trivial motion
of the center of mass the u’s are the solution of a set of
coupled differential equations

[
d2

dR2
− l(l + 1)

R2
+ k2N ]uJM

Nl (R) =

2µ
∑

N ′l′

〈NlJM |V (R, δ)|N ′l′JM〉uJM
N ′l′ (R), (3)

where k2N = 2µ (E −BeN(N + 1)), E denotes the avail-
able precollision relative total energy of the molecular
ion-atom system, and hence the collision energy is Ek =
k2N/(2µ). µ is the reduced mass for the molecular ion-
atom system and Be stands for the rotational constant
of the molecular ion. The solution of Eq. (3) with the
appropriate boundary conditions leads to the rotational
relaxation cross section, which is the result of an intri-
cate interplay between the relative angular momentum
l and the rotational state of the molecule j through the
PES V (R, δ). However, this complexity can be reduced
by assuming that N and l are decoupled, as is shown
below.
The PES for different molecular ion-atom collisions

have been calculated by means of a model potential at
short-range, whereas the long-range tail of the atom-
molecule interaction is modeled by the isotropic charge-
neutral interaction ∝ R−4 and the anisotropic induced
dipole-charge interaction cos (δ)R−5 yielding (in atomic
units)

V (R, δ) = − α

2R4

[

1− 1

2

(

Rm

R

)4
]

+
2dα cos (δ)

R5
, (4)

where α is the polarizability of the atom, d is the perma-
nent dipole moment of the molecular ion and Rm stands
for the position of the minimum of the well. Rm only
affects the short-range physics of the molecular ion-atom
interaction, and since the anisotropy of the interaction is
due to the long-range tail of the PES, Rm will not play
a role in the rotational relaxation.
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FIG. 2. (Color online) Space-fix (SF) frame (X,Y, Z)
and body-fix (BF) frame (X ′, Y ′, Z′) of reference for atom-
molecule collisions. It is always possible to transform from
one system into the other through the Wigner D-matrix
DJ

MΩ(φa, θa, 0), as it is explained in the text.

McGuire and Kouri pointed out that effects of the
couplings between l and j are better studied in a sys-
tem of reference attached to the molecular ion-atom
system [22, 23], the so-called body-fix frame (BF), as
displayed in Fig. 2. This reference frame is related
with the SF by means of the Wigner-D rotation matrix
DJ

MΩ(θ, β, 0), where (θ, β) represent the Euler angles. In
the BF frame the solution of the Schrödinger equation
leads to

[
d2

dR2
+ k2N ]uJMNΩ(R) =

〈NΩJM | l̂
2

R2
|N ′Ω′JM〉uJM

N ′Ω′(R)

+2µ
∑

N ′Ω′

〈NΩJM |V (R, δ)|N ′Ω′JM〉uJM
N ′Ω′(R), (5)

where

|NΩM〉 =
√

2J + 1

4π
DJ∗

MΩ(φa, θa, 0)Y
mN

N (δ, 0), (6)

and Ω represents the projection of N in to the molecu-
lar axis. In Eq. (4) the potential V (R, δ) only couples

states with the same projection Ω, whereas l̂2 operator
couples states with different Ω, this is the so-called Cori-
olis coupling [22, 23, 28, 30]. At high collision energies,
as well as for systems where the anisotropy associated
with the atom-molecule energy landscape is small, the
Coriolis coupling might be neglected. This is the so-
called centrifugal decoupling or coupled states approx-
imation [22, 23]. In this approximation the relative mo-
tion in the molecular ion-atom system cannot induce any
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change on Ω, as a consequence only the diagonal terms

of 〈NΩJM | l̂
2

R2 |N ′Ω′JM〉 play a role.
In the IOS approximation molecular ion-atom colli-

sions are assumed to occur on a time scale such that the
molecular ion does not rotate significantly during the en-
counter, then apart from neglecting the Coriolis coupling
it is reasonable to solve Eq. (4) with δ as a parameter, and
with a collision energy independent of the initial state of
the molecule, i.e.,

[
d2

dR2
− l(l + 1)

R2
+ k2 − 2µV (R, δ)]f(k,R) = 0, (7)

The solution must satisfied the following boundary con-
ditions: f(k,R) → 0 for R → 0, but as R → ∞

f(k,R) ∼ 1√
k

(

e−ı(kR− lπ

2
) − Sl(k, δ)eı(kR− lπ

2
)
)

, (8)

where Sl(k, δ) represents the S-matrix for a given δ and
wave vector k =

√
2µE. Once Sl(k, δ) it is known, the ro-

tational relaxation cross section can be calculated, how-
ever some special care needs to be taken in terms of the
kind of molecule at hand, as shown below.

A. 1Σ molecular ion-atom collisions

For the case 1Σmolecules the rotational quantum num-
ber N is a good quantum number due to the absence of
spin. Thus, by means of Sl(k, δ), the S-matrix linking
two different rotation states N and N ′ is calculated as

Sl
NΩ;N ′Ω(k) = 〈NΩ|Sl(k, δ)|N ′Ω〉 = (9)

2π

∫ π

0

Y ∗Ω
N (δ, 0)Sl(k, δ)Y Ω

N ′(δ, 0) sin δdδ (10)

and the rotational relaxation cross section in the IOS
approach is given by [28, 30]

σN→N ′(k) =
∑

l

σl
N→N ′(k) =

π

(2N + 1)k2

∑

lΩ

(2l + 1)|Sl
NΩ;N ′Ω(k)|2, (11)

with N 6= N ′. Thus, σN→N ′(k) represents the rota-
tional inelastic cross section for the transition N → N ′

as a function of the collision energy, and hence σl
N→N ′(k)

stands for the opacity function. Within the IOS frame-
work the state-to-state inelastic cross section can also be
expressed as

σN→N ′(k) =

N ′+N
∑

N ′′=|N ′−N |

(2N ′ + 1)

(

N ′ N ′′ N
0 0 0

)2

σ0→N ′′(k),

(12)

where () stands for the 3j symbol. This is the so-called
factorization formula [31, 32].

B. 2Σ molecular ion-atom collisions

2Σ molecules are describe by Hund’s case b, where the
the electronic spin S is coupled to the rotational quan-
tum number N leading to J . The molecular states are
labelled as |NSJM〉, being M the projection of J over
the quantization axis in the laboratory frame. The scat-
tering of 2Σ - He can be treated following the approach
introduced above, but with J including the coupling of
J with l as it is shown in detail in Ref. [33]. Within the
IOS approximation, it can be shown that the state-to-
state cross section is given by [34]

σNSJ→N ′SJ′(k) =
∑

λ

(2N ′ + 1)(2N + 1)(2J ′ + 1)

{

λ J J ′

S N ′ N

}2(

N ′ N λ
0 0 0

)2

σ0→λ(k),

(13)

where {} represents the 6j symbol and

σ0→λ(k) =
π

k2

∑

l

2l+ 1

2λ+ 1
|Sl

λ(k)|2, (14)

represents inelastic transitions out of the N = S = J = 0
level. Here Sl

λ(k) represents the terms of the expansion
in a Legendre polynomials basis of the scattering matrix
[see Eq. (8)]

Sl(k, δ) =
∑

λ

Sl
λ(k)Pλ(cos δ). (15)

C. Validity of the IOS approximation

Under the IOS approximation for atom-molecule col-
lisions the molecule does not experience an appreciable
rotation during the collision with an atom. This physical
scenario gets more realistic for high collision energies, as
well as for molecules with a small rotational constant,
i.e., for heavy molecules. Indeed, one accounts for these
effects through the adiabaticity parameter ξ = τc/τR [35],
where τc and τR represent the collisional time and ro-
tational period, respectively. ξ measures the efficiency
of the translation-rotational energy transfer, indeed if
ξ ≪ 1 denotes a high energy transfer whereas ξ ≫ 1
means a very inefficient energy transfer between the in-
volved degrees of freedom [35]. In the case of molecu-
lar ion-atom collisions, the collisional time can be esti-
mated as τc = bL/vcoll, where vcoll =

√

2Ek/µ is the
collision velocity for a given collision energy Ek, and
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bL = (2α/(Ekπ
2))1/4 stands for the Langevin impact pa-

rameter in terms of the the polarizability of the atom α.
Assuming N ∼ 1, τR = B−1

e , being Be the rotational
constant of the molecular ion, one finds ξ = BebL/vcoll.
Solving this equation for Ek as a function of ξ < 0 is
possible to estimate the lower bound for Ek, and the re-
sults for some molecular ions in a buffer gas of helium is
shown in Fig.3.
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FIG. 3. (Color online) Validity of the IOS approximation
in molecular ion-atom rotational relaxation. Lower bound for
the collision energy Ek (in K) in which the IOS approximation
holds for different molecular ions in contact with a helium
buffer gas.

The results shown in Fig. 3 indicate that light molecu-
lar ions colliding with a buffer gas can only be treated un-
der the IOS approximation at collision energies ∼ 1000K,
as one would expect, however for heavy molecular ions
the lower bound can be below room temperature as it is
the case of MgH+ and BaH+, for instance. Surprisingly,
the very interesting BaCl+-He collision can be treated
within the IOS framework even at temperatures ∼ 1K.
This may have potential implications in experiments re-
garding the sympathetic cooling of this molecular ion as
well as its rotational relaxation.

III. RESULTS

The PES for molecular ion-atom collisions are calcu-
lated by means of Eq. (4). The global minimum Rm

is taken as 4 a0 in comparison with the state of the
art quantum chemistry calculations in the CH+-He com-
plex [36, 37]. However, the following results are not af-
fected by the choice of of Rm, as it will be pointed out
below. The PES for (X1Σ)MgH+-He and (X1Σ) BaH+-
He are displayed in Fig. 4. In this figure, it is noticed the
expected behavior of the long-range anisotropy based on
the cos δ dependence, and the big influence of the per-
manent dipole moment of the molecular ion.

(a)

(b)

FIG. 4. (Color online) Potential energy surfaces V (R, δ) (in
K) considered for MgH+-He and BaH+-He, panels (a) and
(b), respectively. R (in a0) represents the distance between
the atom and the CM of the molecular ion, whereas the δ (in
radians) is the relative angle between R and the orientation
of the molecule. For this calculations Rm= 4 a0, and the
permanent dipole moments are 3.2 Debye and 5.37 Debye for
MgH+ and BaH+, respectively [38].

A. 1Σ ion -He relaxation

Equation (6) including the PES shown in Fig. 4 is
solved by the Numerov method for different collision en-
ergies Ek = k2/(2µ), and its solutions matched with the
boundary condition in Eq. (8) leading to Sl(k, δ). A ra-
dial grid from 2 a0 up to 400 a0 and a step-size ∆R=
0.04 a0 have been employed. Then by means of the
Gauss-Legendre quadrature method involving 128 points
Sl
0ΩN ′Ω(k) is obtained solving Eq. (9). Here, we only

report on the 0 → N ′ transitions, since from these pro-
cesses one can obtain all the state-to-state inelastic cross
sections thanks to the factorization property shown in
Eq. (12). Sl

0Ω;N ′Ω(k) is employed for the calculation of
the opacity function

σl
0→N ′ (k) =

π

k2
(2l+ 1)|Sl

00;N ′0(k)|2, (16)

and the results are shown in Fig. 5. In this figure the
opacity functions associated to 0 → N ′ inelastic colli-
sions, with N ′ = 1, 2 and 4 are displayed for collision
energies of 200 K in panel (a) and and 300 K in panel
(b).
In Fig. 5 is observed that the opacity function for a

given 0 → N ′ transition shows a maximum at a given l,
hereafter labeled as llmax. In this figure it is observed that
llmax is reduced as the rotational excitation involves the
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FIG. 5. (Color online) Rotational relaxation cross section
for 1Σ-He collisions. The opacity functions σl

0→N′ (in a20)for
different rotational transitions associated to MgH+-He (solid
lines) and BaH+-He (dashed lines) are shown in panels (a)
and (b) for a collision energy of 200 K and 300 K, respectively.
The panel (c) presents the state-to-state cross sections as a
function of the collision energy Ek (in K).

exchange of a higher number of rotational quanta, since
for observing a larger change in the rotational quanta
of the molecular ion an smaller impact parameter of the
atom is needed. The value of llmax for a given inelastic
transition is shifted towards higher l’s for higher colli-
sion energies as one would expect. And attached to this
effect, the distribution of l’s with appreciable contribu-
tion to a given transition widens as the collision energy
increases. Now, we turn into the analysis of the differ-
ence between the two collisional systems under study. In
this figure, it is noticed that the opacity functions as-
sociated with BaH+-He are systematically bigger than
MgH+-He, which is a consequence of the bigger perma-
nent dipole moment of BaH+. But, more interesting
for a determined transition and collision energy, llmax

associated with BaH+-He is shifted towards higher l’s
in comparison to MgH+ - He. This effect can be un-
derstood assuming a capture model (a la Langevin), in
which the molecular ion-atom interaction is dominated
by the anisotropic charge-induced dipole term, yielding

lmax ∼ √
µd1/5E

3/10
k and qualitatively explaining the re-

sults of Fig. 5. However, this model cannot account for
the energy dependent shift associated with the same ro-
tational transition, as one notices comparing σl

N→N ′(k)

for MgH+-He (solid line) and BaH+ - He (dashed line)
in panels (a) and (b).
To further understand the reliability of the IOS ap-

proximation we have solved the close-coupled equations
for MgH+ - He, BaH+ - He and BaCl+ - He by means of
the hybrid log-derivative-Airy propagator of Alexander
and Manolopoulos [39] implemented in MOLSCAT [40].
In particular, for MgH+ - He, BaH+ - He, the propa-
gation has been carried out between 2 a0 and 400 a0,
including 11 rotational states, i.e., Nmax = 10, guaran-
teeing a convergence better than 1% in the inelastic cross
sections. But, for BaCl+ - He, Nmax = 14 is taken and the
propagation was carried out between 2 a0 and 1000 a0,
to reach the same convergence level. The rotational con-
stant for MgH+ is taken as 6.249 cm−1, whereas the same
magnitude is 3.63 cm−1 and 0.09 cm−1 for BaH+ and
BaCl+, respectively. The total angular momentum J of
the collision complex was increased until the partial cross
sections for the last four consecutive J ’s contributed each
with less than 0.02 a20. The results for the state-to-state
cross section by solving the coupled-channel equations as
well as the IOS cross sections are shown in Table I for
MgH+ - He and BaH+ - He. The IOS cross section for
each transition has been obtained by means of Eq. (12),
and it shows an overall accuracy of 10 % and 10 - 30 % at
Ek = 400 -200 K for BaH+ - He and MgH+ - He, respec-
tively. At the given range of energies the IOS approxi-
mation works better for BaH+ - He than for MgH+ - He,
since the rotational constant for BaH+ is smaller than
for MgH+, as it is shown in Fig. 3.

TABLE I. Close-coupling (CC) versus IOS state-to-state cross
section for MgH+-He and BaH+-He as a function of the col-
lision energy Ek (in K). The cross section is give in a20.

MgH+ BaH+

Ek(K) σCC
1→2 σIOS

1→2 σCC
2→3 σIOS

2→3 σCC
1→2 σIOS

1→2 σCC
2→3 σIOS

2→3

50 109.10 77.45 - - 165.95 118.16 82.56 107.63

100 105.32 69.50 83.2 63.81 118.35 105.50 72.56 95.28

200 93.06 65.05 65.81 58.92 100.81 92.21 82.13 83.73

300 73.28 60.48 60.67 55.42 90.42 85.00 80.17 77.02

400 68.92 56.81 55.14 51.84 86.99 80.07 76.56 72.69

In Table II, the IOS state-to-state cross sections for
BaCl+ - He show an overall accuracy of 5 - 25 % in
comparison with the application of the coupled-channel
method to the scattering problem at Ek = 20 -10 K, as it
was previously anticipated in Fig. 3 using the adiabatic-
ity parameter ξ. However, at 5 K the comparison leads
to and error ∼ 50%. These calculations confirm that IOS
approximation is a suitable tool for describing the rota-
tional quenching of BaCl+ in a buffer gas of He down to
energies of 10 K.
Panel (c) in Fig. 5 displays the state-to-state cross sec-

tions for MgH+-He and BaH+-He as a function of the
collision energy. Here, it is noticed a bigger cross sec-
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TABLE II. Close-coupling (CC) versus IOS state-to-state
cross section for BaCl+-He as a function of the collision en-
ergy Ek (in K). The cross section is given in a20. For this
calculations BaCl+ - He PES is modeled following Eq. (4),
with Rm = 6.45 a0 which corresponds with the global mini-
mum for the BaCl+ - Ca interaction [13]. The dipole moment
of BaCl+ is taking as 8.927 Debye [13].

Ek(K) σCC
1→2 σIOS

1→2 σCC
2→3 σIOS

2→3

20 218.01 202.82 206.34 185.79

15 230.15 209.79 223.08 188.32

10 260.04 222.97 264.79 199.73

5 406.60 232.85 336.43 217.48

tion for BaH+-He in comparison with MgH+-He inde-
pendently of the final state, in correlation with the re-
sults regarding the opacity functions in panels (a) and
(b). To further compare the rotational relaxation prop-
erties of these molecular ions in a buffer gas of helium we
have calculated the state-to-state rate coefficients as

k0→N ′(T ) = 〈v〉β2

∫ ∞

0

σ0→N ′(Ek)Eke
−βEkdEk (17)

where 〈v〉 =
√

8/(βµπ) stands the average velocity at
a given temperature T and β = (kBT )

−1 with kB is the
Boltzmann constant. The down state-to-state rate coeffi-
cients can be calculated by applying the detailed balance
condition. The results are shown in TableIII, where it
is observed that BaH+ - He has a relaxation rate coeffi-
cient 33 % bigger than MgH+ - He. We have confirmed
that our results do not depend drastically on the choice
of Rm, indeed changing Rm in 1 a0 does affect the re-
sults in less than 5 %. In particular, assuming typical
He buffer gas densities of 1015 cm3, and taking into ac-
count k0→N ′(T ) ∼ 10−10 cm3s−1 one finds that molec-
ular ions experience one collision per µs, which is faster
than the typical radiative decay time of molecular ions
∼ ms. Therefore, collisional relaxation processes may be
useful for rotational cooling protocols of ions immersed
in a Paul trap.
From the state-to-state rate coefficients in Table III

we have obtained a general expression for the rates as a
function of the dipole moment of the molecular ion and
the temperature of the buffer gas as

k0→N ′(T ) =
AN ′

√
d

(kBT )0.22
〈v〉
√

µ

µBaH

, (18)

where AN ′ is a fit parameter (AN ′

√
d has units of

length4 time−2 times mass) that depends on the final
state, d is the permanent dipole moment of the molec-
ular ion in atomic units, µ stands for the reduced mass
of the colliding molecular ion-atom in atomic units and
µBaH is the same magnitude but for the particular case

of BaH+ - He, kBT must be given in atomic units as well
as 〈v〉, and hence k0→N (T ) in Eq. (18) is in atomic units.
In particular, we find A1 = 20.26± 0.30, A2 = 7.35± 0.2,
A3 = 4.07 ± 0.05 and A4 = 2.65 ± 0.03 leading to an
overall error of 5% in comparison with the full numerical
simulations. Eq. (18) depends on the permanent dipole

moment of the molecular ion as
√
d, which is very similar

to our results based on a capture model d1/5. This de-
pendence implies that the systems study in this section
are not in a perturbative regime, where the expected d2

should appear. Eq. (18) can be applied for any polar 1Σ
ion -He collision for 150 K ≤ T ≤ 400 K.

TABLE III. State-to-state rate coefficients for MgH+-He and
BaH+-He as a function of the temperature T (in K). The rates
are in units of 10−10 cm3s−1

MgH+ BaH+

T k0→1 k0→2 k0→3 k0→4 k0→1 k0→2 k0→3 k0→4

150 3.00 1.02 0.56 0.37 4.04 1.45 0.80 0.52

200 3.28 1.14 0.63 0.42 4.38 1.59 0.88 0.57

250 3.50 1.23 0.68 0.45 4.63 1.69 0.93 0.61

300 3.64 1.29 0.72 0.47 4.80 1.76 0.98 0.64

In principle, one can assume that the inelastic rate
coefficient might be of the same order of magnitude as
the Langevin rate coefficient, which only accounts for the
αR−4/2 long range interaction and it is independent of
the temperature. The Langevin rate coefficients for the
system studied in this section are 5.7 ×10−10 cm3s−1 and
5.4 ×10−10 cm3s−1 for BaH+ - He and MgH+ - He, re-
spectively. Comparing these numbers with the results
shown in Table III, the Langevin rate coefficient is big-
ger than the accurate inelastic rate coefficient for the ex-
change of a single rotational quanta by a factor of two in
the range 150K≤ T ≤ 300 K. However, the comparison is
worst for state-to-state processes involving the exchange
of two rotational quanta or more, observing deviations
up to one order of magnitude. This deviation is a con-
sequence of the influence of the dipole moment of the
molecular ion leading to an extra long-range tail ∝ R−5

which plays a role in the rotational dynamics.

B. 2Σ ion -He relaxation

Here, we present the results for the rotational relax-
ation associated with SiO+ - He. As in the previous sec-
tion, Sl(k, δ) is obtained by solving Eq. (6) for different
collision energies Ek and partial waves l, and matching
with the proper scattering boundary conditions. Then,
by means of Eq. (15) and taking into account the orthog-
onality relations for the Legendre polynomials one finds

Sl
λ(k) =

2λ+ 1

2

∫ π

0

Sl(k, δ)Pλ(cos δ) sin δdδ, (19)
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λ=1

λ=2

λ=4

FIG. 6. (Color online) State-to-state rotational relaxation
cross section (in a20) out of the N = J = S = 0 state for
SiO+(2Σ) - He collisions as a function of the collision energy
Ek (in K). The permanent dipole moment for SiO+ taking in
these calculations is 3.0982 Debye.

which is numerically implemented by employing 128
Gauss-Legendre quadrature points. Next, following
Eq. (14) one computes the energy dependent state-to-
state inelastic transitions out of the N = J = S = 0
state σ0→λ(k), where λ = 1, 2, ..., q represents a rota-
tional transition to N ′ = 1, 2, .., q, and the results are
shown in Fig. 6. In this figure it is noticed that the
state-to-state cross section for λ = 1 shows the biggest
value followed by λ = 2 and λ = 4. This trend shows
the influence of the anisotropy of the underlying PES at
the energy range explored here, in particular it implies in
the Legendre expansion of the PES V (R, δ) the dominate
term will be the linear one, followed by the second one
and so on. In the same figure the results for λ 6= 1 show
some undulations that we attribute to the short-range
physics and hence are classified as glory undulations.
The most appropriate physical magnitude to account

for relaxation is the state-to-state rate coefficient, which
in the present case thanks to the linear properties of the
integral operator allow us to define it as

kNSJ→N ′SJ′(T ) =
∑

λ

(2N ′ + 1)(2N + 1)(2J ′ + 1)

{

λ J J ′

S N ′ N

}2(

N ′ N λ

0 0 0

)2

k0→λ(T ),

(20)

where the state-to-state rate coefficient out of N = J =
S = 0 state is given by

k0→λ(T ) = 〈v〉β2

∫ ∞

0

σ0→λ(Ek)Eke
−βEkdEk. (21)

The results of k0→λ(T ) for different temperatures are dis-
played in Table IV, where all the rate coefficients show a
similar trend with respect to the temperature, in accor-
dance with the results for other atom-molecule collisions
rendered in Table III. In this table it is observed that
the influence of 0 → 4 transition is one order of mag-
nitude smaller than the 0 → 1, thus only including up
to λ = 4 is enough to have a satisfactory description of
the state-to-state rate coefficient. From the results pre-
sented in Table IV is possible to calculate any state-to-
state rate coefficient from Eq. (20) by taking into account
the proper angular momenta algebra throughout the 3j
and 6j symbols.

TABLE IV. State-to-state rate coefficients for SiO+-He as a
function of the temperature T (in K). The rates are in units
of 10−10 cm3s−1

T k0→1 k0→2 k0→3 k0→4

50 1.45 0.46 0.24 0.16

100 1.89 0.63 0.35 0.23

150 2.17 0.75 0.42 0.28

200 2.39 0.84 0.47 0.32

250 2.57 0.92 0.52 0.36

300 2.72 0.98 0.56 0.38

The results presented in Table IV are more attractive
if we show them as a function of temperature as

k0→λ(T ) =
Aλ

√
d

(kBT )ξλ
〈v〉, (22)

where Aλ is a fit parameter (having the same units as
AN ′) that depends on the final state, ξλ is a free param-
eter, and hence k0→λ(T ) in Eq. (22) is in atomic units.
In particular, we find A1 = 23.74± 0.2, ξ1 = 0.15± 0.2,
A2 = 13.95± 0.2, ξ2 = 0.08, A3 = 11.36± 0.2, ξ3 = 0.03,
A4 = 8.92± 0.2 and ξ4 = 0.01 leading to an overall error
of 5% in comparison with the full numerical simulations.
Eq. (22) can be applied for any polar 2Σ ion -He collision
for 15 K ≤ T ≤ 400 K.

For this molecular ion-atom collision the Langevin rate
coefficient is 5.5×10−10 cm3s−1 which is a factor of two
to three times bigger than the obtained in the present
simulations for the exchange of one rotational quanta and
one order of magnitude bigger than transitions regarding
exchange of multiple rotational quanta. This difference,
as well as the deviation presented in the previous section
are due to the role of the R−5 potential, since it plays an
important role in the range of collision energies studied
in this work. Thus, showing the influence of the dipole
moment of the molecular ion at hand.
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IV. CONCLUSIONS

In the present work, the IOS approximation has been
reviewed and applied to the study of the rotational in-
elastic cross section for 1Σ and 2Σ molecular ion-He col-
lisions. In particular we have presented a study of the
state-to-state rate coefficient for MgH+ - He and BaH+ -
He from 150 K to 300 K, whereas SiO+ - He collisions
have been studied from 15 K to 300 K, the range of va-
lidity of the IOS approximation in those collisions. From
the state-to-state rate coefficients and based on a cap-
ture model we propose a pseudo-empirical expression for
the rate coefficient in terms of the temperature and the
permanent dipole moment of the molecular ion d, which
weakly depends on T but is proportional to

√
d. The

obtained functional form is applicable to all 1Σ and 2Σ
heteronuclear molecular ions colliding with He. As a re-
sult, the rotational relaxation mechanism in BaH+-He
will be 15% more efficient than in MgH+. Therefore,
BaH+ seems to be a very good candidate for rotational
relaxation of molecular ions in contact with a buffer gas.
In a similar vein, the study of SiO+ - He shows a compa-
rable state-to-state rate coefficient to MgH+ - He, thus it
is fairly good candidate for collisional-assisted rotational
cooling.

The range of applicability of the IOS approximation
has been explored for many different molecular ions with

interest in cold chemistry experiments. In particular, by
comparing the IOS state-to-state cross section with re-
spect to the coupled-channel method, it is found that it
may be valid down to collision energies ∼ 100 K in the
case of BaH+ - He with an error <∼20 %, for MgH+ -
He at ∼ 200 K the error is <∼ 25 %. In the case of
BaCl+ - He the IOS approach gives fairly accurate inelas-
tic cross sections down to energies ∼ 10 K with and error
<∼ 25 %. These very encouraging results may have im-
portant applications in the theoretical study of rotational
relaxation of molecular ions in contact with a buffer gas.
Finally, it is worth emphasizing that the IOS approx-
imation brings the opportunity to have fairly accurate
state-to-state cross sections with just a handful of inelas-
tic cross sections starting at N = 0. Thus, characterizing
the energy dependence of these brings an intuitive way to
characterize the state-to-state cross sections, which is not
possible with a more accurate but complex close-coupled
approach to the problem.

V. ACKNOWLEDGEMENTS

We thank Brian Odom and Pat Stollenwork for helpful
and elucidating discussions as well as for carefully reading
the manuscript. This material is based upon work sup-
ported by the National Science Foundation under Grant
No. 1404419-PHY.

[1] F. H. J. Hall, M. Aymar, N. Bouloufa, O. Dulieu, and
S. Willitsch, Phys. Rev. Lett. 107, 243202 (2011).

[2] F. H. J. Hall, P. Eberle, G. Hegi, M. Raoult, M. Aymar,
O. Dulieu, and S. Willitsch, Mol. Phys. 111, 2020 (2013).

[3] F. H. J. Hall, M. Aymar, M. Raoult, O. Dulieu, and
S. Willitsch, Mol. Phys. 111, 1683 (2013).

[4] A. Härter and J. H. Denschlag, Contemporary Physics
55, 33 (2014).

[5] L. Ratschbacher, C. Zipkes, C. Sias, and M. Köhl, Nat.
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