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In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole
moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound
states and low-lying resonances of such anions is of interest for understanding the threshold behavior
of open quantum systems in general. In this work, we investigate the properties of quadrupolar
anions as halo systems, the formation of rotational bands, and the transition from a subcritical to
supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a non-
adiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains
bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear
triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We
demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for
two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar
anions smoothly extend into the continuum, and many rotational bands could be identified above
the detachment threshold. We study the evolution of a bound state of an anion as it dives into the
continuum at a critical quadrupole moment and we show that the associated critical exponent is
α = 2. Everything considered, quadrupolar anions represent a perfect laboratory for the studies of
marginally bound open quantum systems.

I. INTRODUCTION

Multipolar anions form a unique class of molecular
systems [1–4], whose properties arise from the compe-
tition between the short-ranged electrostatic multipo-
lar potential, nonadiabatic coupling of electronic mo-
tion to molecular rotation, and a strong coupling to the
one-electron continuum. Because their features can be
dramatically influenced by the coupling to the environ-
ment of scattering and decay channels, multipolar an-
ions are excellent examples of open quantum systems
[5–7]. A manifestation of a strong coupling to the one-
or two-particle continuum is the appearance of spatially
extended halo structures [8–15]. Due to the presence
of short-ranged potentials, non-adiabatic rotation, and
low-lying detachment thresholds, multipolar anions are
unique laboratories for other open quantum many-body
systems, such as deformed halo nuclei. Moreover, gen-
eral studies of resonances reveal a plethora of phenomena
present in open quantum systems [16–19], such as excep-
tional points [20, 21], superradiance [22], near-threshold
clustering [23–26], and resonance trapping [27]. Conse-
quently, unique characteristics of multipolar molecules in
the landscape of open quantum systems call for detailed
studies of their resonant spectra.

The striking case of dipolar anions has been extensively
studied [1–4], using effective potentials methods [1, 28–
35] as well as ab initio approaches [36–43]. The asymp-
totic behaviour of the attractive potential 1/r2 gives rise
to an infinite number of bound states [44] for a dipole mo-
ment that is greater than a certain critical value. This

raised a question [45] whether dipole-bound anions could
be a realization of a quantum anomaly [46–50]. An inter-
esting aspect of the inverse square potential whose spatial
extension depends on the hyperradius is its role in the
formation of Efimov states when the scattering length
diverges [12, 13].

The value of the critical moment µc required to bind
an extra electron has been first determined [51] by Fermi
and Teller [52] for a point-dipole (µc = 1.625 D), gener-
alized to an extended dipole with an infinite moment of
inertia [53–59], and then extended to various geometries
[60]. However, high resolution electron photodetachment
experiments [34, 61–65] suggested a greater critical mo-
ment, which appeared to be consistent with nonadiabatic
calculations (µc ∼ 2.5 D) including the rotational degrees
of freedom of the anion [31, 33, 35, 66–71]. In this case,
dipolar anions support only few bound states and the
value of µc depends on the moment of inertia.

Moreover, rotational states in dipolar anions were ex-
pected to be strongly affected by the shallowness of the
molecular potential and the nonadiabatic coupling of the
electronic and molecular rotational motions [34, 64, 71–
74]. The strong coupling of the attached electron to the
continuum [75–81] renders the picture even more com-
plex, with the existence of low-energy narrow resonances
[61, 82–84] and antibound (or virtual) states [85–87] in
various systems, and the modification of the Wigner’s law
[88–90] for the dipolar field [70, 91–93], first observed in
hydrogen atoms [94, 95] and then extended to different
power-law potentials [91, 92].

In a previous study, using a pseudopotential method
and the Berggren expansion technique [96], we showed
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that in hydrogen cyanide anions HCN− the competition
between continuum effects and rotations leads to a transi-
tion from the subthreshold strong-coupling regime, where
the external electron is in a spatially extended bound halo
state that follows the rotational motion of the molecule,
to the weak-coupling regime, where the electron and
molecular motions are largely decoupled.

The quadrupolar anions case seems more straightfor-
ward. The inverse cube potential 1/r3 can support bound
states for any attractive value of the quadrupole moment
and for a finite moment of inertia of the molecule; its
asymptotic solutions are the Hankel functions [44]. How-
ever, it has been an experimental challenge to find sys-
tems where the excess electron is bound only due to the
electric quadrupole moment [4, 97]. While the attach-
ment of an electron by a pure quadrupolar field has been
proposed theoretically already in 1979 [98] for beryllium
oxide anions (BeO)−2 , the first experimental evidence of a
quadrupole-bound anion has been obtained only in 2004
[99], for the trans-succinonitrile (NC −CH2 −CH2 −CN)
molecule, whose gauche conformer is actually dipole-
bound. Even octupole-bound anions have been reported
experimentally [100] as early as in 2000. Recently, state-
of-the-art ab initio calculations on several quadrupole-
bound anion candidates [101, 102] concluded that the
quadrupole binding is much weaker than dipole binding
as the electron-molecule potential is not dominated by
one component.

One of the reasons is that the attractive 1/r3 potential
can attach an electron in very localized states [29, 30],
near the neutral polar molecule. It is thus difficult if not
impossible in realistic conditions, to disentangle whether
the electron’s binding energy comes solely from the long-
range quadrupolar field [103–105]. As a case in point,
the (BeO)−2 anion has a rhombic neutral form with a zero
dipole-moment and a large quadrupole moment, and is
quadrupole-bound in its ground state (g.s.) according
to ab initio calculations [106], but a critical quadrupole
moment cannot be defined as for dipolar anions.

A controversial example remains the carbon disulfide
CS−2 quadrupole-bound candidate. On the one hand, it
can be argued that its quadrupole moment, −2.67466 ea20,
is insufficient to attach an electron [106], but, on the
other hand, it has a simple linear geometry in its neutral
form, and ab initio calculations [105] have shown that
CS−2 can exist in an excited linear configuration that is
stable towards autodetachment by about 0.0012 Ry, an
energy compatible with binding energies in polar anions.
Experimentally, the situation is also difficult to interpret
[107]. Indeed, Rydberg electron transfer data [108–112]
show a characteristic sharp peak in the Rydberg effec-
tive principal quantum number n∗∼17 dependence for the
formation of CS−2 that undergo electric-field-induced de-
tachment. This is usually understood as a signature of
dipole- or quadrupole-bound states [67, 113].

While CS−2 has a positive electron affinity of ∼0.05 Ry
[105, 114, 115], it does not easily attach a free electron
directly to form a long-lived anion due to rapid autode-

tachment [116], and a stabilization process is required
for its formation [109]. Moreover, the g.s. of CS−2 is
bent [109, 110, 114, 117] with an angle of about 132○.
The predicted linear excited state of CS−2 thus appears
as a “doorway state” to the g.s. [113, 118]. This is
also suggested by the fact that the n∗ ∼ 17 energy is
close to the bending vibrational energy of the CS−2 g.s.
[107, 109, 110]. Whether the linear excited state of CS−2
is a pure quadrupole-bound state or not, cannot be an-
swered using simple models. However, simple models al-
low to shed light on particular aspects of problems, such
as, for example, the role of the rotational motion in the
critical binding of an electron on an electric dipole.

We propose to investigate general properties of lin-
ear quadrupole-bound and unbound anions, using an
electron-plus-rotor model and by taking into account the
particle continuum. In this picture, the linear core is rep-
resented as a triad of point charges [119, 120] separated
by a distance s, with two possible configurations: oblate
(−q,2q,−q) and prolate (q,−2q, q) with q > 0. Consid-
ering the cylindrical symmetry along the molecule axis
(z-axis), and according to the Buckinkham convention
[121], the quadrupole moment of the linear molecule
Qzz = ∑i qiz

2
i is given by Q±

zz = ±2qs2, where the sign
of Qzz is given by the sign of the extremal charges in the
triads [122].

For this simple geometry of the system and in the adi-
abatic limit, i.e., for an infinite moment of inertia of the
neutral molecule, it is possible to calculate very precisely
the positive and negative critical electric quadrupole mo-
ments of the core required to attach an excess electron
[123] in a Jπ = 0+ state. In Ref. [123], using the finite-
size scaling method [124–127], it has been shown that the
adiabatic Hamiltonian of the quadrupole-bound anions
scales in the parameter qs = qs and this scaling property
can be used to calculate the critical quadrupole moment
Q±
zz = ±2qss. The critical values of qs have been found

to be: q+s,c = 3.98251 (ea0) and q−s,c = 1.46970 (ea0), for
prolate and oblate critical quadrupole moments, respec-
tively. These values are consistent with results of nu-
merical calculations [128]. The quality of these estimates
comes from the analyticity of the scaling property of the
critical quadrupole moments. For that reason, we shall
refer to these results as analytical in the following, even
if they were arrived at numerically.

This paper is organized as follows. The model Hamilto-
nian is presented in Sec. II, as well as the coupled channel
formulation of the Schrödinger equation and the meth-
ods used to solve it. The results are discussed in Sec. III.
We benchmark our numerical calculations by compar-
ing them to the analytical values of the critical electric
quadrupole moments. Thereafter follows the general dis-
cussion of quadrupolar anions as halo systems, and we
analyze the properties of the g.s. band in the continuum.
Finally, we discuss resonant spectra, with an emphasis
on quasi-degenerate states. We also study the evolution
of resonant states with the electric quadrupole moment.
The conclusion and outlook are contained in Sec. IV.
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II. MODEL AND METHODS

A. Hamiltonian

The schematic description of quadrupolar anions, in
terms of a neutral molecular core plus an attached elec-
tron, is partially justified by the scale separation be-
tween binding energies of valence electron of the neutral
molecule, and the energy attachment of the extra elec-
tron. However, microscopic studies have shown that for
the quadrupolar potential the attached electron in the
g.s. configuration is still rather close to the “core”. In
this study, however, we are interested in the low-energy
states of quadrupolar anions, and in particular their res-
onances. For these very extended states the scale sepa-
ration argument applies well [129, 130].

The rotational degrees of freedom of the molecular core
are included within the particle-plus-rotor model [131]
in a non-adiabatic manner as described in Refs. [35, 74,
96]. Moreover, since the attached electron is assumed to
be rather far from the core, the spin-orbit interaction is
neglected. In this picture, the model Hamiltonian can be
written as:

H =
p2
e

2me
+
j2r
2I

+ V (1)

where pe is the linear momentum of the attached elec-
tron, me – its mass, and I is the moment of inertia
of the molecule. The total angular momentum is thus
J = ` + jr, with ` being the orbital angular momentum
of the electron, and jr the molecular angular momentum.
The pseudopotential V that describes the interaction be-
tween the core and the electron [122] is expressed through
a multipole expansion:

V (r, θ) = ∑
λ

Vλ(r)Pλ(cos θ), (2)

where the radial part Vλ(r) is the electrostatic potential
of the linear charge distribution (±q,∓2q,±q):

Vλ(r) =
e

4πε0

Q±

s2

⎧⎪⎪
⎨
⎪⎪⎩

1
r>
− 1
r

for λ = 0

( r<
r>

)
λ

1
r>

for λ = 2,4,6 . . .
(3)

with r> = max(r, s) and r< = min(r, s). It is worth noting
that for linear quadrupolar molecules nonspherical dipole
polarization potentials are present that behave as ∼ 1/r4.
Since these short-range terms do not introduce new sym-
metries in the Hamiltonian, one would expect small shifts
in positions but not in the character of energy levels and
resonant structures of the present model, whose energy
thresholds are anyhow adjusted to experiment.

B. Coupled channel equations

The Schrödinger equation can be conveniently ex-
pressed in the coupled-channel (CC) formalism, where

the total wave function for a given total angular momen-
tum Jπ can be written as:

ΨJπ
(r) = ∑

c

uJ
π

c (r)ΘJπ

c , (4)

where the index c labels the channels (`, jr), and uJ
π

c (r)

and ΘJπ

c are the radial and angular channel wave func-
tions, respectively. Since the Hamiltonian is rotationally
invariant, the wave function is independent of the total
angular momentum projection MJ .

The CC equations are obtained by inserting the ansatz
(4) in the Schrödinger equation:

[
d2

dr2
−
`(` + 1)

r2
−
jr(jr + 1)

I
+EJ

π

]uJ
π

c (r)

= ∑
c′
V J

π

cc′ (r)u
Jπ

c′ (r) (5)

where V J
π

c,c′ is the channel-channel coupling potential [35].

C. Berggren expansion method

To solve the CC equations, we apply two methods.
The first is the conventional Direct Integration Method
(DIM), described in Ref. [35]. In DIM, one integrates the
CC equations from a given starting energy. This method
gives very precise results when considering a limited num-
ber of channels, and bound states or fairly narrow reso-
nances. The second method is the Berggren Expansion
Method (BEM), described in Refs. [35, 96], which may
give results slightly less precise than the DIM, if the lat-
ter applies, but much better results for a large number of
channels and for broad resonances. Moreover, since this
technique is based on a diagonalization approach, it does
not require any starting energy to converge and yields
the full spectrum.

In the BEM, each channel wave function in Eq. (4) is
expanded in a single particle basis, the so-called Berggren
basis [132], originally developed for configuration-
interaction calculations in nuclear physics [133]. The
Berggren basis is a generalization of the Newton basis
[134] in the complex plane; it explicitly contains bound
states, decaying resonances, and scattering continuum.
The construction of the Berggren basis for each partial
wave c is done as follows. In the first step, the discrete
resonant (Gamow) solutions φc(ki) of a given spherical
one-body generating potential are calculated assuming
the outgoing boundary conditions. In the next step,
the bound states (ki imaginary) and decaying resonances
(ki = αi − iβi, αi, βi > 0) that are relevant for the descrip-
tion of a physical system are selected and surrounded by
a contour L+c of complex-energy scattering states φc(k)
to ensure the completeness.

The completeness relation for the resulting Berggren
basis corresponding to a channel c is:

∑
i

∣φc(ki)⟩ ⟨φ̃c(ki)∣ + ∫
L+c

dk ∣φc(k)⟩ ⟨φ̃c(k)∣ = 1̂ (6)
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where the contour L+c starts at zero, surrounds the se-
lected resonances and extends to k → +∞. The tilde sym-
bols indicate time-reversal. One may notice that there is
some freedom when it comes to the choice of the Berggen
basis: the form of the generating potential; the selection
of the discrete resonant states entering the completeness
relation; and the form of the contour L+c .

In the present study, the Berggren basis for each par-
tial wave is generated using the diagonal elements Vcc(r)
of the channel-channel coupling potential; such a choice
improves the convergence of calculations. Because of the
Cauchy’s integral theorem, the precise form of the con-
tour L+c is unimportant, provided that all the selected
discrete states lie between the contour and the real axis
in the momentum plane.

The normalization of bound states is standard, while
for decaying resonant states this is accomplished by
means of the exterior complex scaling [135–137]. The
scattering states are normalized to the Dirac delta. In
practical applications, the integral along the contour
L+c in Eq. (6) is discretized using the Gauss-Legendre
quadrature, and the selected scattering states are renor-
malized by the quadrature weights. The normalization
of discretized scattering states reduces in practice to the
Kronecker delta normalization. In the calculations pre-
sented in this study, the shape of the contour has been
defined through three segments: the first segment con-
necting the origin and the point kpeak = kr − iki with
kr, ki > 0; the second segment connecting points kpeak
and kmiddle (real); and the third segment lying on the
real axis between kmiddle and kmax. The momentum cut-
off kmax has to be sufficiently large to ensure the com-
pleteness of the Berggren basis.

Since the Berggren basis explicitly contains bound
states, resonances and scattering states, it is ideally
suited for the description of very diffuse systems, such as
halos or Rydberg states, and also for unstable resonant
states. While the DIM is of limited applicability when
the initial energy required to ensure the convergence has
to be chosen very close to the exact value, the BEM may
also suffer from a related problem. Indeed, the discrete
states entering the Berggren basis are obtained by in-
tegrating the Schrödinger equation with Vcc(r), which
is a process that requires a choice of starting energy. In
many situations, harmonic oscillator expansion of the po-
tential provides a starting point that is good enough to
ensure the converge of the integration method, but for
very weakly bound states or long-range potentials, this
may fail. For that reason, a different approach, less sen-
sitive to the initial conditions, has been proposed.

The idea is to use the fact that the quality of the in-
tegration method with respect to the starting energy, is
deteriorating faster than convergence speed of the eigen-
value Ef < 0. Thus, for a potential W (η) that has a
bound state with E → −∞ when η → +∞, it is always
possible to find a starting energy E0 so that the integra-
tion I(E0, η0) will always converge for a sufficiently large
value of η0 > 0. Once such a point has been found, it is

possible to make the integration to converge to the physi-
cal eigenenergy Ef < 0 at the physical value of ηf > 0 that
defines the actual potential.

Indeed, the initial eigenenergy E0(η0) can be used as
a starting energy to obtain E1(η1) = E1(η0 +∆η(E0))

with η0 > η1 ≥ ηf . The same operation can be re-
peated using E1(η1) as a starting energy to get
E2(η2) = E2(η0 +∆η(E0) +∆η(E1)), with η1 > η2 ≥ ηf .
After N + 1 iterations, one gets:

N

∑
n=0

∆η(En) = ηf − η0 (7)

In order to minimize the number of iterations, the parti-
tion of ηf − η0 can be chosen to exploit the sensitivity of
the direct integration with respect to the starting energy,
which is increasing as E → 0−. Thus the steps ∆η(En)
must be decreasing as E → 0−, to both (i) preserve the
stability of the integration at each step and (ii) minimiz-
ing the number of steps by considering bigger steps for
larger values of E < 0.

To perform the partition of ηf − η0, any series un with
uN = 0 and un > un+1, and which preserves the stability
of the integration, would suffice. If by UN one denotes
the sum of un, then the steps are defined by:

∆Q(En) = (Qf −Q0)
un
UN

(8)

In our case, un = 1/(n + 1) − 1/(N + 1) has provided a
good compromise. Such an improved iterative procedure
for bound states turned out to be helpful for evaluat-
ing the critical value of the parameter η = Q±

zz,c of the
quadrupolar potential, as in this case extraordinary ac-
curacy and stability are required.

D. Identification of resonances

In the Berggren basis, the Hamiltonian matrix becomes
complex symmetric even if the Hamiltonian itself is Her-
mitian. This has a direct practical consequence, since
the diagonalization of the Hamiltonian matrix gives a
set of eigenstates that contain the resonant spectrum
(bound states and resonances) embedded in the dis-
cretized complex-energy scattering continuum. Because
we are interested in resonant states, an identification pro-
cedure has to be used to identify them.

In the absence of poles in the Berggren basis, the over-
lap method [138, 139] usually applied in nuclear physics,
based on the assumption that continuum states play a
perturbative role, cannot be applied. In this case, one
may rely on another property of physical solutions. In-
deed, resonant states given by the diagonalization in the
full space are a priori independent of the precise form of
the contour L+c . The contour-independence of resonant
solutions has been used to identify dipolar anion reso-
nances in Ref. [96]. In the present study, we also utilize
this technique. To this end, we take two contours L+0 and



5

L+1 , which differ by the imaginary part of kpeak and are
discretized using the same number of points. While scat-
tering solutions obtained with these contours are shifted
along the imaginary axis, the resonant states are fairly
insensitive as the precise shape of the contour does not
impact decaying solutions. For the identification of very
weakly bound states and low-lying resonances, that are
only given as a superposition of complex-energy scatter-
ing states in the BEM, the method based on the concept
of contour independence has been essential.

III. RESULTS

A. Critical quadrupole moments

In order to benchmark the DIM and BEM as applied
to quadrupolar anions, our adiabatic-limit results are
compared with the analytical results of Ref. [123] for
the critical electric quadrupole moment Q±

zz,c = ±2q±s,cs.
The internuclear distance s is fixed at 1.6a0 as in
Ref. [122]; this value is close to the internuclear distance
in CS−2 (s = 1.554a0 [140]). The corresponding critical
quadrupole moments are thus Q−

zz,c = −2.35152 ea20 and

Q+
zz,c = 6.372016 ea20.
In the DIM, the parameter that controls the accuracy

of calculations is the orbital angular momentum cutoff
`max that determines the size of the channel basis. For
`max = 12, the DIM gives a critical oblate quadrupole mo-
ment of Q−

zz,c = −2.35162 ea20. In the BEM, in addition
to `max, the momentum cutoff kmax needs to be fixed.
By taking a real contour discretized with 80 points, and
kmax = 12a−10 , one obtains Q−

zz,c = −2.35164 ea20. The crit-
ical oblate quadrupole moment can be approached closely
with both methods, because it corresponds to a config-
uration of the attached electron that is well localized
around a positive charge of two units at the center of the
molecule. Thus, the electron is expected to be primar-
ily in low-` orbits. For the prolate quadrupole moment,
the situation is different. Here, the attached electron,
attracted by the extremal positive charges, is less bound
and higher-` partial waves are expected to play a more
important role. Indeed, as shown on Fig. 1, the DIM
and BEM results do not approach the analytical value
as closely as for the oblate configuration. For `max = 14
(and kmax = 12a−10 ) we obtained Q+

zz,c = 6.3980 ea20 and

6.3984 ea20 with the DIM and BEM, respectively. While
the convergence of Q+

zz,c with `max (and kmax) is slower
than for Q−

zz,c, DIM and BEM results are fairly consis-

tent for `max = 14 and kmax = 12a−10 , and our results are
in agreement with the DIM result of Ref. [122].

In realistic molecules, the effect of Pauli blocking at
short distances [29, 30, 141] reduces the binding in the
oblate configuration; hence, in general, it is the pro-
late configuration that is more likely to bind electrons.
Thus, while the oblate configuration results are useful
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0

FIG. 1. Critical prolate electric quadrupole moment as a func-
tion of the orbital angular moment cutoff in coupled-channel
calculations in the adiabatic limit (I →∞). The internuclear
distance is fixed at s = 1.6a0 and the corresponding value of
Q+zz,c = 6.372016 ea20 is indicated by the dotted line. The DIM
results are marked by stars. The DIM result from Ref. [122]
is denoted by a square at `max = 10. The convergence of the
BEM results with respect to the momentum cutoff is shown
for kmax = 6,8,10, and 12a−10 .

for benchmarking purpose, their physical interpretation
should be dealt with caution.

B. Halo scaling properties

In quantum systems, the wave function may extend
into the classically forbidden region to form the halo
structure [9, 14] when the energy of a bound state ap-
proaches the threshold. In this work, we adopt the
general definition of halo systems proposed in Ref. [9]
as “structures with large probability of configurations
within classically forbidden regions of space”. Such sys-
tems obey the universal radius-energy scaling laws, which
can also be used to identify their halo nature [9]. In the
case of two-body halo systems, the radial extension of
the system, measured by the root-mean-square (r.m.s.)
radius r2rms changes with the separation (or detachment)
energy E and ` according to the simple law [8]:

r2rms ∝

⎧⎪⎪
⎨
⎪⎪⎩

∣E∣
−1

for ` = 0,

∣E∣
− 1

2 for ` = 1,
(9)

while for higher angular momenta r2rms stays finite when
E → 0−. It should be remarked that deformation of the
potential impacts the halo properties only indirectly by
generating the low-` components in the single-particle
wave function [142, 143]. In principle, to compare two-
body halo systems at various scales, the r.m.s. radius and
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the binding energy have to be rescaled for each potential
considered. In the present work, no rescaling have been
applied since we do not intend to compare different halo
systems. Our goal to demonstrate that low-energy bound
states in quadrupolar anions are behaving according to
the laws expressed in Eq. (9).

Figure 2 shows r2rms for the Jπ = 0+ and 2+ states in
both oblate and prolate configurations. The internuclear
distance has been fixed at s = 1.6a0 and the moment of
inertia at I = 104mea

2
0. The quadrupole moment has

been adjusted for both configurations to give a bound
state at around E ∼ −1.0 ⋅ 10−2 Ry and then gradually
changed to approach the critical value. All results have
been obtained using the DIM and for an orbital angu-
lar momentum cutoff of `max = 8. No bound states have
been found for Jπ = 1− and 3−.

There is no difference in the scaling behavior for oblate
and prolate configurations since in both cases the bound
states are dominated by the same channels. The 0+ states
have ` = 0 dominant channels and their r.m.s. radii scale
according to Eq. (9). The 2+ states are dominated by
` = 2 partial waves; here, r2rms reaches an asymptotic limit
slightly below 1000 a20.

For completeness, selected results for dipolar anions
are also shown in Fig. 2 to illustrate the similarity with
quadrupolar systems. The results for the 0+ g.s. of LiI−,
LiCl−, LiF−, and LiH− [35] follow the ` = 0 scaling, while
the radii of 0+, 1−, and 2+ states in HCN− [96] ) ex-
hibit the ` = 1 asymptotic behavior. For both dipolar
and quadrupolar anions, the scaling laws (9) are satisfied
extremely well, with r2rms and ∣E∣ spanning about five or-
ders of magnitude. In this sense, excited bound states of
polar anions should be viewed as extreme halo systems.

C. Rotational bands in the continuum

In a previous BEM study on dipolar anions [96] it has
been shown that the yrast band in HCN− does not extend
above the particle emission threshold. Namely, at the
threshold, there appears a transition from the strong-
coupling regime, in which the attached electron follows
the rotational motion of the core, to the weak-coupling
regime, where the electron’s rotational motion is almost
decoupled from that of the rotor.

Compared to the dipolar potential, the quadrupolar
potential has a faster asymptotic falloff ( ∝ 1/r3) that
may affect the structure of delocalized resonant states.
The impact on localized metastable states is less obvi-
ous. In order to answer this question, the binding en-
ergy for Q−

zz = −2.42 ea20 and Q+
zz = +6.88 ea20 is plotted in

Figs. 3(a) and 3(b), respectively, as a function of J(J+1).
Here we use the same parameters as in the previous sec-
tion (s = 1.6a0 and I = 104mea

2
0). The contour L+c is

identical for all partial waves. It starts at zero and is de-
fined by the three points: (0.3,−10−5), (0.6,0), and (6,0)
(all in a−10 ). The three resulting segments are discretized
with 30, 30, and 40 scattering states, respectively. The
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|E|(Ry)

100

101
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104
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108

r2 rm
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ni

ts
of

a2 0)

ℓ= 0

ℓ= 1

ℓ= 2

HCN−

LiI− LiCl−

LiF− LiH−

Jπ = 0+

Jπ = 2+

FIG. 2. Scaling plot r2rms(∣E∣) for quadrupolar anions as two-
body halo systems. Dashed lines represent the asymptotic
behavior given by Eq. (9). The ` = 2 line has been adjusted
to the maximal r.m.s. radius of the Jπ = 2+ bound states.
Results for Jπ = 0+ and 2+ are marked with circles and stars,
respectively. Oblate/prolate states are shown in red/blue.
Selected results for dipolar anions [35, 96] are also indicated
(triangles). Here, both ` = 0 and ` = 1 scaling laws are met.

specific values of Qzz have been chosen so that the bind-
ing energy goes to zero for a total angular momentum
J ≈ 2,3 at `max = 4.

The BEM and DIM results are practically indistin-
guishable for all the values of `max considered. A per-
fect rotational behavior is predicted for both prolate and
oblate configurations, even above the detachment thresh-
old. This is confirmed by the collapse of all eigenener-
gies to the same bandhead energy in the adiabatic limit
(I →∞). At the maximal orbital angular momentum
cutoff `max considered, the states in the lowest-energy
(yrast) band are all dominated by the ` = 0 channel at
about 99.7% and 87.9%, for the oblate and prolate con-
figuration, respectively. Unlike in the dipolar case, ro-
tational bands of quadrupolar anions persist in the con-
tinuum. The widths of unbound band members are very
small (Γ ∼ 10−10 Ry).

In the intrinsic frame of the molecule, only the KJ = 0
component of the attached electron’s density distribu-
tion, or probability density, remains nonzero. Conse-
quently, the densities ρJ,KJ (r) with KJ = 0 can be called
intrinsic densities [96]. Figure 4 show the intrinsic den-
sities for the Jπ = 0+, 2+, and 4+ members of oblate and
prolate bands. One can see that ρJ,0 are practically iden-
tical within each band.
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FIG. 3. Yrast band KJ = 0 of quadrupolar anions defined
by an internuclear distance of s = 1.6a0, a moment of inertia
of I = 104mea

2
0, and quadrupole moments of Q−zz = −2.42 ea20

and Q+zz = +6.88 ea20 on panels (a) and (b), respectively. The
BEM and DIM results are denoted with empty circles and
stars, respectively, and are almost indistinguishable for all
orbital angular momentum cutoffs considered.

D. Resonances

The analysis of the unbound spectrum in quadrupolar
anions can be conveniently performed using the BEM.
Indeed, with the BEM one obtains the full spectrum in
one diagonalization; calculations stay tractable with the
increased number of channels; and the method does not
require precise initial eigenvalues as in the DIM case.

Resonant spectrum calculations have been performed
for the Jπ = 0+, 1− and 2+ states in oblate and pro-
late configurations (Q−

zz = −2.42 ea20, Q+
zz = +6.88 ea20) for

`max = 8, s = 1.6a0, and I = 104mea
2
0. The contour L+c

for each partial wave starts at zero and is defined by
the three points: (0.3,−10−5), (0.6,0), and (12,0) (all in
a−10 ). The resulting segments have been discretized with
60, 40 and 100 points representing scattering states.

Calculations reveal the presence of families of nar-
row decaying resonances in the complex-energy plane as
shown in Figs. 5 and 6 for oblate and prolate configura-
tions, respectively. The resonant structures are remark-
ably similar for oblate and prolate configurations, with
widths ranging from 10−10 Ry to 10−6 Ry corresponding
to lifetimes in the range of 10−7 − 10−11 s.

Each family of resonances, marked by the same sym-
bol and color in Figs. 5 and 6, is characterized by one
dominant channel (`, jr) that represent about 99% of the
total wave function, except for those indicated by empty
symbols. Within each family, narrow resonances have a
very diffuse dominant-channel wave function with a small
number of nodes, while broader resonances tend to have
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0.0

0.2

0.4

0.6

0.8

1.0

z
(u

ni
ts

of
a 0

)

-5

0

5
(a) 0+

-5

0

5
(b) 2+

-5 0 5

-5

0

5
(c) 4+

(d) 0+

(e) 2+

-5 0 5

( f ) 4+

0.0

0.5

1.0

1.5

FIG. 4. Intrinsic densities ρJ,0(r) (in 10−2 a−30 ) for the yrast
bands of Fig. 3 calculated with `max = 6. The densities for
Jπ = 0+, 2+, and 4+ are shown for both oblate (a-c) and prolate
(d-f) configurations.

wave functions peaked closer to the origin and having
larger numbers of nodes. Overall, energies of resonances
tend to cluster close to the rotational states of the core,
except for higher excitations where significant deviations
can be seen. Indeed, higher-lying resonances have larger
values of the orbital angular momentum ` in their domi-
nant channel, which results in larger centrifugal barriers.

The similarity of resonant structures predicted for
oblate and prolate configurations at different Jπ states
can be explained in terms of the large delocalization of
wave functions over thousands of a0. Indeed, above the
particle emission threshold, even high-` states have the
first peak of their wave function at few hundreds of a0.
These resonances are consequently weakly sensitive to
short-range details of the potential, and are mainly influ-
enced by the asymptotic tail ∝ 1/r3 of the quadrupolar
field. Moreover, rather small resonance widths, even for
states dominated by an ` = 0 channel, seem to be charac-
teristic of multipolar potentials since the same prediction
has been made for the HCN− dipolar anion [96].

The pattern of families shown in Figs. 5 and 6 can
be easily understood by considering angular momentum
coupling. Namely, since for Jπ = 0+ states ` = jr, each
family of resonances represents an electron perfectly an-
tialigned with respect to the rotor’s angular momentum,
and the the steadily increasing energy distance between
groups is due to the centrifugal barrier that grows with
`. The states within each family can be distinguished
by their radial behavior, i.e., the number of nodes in the
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0 cal-

culated with `max = 8. Bound states are marked by arrows.
In most cases, families of resonances are characterized by
one dominant channel; the corresponding labels (`, jr) are
given. Mixed groups are represented by empty symbols.
Dashed lines indicate rotational energies of the molecule,
Ejr = h̵2jr(jr + 1)/(2I).
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FIG. 6. Similar as in Fig. 5 but for a prolate configuration
with Q+zz = +6.88 ea20.

radial wave function.
For Jπ = 1−, the angular momentum selection rule be-

comes: ` = 1 for jr = 0 and ` = jr±1 for jr = 2,4, . . . . This
yields 8 families (note that since `max = 8, there is only
one channel with jr = 8). As discussed below, the two
families with jr = 2 and ` = 1,3, marked by open symbols

in Figs. 5 and 6, are practically degenerate. This explains
the multiplicity of families for Jπ = 1−, and – in a similar
way – for Jπ = 2+.

Because many resonances belonging to low-` channels
cluster around the rotational states of the molecule, the
density of resonances in the complex energy plane is high,
and accidental (near-)degeneracies occur. This results
in a strong configuration mixing. Such families of reso-
nances have two dominant channel wave functions at low
energy, and are referred to as “mixed” groups in the fol-
lowing. In Figs. 5 and 6, mixed groups are the (1,2) and
(3,2) families for Jπ = 1− and the (0,2) and (2,2) families
for Jπ = 2+.

Within each of these groups, there appear pairs of res-
onances, or “doublets”, with very close complex ener-
gies. To illustrate the strong mixing between overlap-
ping resonances, in Fig. 7 we show the wave functions
of six Jπ = 1− doublets, belonging to the mixed group
at the prolate configuration of Fig. 6(b). Their dom-
inant channel wave functions are (` = 1, jr = 2) and
(` = 3, jr = 2). For the lowest-energy doublets in a mixed
group the channel mixing is maximal: the channel wave
functions are almost identical and the total wave func-
tions can be represented by their symmetric and asym-
metric combinations, as in a textbook case of a two-state
mixing. However, as the excitation energy increases, the
doublets move apart slightly in the complex energy plane
and the channel wave functions start to differ. However,
the configuration mixing still remains strong. Moreover,
as one can see in Fig. 7, while the intrinsic densities for
KJ = 0 and 1 are very different within a given doublet,
they show similar structures for states within the same
mixed group. At low energies, the KJ = 0 term domi-
nates (with a weight of 71%) in each doublet and then
its weight increases to about 74% for one state and de-
creases to about 68% for the other state of the doublet.

E. Evolution of the spectrum with the quadrupole
moment

As demonstrated above, for the supercritical
quadrupolar molecules with ∣Q±

zz ∣ > ∣Q±
zz,c∣, many reso-

nances can exist in vicinity of the rotor energies. The
subcritical quadrupolar molecules with ∣Q±

zz ∣ < ∣Q±
zz,c∣

may still accommodate resonances in spite of their
weaker quadrupolar field.

The transition from a supercritical to subcritical
quadrupolar anion is illustrated in Fig. 8 for Jπ = 0+

states. Figure 8(a) shows real energies of the lowest
resonant states as a function of the quadrupole mo-
ment in an oblate system. If one denotes the energy
of the i-th resonance of a supercritical molecule outside
the critical region as Ei, then by changing the electric
quadrupole moment continuously beyond Q−

zz,c, one ar-
rives at Ei → E′

i ≈ Ei+1. A close look at the area in the
immediate vicinity of the critical quadrupole moment in
Figs. 8(b) (Q−

zz,c) and 8(c) (Q+
zz,c) one can see that this
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rearrangement of eigenvalues happens at the critical val-
ues. Moreover, for ∣Q±

zz ∣ << ∣Q±
zz,c∣ eigenenergies are al-

most equal for oblate and prolate configurations, as the
corresponding wave functions are hardly sensitive to de-
tails of the potential.

Such an eigenvalue rearrangement at the critical
quadrupole moment suggests a critical behavior of the
system [144]. The details can be understood by looking
at the behavior of the g.s. eigenenergy at the threshold
[145]. Indeed as shown in Ref. [115], the bound state
energy approaches zero according to:

Eσ→σ+c ∼ (σ − σc)
α
, (10)

where σ = Qzz, σc = Qzz,c, and α is the critical expo-
nent. For a spherical potential with an asymptotic falloff
∝ 1/r3, the critical exponent should be α = 2 [115, 144].
In the case considered, the quadrupolar potential is not
isotropic, but the dominant g.s. channel wave function
has ` = 0.

A fit of the bound-state energy for the oblate con-
figuration, in the range of Q−

zz ∈ [−2.4,Q−
zz,c], yields

Q−
zz,c = −2.35175 ea20 and α = 2.00006, in agreement with

analytical results and Ref. [123]. The transition of
a bound state dominated by ` = 0 to a resonance in
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FIG. 8. The low-lying Jπ = 0+ eigenenergies (real parts) of
a quadrupolar anion as a function of the electric quadrupole
moment in the vicinity of Q−zz,c (a,b) and Q+zz,c (c). Panel
(d) shows the scattering length of a scattering state at E =
10−12 Ry, which an eigenstate of the diagonal channel-channel
coupling potential Vc,c with c = (` = 0, jr = 0) for s = 1.52a0.

quadrupolar anions appears to be continuous [146] and
this means that there is no bound state at the threshold
[115]. The shift of all resonance energies at the criti-
cal quadrupole moment is a consequence of this tran-
sition, with the bound state changing continuously to
reach the energy of the first resonance state. This re-
sults in an avoided crossing between the g.s. and the
first excited state, which then propagates to all excited
states. Avoided crossings in the eigenvalue spectrum
of the Hamiltonian reveal the existence of exceptional
points [7, 147, 148] in its complex extension.

The criticality can also be assessed by considering the
scattering length a of the system at different values of
Qzz. At low-energy (k → 0), the scattering length is re-
lated to the ` = 0 phase shift δ0(k) of a scattering state
through:

lim
k→0

k

tan δ(k)
= −

1

a0
. (11)

In our calculations, all partial waves are included up to
a given orbital angular moment cutoff `max, and even
if the ` = 0 component dominates at low energy, there
still exist small contributions coming from higher partial
waves. In order to illustrate the criticality of the system
in a simple case, only the ` = 0 diagonal element of the
channel-channel coupling potential has been considered.
Indeed, because of the scaling properties of the inverse
cube potential, the critical value of scaled parameter qs,c
does not depend on the molecular size as long as the
quadrupole moment is set at its critical value for each
considered size. Therefore, by changing the size of the
molecule s→ s′ so that the ` = 0 diagonal element of the
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potential becomes more and more important, one can ef-
fectively evolve the negative critical quadrupole moment
Q−
zz,c,0 = −2qs′,cs

′ for ` = 0 to the critical value Q−
zz,c of

the initial problem. To this end, one has to decrease s,
or conversely increase qs,c, to localize the electron in an
almost pure ` = 0 bound state.

In practice, by considering only the ` = 0 wave, one
has to fix the size of the molecule at s = 1.52a0 instead
of 1.6a0 in the initial problem to have the same critical
quadrupole moment in both cases. The scattering length
is plotted as a function of Q−

zz,c,0 in Fig. 8(d), and shows
a characteristic divergence at the critical value. Such
behavior corresponds to the formation of the Feshbach
resonance. In the pure ` = 0 case, the negative scatter-
ing length is associated with a virtual state, but in the
full problem higher partial waves prevent formation of a
resonance as shown in Fig. 8(b). This observation on a
transition of a bound state into the continuum, together
with the divergence of the scattering length, are general
features of open quantum systems.

IV. CONCLUSION

In this work, we studied bound and unbound states
in quadrupolar anions in a nonadiabatic molecule-plus-
electron picture. The Schrödinger equation of the system,
expressed in a coupled-channel form, was solved by a di-
agonalization in the Berggren basis or by means of a di-
rect integration. The BEM and the DIM approaches have
been benchmarked against analytical results for the criti-
cal electric quadrupole moment. It is shown that binding
energies and r.m.s. radii of bound states in oblate and
prolate configurations of a quadrupolar anion follow the
two-body halo scaling properties over several orders of
magnitude. Using the density of the attached electron

in the molecular frame, as well as the collapse of g.s.
eigenenergies to the bandhead energy in the adiabatic
limit, we demonstrated the existence of regular rotational
bands below and above the detachment threshold. The
presence of the strong coupling of electron’s motion to
the molecular core above the threshold makes the situa-
tion in quadrupolar anions different from that in dipolar
anions, where electron’s motion in a resonance state be-
comes largely decoupled from molecular rotation [96].

We demonstrated the presence of families of narrow
resonances close to the rotational states of the molecule.
The unbound spectrum contains many quasi-degenerate
states, forming regular rotational bands. The presence of
narrow resonances close to the threshold, even for sub-
critical values of Qzz, may produce a low-energy peak in
the cross section. Finally, the evolution of a bound state
into the continuum corresponds to the critical exponent
α = 2.

In summary, this work shows that quadrupolar an-
ions are spectacular realizations of open quantum sys-
tems. They exhibit fascinating behavior around the de-
tachment threshold, such as halo structures, overlapping
resonances, Feshbach resonances, and critical behavior.
Consequently, these simple polar molecules constitute an
ideal laboratory of weakly bound and unbound quantum
states.
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[147] E. Hernández, A. Jáuregui, and A. Mondragón, Phys.

Rev. E 84, 046209 (2011).
[148] W. D. Heiss, J. Phys. A: Math. Theor. 45, 444016

(2012).


