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We derive necessary conditions for any 2-fermion reduced density matrix (2-RDM) to be rep-
resentable by a pure N-fermion density matrix ΨΨ∗ where Ψ is the wave function. These pure
N-representability conditions of the 2-RDM are important because they provide stringent con-
straints beyond those from the Pauli and the generalized Pauli constraints on the structure of
many-fermion 2-RDMs and their wave functions. The pure 2-RDM conditions are derived as gen-
eralized Pauli constraints on effective one-fermion reduced density matrices (1-RDMs) generated
by the removal or addition of a fermion from the wave function. Computationally, we show for
4-electron molecules that the derived pure N-representability conditions are non-trivially active for
exact ground-state 2-RDMs and that they provide significant restrictions beyond the D, Q, and
G ensemble N-representability conditions. Constraints on higher-order p-RDMs where p > 2 are
derived in a similar fashion. The constraints have potentially significant applications to comput-
ing strongly correlated many-fermion states with enhanced accuracy and decreased computational
complexity.

PACS numbers: 31.10.+z

I. INTRODUCTION

In 1925 Pauli [1] recognized that for fermions the oc-
cupation of a spin orbital must lie between zero and one.
The following year Heisenberg [2] and Dirac [3] recog-
nized that the Pauli exclusion principle can be general-
ized by requiring that the many-fermion wave function
be antisymmetric in the exchange of the spin spatial co-
ordinates for a pair of fermions. In 1963 Coleman [4–6]
proved that the Pauli constraints on the one-fermion re-
duced density matrix (1-RDM), which require its eigen-
values to lie between 0 and 1, are necessary and suf-
ficient conditions for its integration from at least one
N -electron ensemble density matrix, known as ensem-

ble N -representability conditions. The scenario, orig-
inally considered by Heisenberg and Dirac, that the
1-RDM is representable by an N -fermion wave func-
tion, or more precisely derivable from an N -fermion
pure density matrix ΨΨ∗, implies additional restrictions
on the 1-RDM beyond the Pauli constraints, known as
pure N -representability conditions or generalized Pauli

constraints [4, 7–25]. In 2008 Altunbulak and Kly-
achko [10, 11] employed enumerative geometry in the
form of Schubert calculus to derive the generalized Pauli
constraints on the 1-RDM, which have recently been ex-
plored numerically for the ground and excited states of
harmonic and spin systems [12, 18, 19, 23], few-electron
atoms and molecules [13–15, 20, 21, 24, 25], as well as
time-dependent and open quantum systems [16]. Re-
markably, these calculations have shown that for many
3-electron systems the ground-state wave functions have
1-RDMs whose eigenvalue spectra are pinned to the gen-
eralized Pauli constraints. An eigenvalue spectra is said
to be pinned (or quasi-pinned) to an inequality constraint
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if it saturates (or nearly saturates) the inequality. This
pinning implies a simplification of the structure of the
many-electron wave function [12, 14, 24, 25] with impli-
cations for the treatment of strongly correlated quantum
systems.

While mathematical constructions of the generalized
Pauli constraints on the 1-RDM [10, 11] and the ensem-
ble N -representability constraints on the 2-fermion re-
duced density matrix (2-RDM) [26–29] are known, not
much is known about the pure N -representability of the
2-RDM [6, 9, 11]. In this paper we derive a large set
of necessary pure N -representability conditions on the 2-
RDM and higher p-RDMs that extends the generalized
Pauli constraints on the 1-RDM to the 2- and higher-
fermion RDMs. The key insight is that the ionization
of a pure N -fermion quantum system generates a pure
(N − 1)-fermion quantum system whose 1-RDM must
also satisfy the generalized Pauli constraints. Because
the 1-RDM of the ionized quantum system is expressible
in terms of the 2-RDM of the N -fermion quantum sys-
tem, the 1-RDM’s generalized Pauli constraints generate
pure N -representability constraints on the 2-RDM. By
particle-hole symmetry additional pure constraints on the
2-RDM are derivable from the attachment of a fermion to
theN -fermion quantum system. In addition to being pre-
viously unknown, pure N -representability conditions on
the 2-RDM are important because the pinning of the 2-
RDM to these conditions enforces special structure on the
class of ground-state 2-RDMs and many-fermion wave
functions, which potentially can be exploited to decrease
the computational scaling of strongly correlated many-
fermion systems, i.e. through the exploitation of implied
sparsity in the expansion of the wave function [12, 25]
or implied restrictions on the feasible set of 2-RDMs in
variational 2-RDM calculations [6, 30–52].

Computationally, the pure N -representability condi-
tions derived for arbitraryN are explored on several four-
electron molecules including H4, HeH

−, He2, BeB
+, and
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Be2. First, we show that the ground-state wave func-
tion of each of these molecules is pinned to the boundary
of the necessary conditions. This observation is impor-
tant because it demonstrates (i) that the boundary of
the approximate set of 2-RDMs generated by the neces-
sary conditions touches the boundary of the exact pure
N -representable set of 2-RDMs and (ii) that the spe-
cial structure implied by pinning to the conditions is
not an approximation for these molecules’ wave func-
tions and 2-RDMs. Second, we show that combining
the pure conditions with the typically employed ensem-
ble N -representability conditions, the D, Q, and G con-
ditions [6], is more stringent than the ensemble condi-
tions alone. Specifically, the approximate 2-RDMs from
variational minimization with respect to the D, Q, and
G conditions alone are shown to violate these pure N -
representability conditions.

II. THEORY

The pure N -representability conditions of the 1-RDM,
or the generalized Pauli constraints, can be expressed in
terms of the eigenvalues of the 1-RDM [4, 7–25]. Work-
ing at IBM in 1972, Borland and Dennis [8] discovered
the following constraints on three-electron systems in six
orbitals:

λ5 + λ6 − λ4 ≥ 0 (1)

λ1 + λ6 = 1 (2)

λ2 + λ5 = 1 (3)

λ3 + λ4 = 1 (4)

where the eigenvalues λi are ordered from largest to
smallest. These additional conditions beyond the Pauli
constraints are necessary for the 1-RDM to be repre-
sentable by an N -electron wave function. Generalization
of the Borland-Dennis constraint to larger numbers of
particles and orbitals, derived by Altunbulak and Kly-
achko [10, 11], provides a hierarchy of necessary and
sufficient conditions that characterize set of pure N -
representable 1-RDMs.
The set P 1

N,r of pure N -representable 1-RDMs in r
orbitals is expressible in general as

{1D|Tr(1Ôm
1D) ≥ 0 ∀1Ôm ∈ B1

N,r} (5)

where B1
N,r is the set of operators that expose the bound-

ary of P 1
N,r. An operator is said to expose a convex set if

its expectation value over points in the set has its min-
imum at a point (or points) on the boundary. In the
present case each operator in B1

N,r has a nonnegative ex-

pectation value for each point inside the set P 1
N,r with a

minimum expectation value of zero at a point (or points)
on the boundary of P 1

N,r. Because the N -representability
of RDMs is invariant under unitary transformations of
the orbital basis set, the N -representability of the 1-RDM
depends only upon its eigenvalues [4]. Consequently,

TABLE I. A 1-RDM is pure 3-representable by a 3-fermion
wave function in 7 orbitals if and only if the four one-fermion
operators, given in this table in the eigenfunction (diago-
nal) basis of the 1-RDM, have non-negative expectation val-
ues [11].

1Ô1 = 2− â
†
2â2 − â

†
3â3 − â

†
4â4 − â

†
5â5

1Ô2 = 2− â
†
1â1 − â

†
3â3 − â

†
4â4 − â

†
6â6

1Ô3 = 2− â
†
1â1 − â

†
2â2 − â

†
4â4 − â

†
7â7

1Ô4 = 2− â
†
1â1 − â

†
2â2 − â

†
5â5 − â

†
6â6

without approximation we can restrict the set P 1
N,r to 1-

RDMs in a given eigenfunction (diagonal) basis set with
eigenvalues ordered in a non-increasing sequence. In this
case the set P 1

N,r becomes a convex polytope with diag-

onal operators 1Ôm defining its facets. For example, for
three electrons in seven orbitals there exist four distinct
operators 1Ôm, given in Table I where â

†
i and âi are the

creation and annihilation operators with respect to or-
bital i [11]. In Table I, if the second-quantized operators
associated with the seventh natural orbital are neglected,
then the operators 1Ôm, define a set of inequalities that
can be shown to be equivalent to the Borland-Dennis
constraints in Eqs. (1-4).
Necessary pure N -representability conditions on the 2-

RDM can be derived by applying the generalized Pauli
constraints to a parameterized family of effective 1-
RDMs. They are presented in the following theorem:
Theorem: If a 2-RDM is pure N -representable by a
wave function Ψ in the space ∧N

r H , then it must satisfy
the following constraints:

Tr(1Ôm
1D̃) ≥ 0 ∀1Ôm ∈ B1

N−1,r−1 (6)

in which

1D̃
q
t = κ

∑

p,s

c∗p
2D

pq
st cs. (7)

where the effective 1-RDM 1D̃ is expressible in terms of
the 2-RDM, the arbitrary parameters cs, and the con-
stant κ that normalizes 1D̃ to (N − 1) and the indices
p, q, s, and t, ranging from 1 to r, denote the orbitals.
Proof: Consider the evaluation of the generalized Pauli
constraints

〈Ψ̃|1Ôm|Ψ̃〉 ≥ 0 ∀1Ôm ∈ B1
N−1,r−1 (8)

where Ψ̃ is an (N − 1)-fermion wave function generated
by removing a particle from the N -fermion wave function

|Ψ̃〉 =

(

∑

s

csâs

)

|Ψ〉 (9)

|Ψ̃〉 = âu|Ψ〉 (10)

in which |φu〉 =
∑

s cs|φs〉. Eq. (10) shows that not only a
fermion but also the transformed orbital |φu〉 is removed,
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and hence, Ψ̃ lies in the space ∧N−1

r−1 H . The choice of
the parameters cs determines the orbital |φu〉 that is re-
moved. Substituting Eq. (9) into Eq. (8) and using the

second-quantized expansion of the 1Ôm operators

1Ôm =
∑

qt

(1Ôm)qt â
†
q ât, (11)

we obtain

κ
∑

qt

(1Ôm)qt
∑

ps

c∗p〈Ψ|â†pâ
†
qâtâs|Ψ〉cs ≥ 0 (12)

κ
∑

qt

(1Ôm)qt
∑

ps

c∗p
2D

pq
st cs ≥ 0 (13)

∑

qt

(1Ôm)qt
1D̃

q
t ≥ 0, (14)

with Eq. (14) being equivalent to Eq. (6).
Physically, the pure N -representable 2-RDM condi-

tions in the theorem can be understood in terms of elec-
tron detachment or ionization. The ground states of
many three-electron quantum systems have been shown
to be pinned to the Borland-Dennis inequality [14, 15, 19,
24]. In contrast, the singlet ground states of even-electron
quantum systems are not pinned to the generalized Pauli
constraints [14, 24]; in fact, the generalized Pauli con-
straints for even-electron quantum states with singlet
spin symmetry, or more generally time-reversal symme-
try, reduce to the conventional Pauli conditions [14, 24].
The one-electron ionization of the even-electron wave
function, however, yields an odd-electron wave function
that possesses non-trivial generalized Pauli constraints.
The generalized Pauli constraints with respect to the ion-
ized wave function can be evaluated with respect to the
2-RDM of the original unionized wave function. Com-
putationally, we will show that the pure representabil-
ity constraints of the theorem define at least parts of
the boundary of the exact pure 4-representable set of 2-
RDMs.
For every representation of a many-fermion quantum

system, there exists by particle-hole symmetry an equiv-
alent, equally valid representation in which the particles
and the holes of the quantum system are exchanged. For
example, with respect to the ensemble N -representability
conditions of the 2-RDM, particle-hole symmetry means
that both the two-particle and the two-hole RDMs must
be positive semidefinite [4–6, 53]:

2D � 0 (15)
2Q � 0 (16)

where

2Q
pq
st = 2δps ∧ δ

q
t − 41Dp

s ∧ δ
q
t +

2 D
pq
st . (17)

The δps is the Kronecker delta function and ∧ is the
Grassmann wedge-product operator [33, 54]. The symbol
M � 0 indicates that the matrix M is positive semidef-
inite. A matrix is positive semidefinite if and only if its

eigenvalues are nonnegative. By particle-hole symmetry,
we have the following corollary to the theorem:
Corollary: By particle-hole symmetry, in addition to
the constraints in the above, a pure N -representable 2-
RDM corresponding to a wave function Ψ in the space
∧N
r H must also satisfy the following constraints:

Tr(1Ôm
1Q̃) ≥ 0 ∀1Ôm ∈ B1

r−N−1,r−1 (18)

in which

1Q̃
q
t = κ

∑

p,s

c∗p
2Q

pq
st cs (19)

where the effective 1-RDM 1Q̃ is expressible in terms of
the 2-hole RDM 2Q, the arbitrary parameters cs, and
the constant κ that normalizes 1Q̃ to (r − N − 1). The
proof of corollary is identical to the proof of the theorem
with the roles of particles and holes reversed. Physically,
these constraints correspond to testing generalized Pauli
constraints with respect to wave functions formed by the
removal of a hole.
The pure N -representability conditions can be readily

extended to p-fermion RDMs where p > 2. For example,
the pure N -representability conditions of the 3-RDM can
be derived from considering the following three types of
modified wave functions:

|Ψ̃〉 =

(

∑

st

cstâsât

)

|Ψ〉 (20)

|Ψ̃〉 =

(

∑

st

cstâ
†
sât

)

|Ψ〉 (21)

|Ψ̃〉 =

(

∑

st

cstâ
†
sâ

†
t

)

|Ψ〉 (22)

which correspond to (N − 2)-, N -, and (N + 2)-particle
wave functions, respectively. Evaluation of the gener-
alized Pauli constraints with respect to each of these
three types of wave functions can be accomplished from a
knowledge of the original wave function’s 3-RDM. There-
fore, as in the theorem for the 2-RDM, we have a large
class of pure N -representability conditions on the 3-
RDM. Similarly, we can act on the original wave function
with a general polynomial in (p−1) second-quantized op-
erators to generate pure N -representability conditions on
the p-RDM.

III. APPLICATIONS

The derived pure N -representability conditions on the
2-RDM are applied to a family of four-electron molecules
in eight orbitals including linear and square H4, He2,
HeH−, Be2, and BeB+. Each of the molecules is treated
in the Slater-type orbital (STO-6G) basis set [55] except
for He2 and HeH− which are treated in the 6-31G basis
set [56]. Bond distances are consistently set to 1.2 Å.
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TABLE II. For a family of 4-electron molecules we report the
distance from the FCI 2-RDM (1-RDM) to the most saturated
constraint (facet) of the approximate pure 2-RDM set (exact
pure 1-RDM set). For all molecules while the 1-RDMs of the
singlet ground states of the four-electron molecules are not
pinned to the generalized Pauli constraints, the 2-RDMs are
pinned to at least one of the necessary pureN-representability
conditions in Eqs. (6) and (18).

Correlation Distance to the Most Saturated Facet
Molecule Energy Pure 1-RDM Set Pure 2-RDM Set
H4(l) -0.099861 0.034475 1.05× 10−13

H4(s) -0.263197 0.047194 6.04× 10−14

He2 -0.029180 0.003631 2.92× 10−14

HeH− -0.024936 0.004020 3.04× 10−16

Be2 -0.075794 0.001086 7.00× 10−14

BeB+ -0.107221 0.001247 8.51× 10−14

TABLE III. For approximate 2-RDMs of 4-electron molecules
from variational calculations with D, Q, and G conditions,
we report the distance of the 2-RDM (1-RDM) to the most
violated constraint (facet) of the approximate pure 2-RDM
set (exact pure 1-RDM set). While for all molecules the
generalized Pauli constraints describing the pure 1-RDM set
are not violated (positive distances), the necessary pure N-
representability conditions in Eqs. (6) and (18) are signifi-
cantly violated (negative distances).

Correlation Distance to the Most Violated Facet
Molecule Energy Pure 1-RDM Set Pure 2-RDM Set
H4(l) -0.103306 0.036652 -0.038903
H4(s) -0.270976 0.048713 -0.157273
He2 -0.029220 0.003647 -0.002336

HeH− -0.025011 0.004027 -0.005478
Be2 -0.076187 0.001270 -0.004230
BeB+ -0.107375 0.001337 -0.011253

Core orbitals and the px and py orbitals of Be and B
are excluded. Both exact and approximate 2-RDMs are
computed. The exact 2-RDMs are obtained from the
ground-state wave function from diagonalization of the
four-electron Hamiltonian, known as full configuration
interaction (FCI), and the approximate 2-RDMs are ob-
tained from variational calculations of the 2-RDM [6, 34–
51] subject to the necessary ensemble N -representability
conditions, known as the D, Q, and G constraints [26, 28].
The degree of pinning of the 2-RDM to a set of con-
straints is assessed by reporting the distance of the effec-
tive 1-RDM in Eqs. (7) and (19) to the most saturated
constraint (facet of the set). If an approximate 2-RDM
violates one or more constraints, we report the distance
to the most violated constraint (facet of the set) with the
distance being given a negative sign to indicate that the
2-RDM lies outside the set described by the constraint.
The most saturated or violated constraint is identified by
(i) minimizing the residual of each inequality in Eqs. (6)
and (18) with respect to the parameters in the effective 1-
RDM and (ii) selecting the constraint in (i) that has the

minimum residual. We use the Euclidean ℓ2 metric [57]
to define the distance to the boundary of each set (other
metrics such as the ℓ1 metric, the trace distance, or the
Bures metric, which is related to quantum fidelity, can
also be employed [58]).

For a family of four-electron molecules Table II reports
the distance from the FCI 2-RDM (1-RDM) to the most
saturated constraint (facet) of the approximate pure N -
representable 2-RDM set (exact pure 1-RDM set). While
the 1-RDMs of the singlet ground states of the four-
electron molecules are not pinned to the generalized Pauli
constraints, the 2-RDMs of all 6 molecules are pinned to
at least one of the necessary pure N -representability con-
ditions in Eq. (6) [or (18)]. The results are not sensitive
to the distance metric chosen; for example, the 2-RDMs
are pinned to the pure conditions of the 2-RDM with
respect to any metric. These 2-RDM conditions are gen-
eralized Pauli constraints for 3 electrons in 7 orbitals (or
5 electrons in 7 orbitals) in Table II applied to the effec-
tive 1-RDMs in Eq. (7) [or (19)]. The addition or sub-
traction of an electron changes the singlet even-electron
wave function to a non-singlet odd-electron wave function
where the generalized Pauli constraints do not reduce to
the Pauli constraints and hence, the 2-RDM conditions
are non-trivial. Furthermore, the pinning of the ground-
state FCI 2-RDMs to one or more of the pure 2-RDM
conditions demonstrates that at least for 4-electron sys-
tems the necessary conditions describe a pure 2-RDM
set whose boundary intersects significantly with the ex-
act pure 2-RDM set.

The variational calculation of the 2-RDM with respect
to necessary N -representability conditions yields an en-
ergy that is a lower bound to the FCI ground-state en-
ergy [6]. The energy is a rigorous lower bound because
the 2-RDM is optimized with respect to a set of 2-RDMs
that is larger than the set of N -representable 2-RDMs.
For approximate 2-RDMs of 4-electron molecules from
variational calculations with D, Q, and G conditions, Ta-
ble III reports the distance of the 2-RDM (1-RDM) to the
most violated constraint (facet) of the approximate pure
2-RDM set (exact pure 1-RDM set). For all six molecules
the generalized Pauli constraints describing the pure 1-
RDM set are not violated, as indicated by the positive
distances. In fact, the data shows that the 1-RDMs from
the D, Q, and G constraints in Table III are less pinned
to the generalized Pauli constraints than the exact 1-
RDMs in Table II. In contrast, for all molecules the nec-
essary pure N -representability conditions describing the
approximate pure 2-RDM set are significantly violated,
as evidenced by the negative distances. These violations
are not sensitive to the distance metric chosen. Conse-
quently, the necessary pure N -representability conditions
on the 2-RDM in Eqs. (6) and (18) provide stringent N -
representability conditions beyond the ensemble D, Q,
and G conditions. Preliminary calculations on BeB+ at
4 Å where ensemble DQG conditions have difficulty in-
dicate that the iterative addition of the most violated
constraint raises the correlation energy from its DQG
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lower bound towards its FCI value. After the addition
of 22 pure constraints to the DQG conditions, for exam-
ple, the error in the correlation energy is reduced from
-0.008 a.u. to -0.00031 a.u.

IV. CONCLUSIONS

Necessary pure N -representability conditions have
been derived for the 2-RDM as well as higher-order p-
RDMs where p > 2. Importantly, these conditions extend
the pure N -representability conditions on the 1-RDM,
also known as the generalized Pauli constraints [4, 7–25].
The pure 2-RDM conditions are derived as generalized
Pauli constraints on effective 1-RDMs that are param-
eterized by the removal or addition of a fermion from
the N -fermion wave function. Conditions on the higher
p-RDMs correspond to applying general polynomials of
(p−1) second-quantized operators to the N -fermion wave
function. The pure N -representability conditions on the
2-RDM are important because they provide stringent
constraints beyond those from the Pauli and general-
ized Pauli constraints on the structure of many-fermion
ground-state 2-RDMs and their wave functions. These
constraints have potentially significant applications to

computing strongly correlated many-fermion states with
a decreased computational complexity, i.e. as in the
direct variational computation of the 2-RDM with ap-
proximateN -representability conditions [6, 34–51]. They
are applicable to strongly correlated molecules as well as
model spin systems such as the Hubbard model. Com-
putationally, we showed for 4-electron molecules that the
derived pure N -representability conditions non-trivially
pin (or expose) the exact FCI 2-RDMs and that they
provide significant restrictions beyond the D, Q, and
G ensemble N -representability conditions. Pure N -
representability conditions on the 2-RDM and higher-
order p-fermion RDMs provide new insight into the gen-
eralization of the Pauli exclusion principle by Heisen-
berg [2] and Dirac [3] as well as novel implications for
the description of electron correlation and entanglement
in physics and chemistry.
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[54] W. Slebodziński, Exterior Forms and their Applications

(Polish Scientific Publishers, 1970).
[55] W. Hehre, R. Stewart, and J. Pople, J. Chem. Phys. 51,

2657 (1969).
[56] R. D. W.J. Hehre and J. Pople, J. Chem. Phys. 56, 2257

(1972).
[57] J. E. Harriman, Phys. Rev. A 17, 1249 (1978).
[58] K. Zyczkowski and I. Bengtsson, Geometry of Quantum

States (Cambridge University Press, 2008).


