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Remote entanglement of distant, non-interacting quantum entities is a key primitive for quantum
information processing. We present a new protocol to remotely entangle two stationary qubits
by first entangling them with propagating ancilla qubits and then performing a joint two-qubit
measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of
the ancillas. We describe two continuous variable implementations of the protocol using propagating
microwave modes. The first implementation uses propagating Schrödinger cat-states as the flying
ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-
qubit measurement and homodyne detections as the final single-qubit measurements. The presence
of inefficiencies in realistic quantum systems limit the success-rate of generating high fidelity Bell-
states. This motivates us to propose a second continuous variable implementation, where we use
quantum error correction to suppress the decoherence due to photon loss to first order. To that
end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-
number-parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement
and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of
our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a
modification of our error-correcting scheme by incorporating additional individual photon-number-
modulo-2 measurements of the ancilla modes to improve the success-rate of generating high-fidelity
Bell-states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting
circuit-QED systems.

I. INTRODUCTION

Generation of entangled states between spatially sep-
arated non-interacting quantum systems is crucial for
large-scale quantum information processing. For in-
stance, it is necessary for implementation of quantum
cryptography using the Ekert protocol [1], teleporta-
tion of unknown quantum states [2] and efficient quan-
tum communication over a distributed quantum network
[3, 4]. At the same time, it is also valuable for performing
a loophole-free test of Bell’s inequalities [5–8]. In partic-
ular, a concurrent remote entanglement scheme, in which
no signal propagates from one qubit to the other, is a de-
sirable feature of a scalable, module-based architecture
of quantum computing [9–12].

The inevitable presence of imperfections in current
experimentally accessible quantum systems have stimu-
lated a search for remote entanglement protocols that
are resilient to these imperfections. Heralded remote en-
tanglement schemes based on interference of single pho-
tons from distant excited atoms or atomic ensembles
using beam-splitters and subsequent photon detection
have been proposed [13–16] and demonstrated [17–21].
These protocols make use of the inherent resilience of
Fock states to photon loss arising out of imperfections.
As a consequence, when a successful event happens, it
leads to a very high fidelity entangled state. However,
the collection and detection efficiencies limit the success
probability of generating entangled states. Alternate pro-
tocols using continuous variables of microwave light, in
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particular superpositions of coherent states, have been
proposed that have a high success rate [22, 23]. How-
ever, in presence of imperfections, the success-rates of
these protocols diminishes drastically for generating high
fidelity entangled states. This is because superpositions
of coherent states are extremely susceptible to decoher-
ence due to photon loss. The goal of this paper is to
propose a new, concurrent, continuous-variable, remote
entanglement protocol, which is amenable to quantum er-
ror correction to suppress the decoherence due to photon
loss.

The protocol can be summarized as follows. In order
to generate entanglement between two distant, station-
ary qubits, we use a propagating ancilla qubit for each
of the stationary qubits. In the first step, each of the
stationary qubits is entangled with its associated propa-
gating ancilla qubit. In the next step, a two-qubit mea-
surement (ZZ) is performed on the propagating ancillas.
This non-linear measurement erases the ‘which station-
ary qubit is entangled to which flying qubit information’
and gives rise to four-qubit entangled states. The final
step comprises of a single qubit measurement on each
ancilla qubit, to disentangle them from the stationary
qubits, and finally prepare the desired entangled states
between the two stationary qubits.

We describe two continuous-variable implementations
of the aforementioned protocol. In the first implemen-
tation, we encode the ancilla qubits in Schrödinger cat
states of propagating modes of microwave light [24–27].
The logical basis states of each of the ancilla qubits are
mapped to even and odd Schrödinger cat states, denoted
by |C±α 〉, defined below:

|C±α 〉 = N±
(
|α〉 ± | − α〉

)
, (1)
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where N± = 1/
√

2(1± e−2|α|2). The two-qubit mea-
surement (ZZ) on the ancillas is a joint-photon-number-
modulo-2 measurement, while the single-qubit measure-
ments are homodyne detections. In absence of imper-
fections, this protocol gives rise to maximally entangled
Bell-states with unit probability. However, in presence
of imperfections, photon loss leads to decoherence of the
propagating (ancilla qubit) microwave modes which are
entangled with the stationary qubits. This limits the
success rate of generating high fidelity Bell-states.

To remedy this effect, we propose a second implemen-
tation of our protocol. In this implementation, we use a
different encoding of the ancilla qubits, where the logical
basis states are mapped to the states |C0,2mod4

α 〉, here-
after referred to as “mod 4 cat states” [26–28], of a prop-
agating temporal mode, defined below:∣∣C0mod4

α

〉
=

1√
2
{

1 + cos(|α|2)
cosh(|α|2)

}(∣∣C+
α

〉
+
∣∣C+
iα

〉)
,

∣∣C2mod4
α

〉
=

1√
2
{

1− cos(|α|2)
cosh(|α|2)

}(∣∣C+
α

〉
−
∣∣C+
iα

〉)
. (2)

The state |C0(2)mod4
α 〉 has photon-number populations in

the Fock states 4n(4n + 2), n ∈ N, which is indicated
by the notation 0(2)mod4. For this encoding, the two-
qubit ZZ measurement is a joint-photon-number-modulo-
4 measurement, while the single-qubit measurements are
homodyne detections. In absence of imperfections, the
joint-photon-number-modulo-4 outcome can be either 0
or 2. Now consider the case when there are imperfec-
tions. Photon loss due to these imperfections takes the
populations of the propagating temporal mode from the
even photon-number-parity manifold to the odd-photon-
number-parity manifold. This change in photon-number-
parity changes the outcome of the joint-photon-modulo-
4 measurement. By detecting this change of the joint-
photon-number-modulo-4 measurement outcome, we cor-
rect for the decoherence of the entangled qubit-photon
states due to loss of a photon in either of the ancil-
las. Furthermore, additional individual photon-number-
modulo-2 measurements of the ancillas, in addition to
the joint-photon-number-modulo-4 measurement, sup-
press the loss of coherence due to loss of a single-photon
in both ancillas.

Superconducting circuit-QED systems have access to
a tunable, strong and dispersive nonlinearity, in the form
of the Josephson nonlinearity. Moreover, the collection
and detection efficiency of microwave photons are sig-
nificantly better than their optical counterparts. Fur-
ther, the dominant source of imperfection in these sys-
tems is photon loss. Therefore, our scheme is ideally
suited for these systems. In fact, sequential interaction
of a propagating microwave photon mode with two dis-
tant qubits, using linear signal processing techniques,
have successfully entangled the two qubits [29–32]. Fur-
thermore, measurement of joint-photon-number-modulo-
2 of two cavity modes has already been demonstrated in

circuit-QED systems [33].

The paper is organized as follows. Sec. II describes our
protocol using propagating ancilla qubits. Sec. III de-
scribes two continuous variable implementations of this
protocol for the two different encodings of the ancilla
qubits mentioned above. Secs. IV A, IV B incorporate
the effect of imperfections like undesired photon loss and
detector inefficiencies for the two implementations. Sec.
IV C compares the resilience of the two implementations
to these imperfections. Sec. IV D discusses the improve-
ment to our protocol by incorporating additional, indi-
vidual, photon-number-modulo-2 measurements. Our re-
sults are summarized and future directions are outlined
in Sec. V.

II. PROTOCOL USING PROPAGATING
ANCILLA QUBITS

In this section, we present a concise description of
our protocol to entangle two stationary, mutually non-
interacting qubits, Alice (A) and Bob (B), using two
propagating ancilla qubits, arnie (a) and bert (b) (cf. Fig.

1). Each qubit is initialized to its |+〉 = (|g〉 + |e〉)/
√

2
state. Local entanglement is generated between Alice
(Bob) and arnie (bert), by first applying a CPHASE
gate between Alice (Bob) and arnie (bert), followed by a
Hadamard gate on Alice (Bob). After this step, the state

of Alice (Bob) and arnie (bert) is: (|g, g〉 + |e, e〉)/
√

2.
Subsequently, a quantum non-demolition two-qubit mea-
surement, ZaZb, is performed on arnie and bert, whose
outcome is denoted by p = ±1. This measurement
gives rise to one of the two four-qubit entangled states:
|Ψp=1〉 = (|g, g, g, g〉 + |e, e, e, e〉)/

√
2 and |Ψp=−1〉 =

(|g, e, g, e〉+ |e, g, e, g〉)/
√

2. Here, the first, second, third
and fourth position in the kets belong to the states of
Alice, Bob, arnie and bert respectively. Since the fi-
nal aim is to generate an entangled state of just Alice
and Bob, arnie and bert must be disentangled from Al-
ice and Bob, while preserving the entanglement between
the latter two. This is the task of the final step. It
comprises of making X-measurements on arnie and bert,
whose outcomes are denoted by pa(= ±1) and pb(= ±1)
respectively. Conditioned on the three measurement out-
comes p, pa, pb, Alice and Bob get entangled with each
other, with the final state being: |Ψp

papb=1〉 = (|+,+〉 +

p|−,−〉)/
√

2 or |Ψp
papb=−1〉 = (|+,−〉 + p|−,+〉)/

√
2.

Here, |−〉 = (|g〉 − |e〉)/
√

2.

In what follows, we describe proposals for the continu-
ous variable implementations that realize the aforemen-
tioned protocol.
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FIG. 1. (color online) Remote entanglement protocol
schematic. The first step of the protocol comprises of lo-
cal entanglement generation between two stationary, mu-
tually non-interacting qubits, Alice (in red) and Bob (in
green), with propagating ancilla qubits, arnie (in dark red)
and bert (in dark green). To that end, the four qubits
are initialized to their respective |+〉 states. Subsequently,
a CPHASE gate is applied between Alice (Bob) and arnie
(bert), followed by a Hadamard rotation on Alice (Bob). Af-
ter this step, the entangled state of Alice (Bob) and arnie
(bert) is (|g, g〉 + |e, e〉)/

√
2. Next, a two-qubit measure-

ment, ZaZb, is performed on arnie and bert. Conditioned
on the measurement outcome p = ±1, a four-qubit entangled
state is generated: |Ψp=1〉 = (|g, g, g, g〉 + |e, e, e, e〉)/

√
2 or

|Ψp=−1〉 = (|g, e, g, e〉 + |e, g, e, g〉)/
√

2. Subsequently, single-
qubit measurements (X) are performed on arnie and bert, de-
noted by Xa, Xb, with measurement outcomes pa, pb = ±1.
Conditioned on the three measurement outcomes p, pa, pb,
Alice and Bob are projected onto a paritcular entangled
state |Ψp

papb=1〉 = (|+,+〉 + p|−,−〉)/
√

2 or |Ψp
papb=−1〉 =

(|+,−〉+ p|−,+〉)/
√

2.

III. IMPLEMENTATION USING
PROPAGATING SUPERPOSITIONS OF

COHERENT STATES

The first implementation uses the mapping of the
ground (excited) state of the ancilla qubits to even (odd)

Schrödinger cat states |C+(−)
α 〉 (cf. Fig. 2). Conse-

quently, the states |±〉 are approximately mapped to co-
herent states | ± α〉. The ZZ measurement is performed
by a joint-photon-number-modulo-2 measurement, while
the X measurements are performed by homodyne de-
tections. In the second implementation, we map the
ground (excited) states of the ancillas to the mod 4 cat

states |C0(2)mod4
α 〉, whence the |+(−)〉 are approximately

mapped to even cat states |C+
α(iα)〉. In this case, the

ZZ measurement is achieved by a joint-photon-number-
modulo-4 measurement, while the X measurements are
performed by homodyne detections. As will be shown
later, the use of continuous measurements in the final
step allows us to post-select on outcomes that give rise
to high-fidelity Bell-states. In this section, we treat the
case of perfect quantum efficiency, and incorporate im-

FIG. 2. (color online) Cat-qubit mapping schematic. (Left)
The ground (excited) state of each of the ancilla qubits is

mapped to even (odd) Schrödinger cat states |C+(−)
α 〉 [see

Eq. (1)]. Consequently, the states |±〉 are mapped to coher-
ent states | ± α〉. In this mapping, ZaZb on the propagating
ancilla qubits corresponds to a joint photon-number-modulo-
2 measurement of the propagating microwave modes. (Right)
The ground (excited) state of each of the ancilla qubits is

mapped to mod 4 cat states |C0(2)mod4
α 〉 [see Eq. (2)]. Con-

sequently, |±〉 are mapped to even cat states |C+
α(iα)〉. In

this mapping, ZaZb on the propagating ancilla qubits corre-
sponds to a joint photon-number-modulo-4 measurement of
the propagating microwave modes. For both encodings, the
single-qubit measurements (X) can be implemented by homo-
dyne detections (not shown in the figure for brevity).

perfections in our computational model in Sec. IV.

A. Implementation using Schrödinger cat states

In the first step of the protocol, local entanglement
is generated between a stationary transmon qubit, Alice
(Bob), and a propagating microwave mode, arnie (bert),

giving rise to the following states: (|g, C+
α 〉+ |e, C−α 〉)/

√
2

((|g, C+
β 〉 + |e, C−β 〉)/

√
2). This specific entangled state

can be generated by first generating this entangled state
inside a qubit-cavity system using the protocol proposed
in [34] and experimentally demonstrated in [35]. With-
out loss of generality, we choose α, β ∈ <, α = β >
0. We require the temporal profile of the modes of
arnie and bert as they fly away from Alice and Bob to
be eκat/2 cos(ωat)Θ(−t) and eκbt/2 cos(ωbt)Θ(−t) respec-
tively, where ωa,b, κa,b are defined below. The specific
temporal mode profile can be implemented using a Q-
switch [36, 37] and is necessary for these modes to be
subsequently captured in resonators for the joint-photon-
number-modulo-2 measurement. The total state of the
system, comprising of Alice, Bob, arnie and bert, can be
written as:

|ΨABab〉 =
1

2

(
|g, g, C+

α , C
+
α 〉+ |e, e, C−α , C−α 〉

+|g, e, C+
α , C

−
α 〉+ |e, g, C−α , C+

α 〉
)

(3)

Next, a joint-photon-number-modulo-2 measurement
is performed on these propagating microwave modes as
follows. The propagating microwave modes, entangled
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with the stationary qubits, pass through transmission
lines and are resonantly incident on two cavities, exciting
their fundamental modes with frequencies (decay rates)
ωa(κa) and ωb(κb), respectively. Due to the specific form
of the chosen mode-profile, at t = 0, these propagat-
ing modes get perfectly captured in these cavities. Sub-
sequently, their joint-photon-number-modulo-2 is mea-
sured by coupling a transmon qubit to these modes [33].
An even (odd) joint-photon-number-modulo-2 outcome
corresponds to a measurement result p = +1(p = −1)
and the four-mode state, in absence of transmission losses
and measurement imperfections, can be written as:

|Ψp=1
ABab〉 =

1√
2

(
|g, g, C+

α , C
+
α 〉+ |e, e, C−α , C−α 〉

)
, (4)

|Ψp=−1
ABab〉 =

1√
2

(
|g, e, C+

α , C
−
α 〉+ |e, g, C−α , C+

α 〉
)
. (5)

After this measurement, the ancilla qubits, arnie and
bert, are entangled to Alice and Bob. The last step of the
protocol performs the crucial function of disentangling
Alice and Bob from the propagating ancillas, while pre-
serving the entanglement between Alice and Bob. This is
done by performing homodyne measurement along the di-
rection arg(α) of each of the outgoing microwave modes.
Since we have chosen α ∈ <, the X-quadratures of the mi-
crowave modes need to be measured. From Eqs. (4), (5),
it follows that the pair of outcomes of the integrated ho-
modyne signal (xa, xb) = (α, α) or = (−α,−α) projects

Alice and Bob to (|+,+〉 + p|−,−〉)/
√

2. Similarly, an
outcome (α,−α) or (−α, α) projects Alice and Bob to

(|+,−〉+ p|−,+〉)/
√

2.

For a given p, after the homodyne detections of arnie
and bert, the density matrix ρpABab = |Ψp

ABab〉〈Ψ
p
ABab|

evolves to:

ρpABab →
MXρ

p
ABabM

†
X

Tr
[
MXρ

p
ABabM

†
X

] , MX = |xa, xb〉〈xa, xb|.

(6)
The probability distribution of the outcomes

P p(xa, xb) = 1
2Tr
[
MXρ

p
ABabM

†
X

]
. The factor of

1/2 arises because each of the outcomes p = ±1 occurs
with 1/2 probability. The resulting state of Alice and
Bob is obtained by tracing out the states of arnie and
bert. We evaluate P p(xa, xb) and the corresponding

overlap to the Bell-states |φ±〉 = (|g, g〉 ± |e, e〉)/
√

2 and

|ψ±〉 = (|g, e〉 ± |e, g〉)/
√

2 to be (see Appendix B 1):

P p(xa, xb) =
2

π
e−2(x2

a+x2
b)e−4α2

Np, (7)

〈φ±|ρpAB|φ
±〉 =

1 + p

2

[1

2
± sinh(4xaα) sinh(4xbα)

4Np(1− e−4α2)

]
,(8)

〈ψ±|ρpAB|ψ
±〉 =

1− p
2

[1

2
± sinh(4xaα) sinh(4xbα)

4Np(1− e−4α2)

]
,(9)

FIG. 3. (color online) Probability distribution P p(xa, xb) of
outcomes of the homodyne measurements of arnie and bert
and resulting overlaps of Alice and Bob’s joint density matrix
ρAB to the Bell-states |φ±〉 = (|g, g〉 ± |e, e〉)/

√
2 are shown

for the case when the joint-photon-number-modulo-2 mea-
surement yields p = 1. We choose α = 1 and assume ab-
sence of measurement imperfections and photon loss. (Left)
Probability distribution showing four Gaussian distributions
centered at xa = ±α, xb = ±α. (Center and Right) Corre-
sponding overlap to the Bell-state |φ+〉 tends to 1 for (xa, xb)
in the vicinity of (α, α) and (−α,−α). Similarly, overlap to
the Bell-state |φ−〉 tends to 1 for (xa, xb) in the vicinity of
(−α, α) and (α,−α). For an outcome on one of the lines:
xa = 0 or xb = 0, the resultant state of Alice and Bob is an
equal superposition of |φ+〉 and |φ−〉 and is not an entangled
state. For p = −1, identical results are obtained with the
substitution: |φ±〉 → |ψ±〉.

where

Np=1 =
[cosh2(2xaα) cosh2(2xbα)

(1 + e−2α2)2

+
sinh2(2xaα) sinh2(2xbα)

(1− e−2α2)2

]
, (10)

Np=−1 =
1

1− e−4α2

[
cosh2(2xaα) sinh2(2xbα)

+ sinh2(2xaα) cosh2(2xbα)
]
. (11)

Fig. 3 shows the probability distribution P p(xa, xb) of
the outcomes of the integrated homodyne currents xa, xb,
together with the overlap to the Bell-states |φ+〉, |φ−〉
for the case when the joint-photon-number-modulo-2-
measurement outcome is p = 1. We choose α = 1 in ab-
sence of transmission loss and measurement inefficiency.
The probability distribution [Eq. (7)] contains four Gaus-
sian distributions centered around xa = ±α, xb = ±α.
For (xa, xb) in the vicinity of (α, α) and (−α,−α), the
overlap to the Bell-state |φ+〉 approaches 1, while for
(xa, xb) in the vicinity of (α,−α) and (−α, α), the over-
lap to the Bell-state |φ−〉 approaches 1. For outcomes
along the lines xa = 0 and xb = 0, Alice and Bob are
projected on to equal superpositions of |φ+〉 and |φ−〉
and thus, are not entangled. The results for the case
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p = −1 are identical with |φ±〉 is replaced by |ψ±〉. 1

B. Implementation using mod 4 cat states

In this section, we describe the implementation of our
protocol where the ancilla qubits are mapped on to mod
4 cat states. The first step of the protocol again involves
generating entanglement between the stationary qubit of
Alice (Bob) and the propagating microwave mode arnie
(bert) giving rise to the following states: (|g, C0mod4

α 〉 +

|e, C2mod4
α 〉)/

√
2 ((|g, C0mod4

β 〉 + |e, C2mod4
β 〉)/

√
2). This

set of entangled states can be obtained in an analogous
manner using the method described in the previous sub-
section. We will again choose, without loss of generality,
α, β ∈ <, α = β > 0. The total state of the system,
comprising of Alice, Bob, arnie and bert, can be written
as:

|ΨABab〉 =
1

2

(
|g, g, C0mod4

α , C0mod4
α 〉

+|e, e, C2mod4
α , C2mod4

α 〉+ |g, e, C0mod4
α , C2mod4

α 〉
+|e, g, C2mod4

α , C0mod4
α 〉

)
.

By suitably engineering the temporal mode profiles of
the propagating modes as in the previous subsection,
these propagating entangled qubit-photon states are then
captured in resonators. Subsequently, a joint-photon-
number-modulo-4 measurement is performed on these
captured modes (see Appendix A for details of the mea-
surement protocol). In absence of measurement imper-
fections and losses, the joint-photon-number-modulo-4
has two possible outcomes: λ = 0, 2 (the two-qubit mea-
surement outcome p of Sec. II can be written as p = iλ),
corresponding to which the four-mode state can be writ-
ten as:

|Ψλ=0
ABab〉 =

1√
2

(
|g, g, C0mod4

α , C0mod4
α 〉

+|e, e, C2mod4
α , C2mod4

α 〉
)
, (12)

|Ψλ=2
ABab〉 =

1√
2

(
|g, e, C0mod4

α , C2mod4
α 〉

+|e, g, C2mod4
α , C0mod4

α 〉
)
. (13)

1 For p = 1 and α � 1, the overlaps to the Bell-states |φ±〉 vary
non-monotonically along xa = ±xb. This can be understood
as follows. For α → 0, the state of the four modes after the
joint-photon-number-modulo-2 measurement can be written as:
1√
2

(|g, g, 0, 0〉 + |e, e, 1, 1〉) [see Eq. (4)]. Following homodyne

detection with outcomes xa, xb, the unnormalized state of Alice
and Bob is |g, g〉 + xaxb|e, e〉. Thus, for |xa| = |xb| � 1, Alice
and Bob’s states are unentangled. On the other hand, this effect
is absent for p = −1. In this case, the state of the four modes, fol-
lowing the joint photon-number-modulo-2 measurement, is given
by 1√

2
(|g, e, 0, 1〉 + |e, g, 1, 0〉). This results in the unnormalized

state xb|g, e〉+ xa|e, g〉 for Alice and Bob. Thus, Alice and Bob
remain entangled for |xa| = |xb| � 1. This difference in behavior
for p = ±1 is washed away for α ≥ 1.

The final step of the protocol comprises of making homo-
dyne detections of arnie and bert and here we choose the
X-quadrature of both these modes. Similar calculations
can be done for other choices. Consider the case when
λ = 0. From Eq. (12), it follows that each homodyne de-
tector will have Gaussian distributions centered around
xa, xb = 0,±α. It also follows from Eq. (12) that for
events (xa, xb) in the five vicinity regions of (±α,±α) and
(0, 0), the resulting state of Alice and Bob approaches
|φ+〉, while for outcomes in the vicinity of (0,±α) and
(±α, 0), the resulting state of Alice and Bob approaches
|φ−〉. Similar set of reasoning holds for λ = 2, when the
states |ψ±〉 are generated. Since the state of Alice and
Bob depend only on (|xa|, |xb|), the resulting overlap dis-
tributions respect a four-fold rotational symmetry in the
(xa, xb) space (see Fig. 4).

After the homodyne detection, the density matrix of
Alice, Bob, arnie and bert evolves to:

ρλABab →
MXρ

λ
ABabM

†
X

Tr
[
MXρλABabM

†
X

] , MX = |xa, xb〉〈xa, xb|.

(14)
The probability distribution of the outcomes

Pλ(xa, xb) = 1
2Tr
[
MXρ

λM†X
]
. Subsequent state

of Alice and Bob can again be obtained by tracing out
the modes arnie and bert. Note again the factor of 1/2
in the expression for probability distribution due to the
probability 1/2 of occurrence of either λ = 0 or λ = 2.

Computing the probability of outcomes and the over-
lap to the Bell-states (see Appendix B 2 for details), we
arrive at:

Pλ(xa, xb) =
1

2π

e−2(x2
a+x2

b)

(1 + e−2α2)2
Ñλ, (15)

〈φ±|ρλAB|φ±〉 =
1 + iλ

2

[
1

2
±

∏
δ=0,2

Fδ(xa)Fδ(xb)

Ñλ

[
1−

{ cos(α2)
cosh(α2)

}2
]],

〈ψ±|ρλAB|ψ±〉 =
1− iλ

2

[
1

2
±

∏
δ=0,2

Fδ(xa)Fδ(xb)

Ñλ

[
1−

{ cos(α2)
cosh(α2)

}2
]],

where

Ñλ=0 =

[
F0(xa)F0(xb)

1 + cos(α2)
cosh(α2)

]2

+

[
F2(xa)F2(xb)

1− cos(α2)
cosh(α2)

]2

, (16)

Ñλ=2 =
1

1−
{ cos(α2)

cosh(α2)

}2

[
F0(xa)2F2(xb)

2

+F2(xa)2F0(xb)
2
]
, (17)

and Fλ(x) = e−α
2

cosh(2αx) + iλ cos(2αx).
Fig. 4 shows the probability of success and the over-

lap to the Bell-states |φ±〉, |ψ±〉 for this implementation
of our protocol. We choose α = 1, and plot the results
for the two possible joint-photon-number-modulo-4 mea-
surement outcomes: λ = 0, 2, in absence of imperfec-
tions and photon loss. For a majority of outcomes in
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FIG. 4. (color online) Probability distribution Pλ(xa, xb) of
outcomes of the homodyne measurements of arnie and bert
and resulting overlaps of Alice and Bob’s joint density matrix
ρAB with the Bell-states |φ±〉 = (|g, g〉 ± |e, e〉)/

√
2, |ψ±〉 =

(|g, e〉 ± |e, g〉)/
√

2 are shown. We choose α = 1 in absence of
measurement imperfections and photon loss. The top (bot-
tom) left panel shows the probability of outcomes for the joint-
photon-number-modulo-4 outcome λ = 0(2). Corresponding
overlaps to the Bell-states |φ±〉(|ψ±〉) are plotted in the top
(bottom) center and top (bottom) right panels. The overlaps
to the odd (even) Bell-states for λ = 0(2) are zero and not
shown for brevity. For both λ = 0 and λ = 2, one gets entan-
gled Bell-states for Alice and Bob for majority of outcomes
in the (xa, xb) space. The alternating bright and dark fringes
in plots are due to the measurement of X-quadrature of both
arnie and bert, both of which are in superpositions of |C+

α 〉
and |C+

iα〉. The size of the fringes decreases with increasing
values of α.

the (xa, xb)-space, we get one of the four aforementioned
Bell-states. The existence of fringes in the plots is due
to the measurement of the X-quadratures of both arnie
and bert, each of which are in superpositions of |C+

α 〉 and
|C+
iα〉. The size of the fringes decreases with increasing

α. In absence of imperfections, for small values of α,
these fringes lower the total success rate for generation
of Bell-states for the mod 4 implementation compared to
the mod 2 implementation (more on this in Sec. IV C).
However, in presence of imperfections, as will be shown
in Sec. IV C, the total success rate for generating high
fidelity Bell states is higher for the mod 4 implementa-
tion. Note that in absence of imperfections, the overlaps
to the odd (even) Bell-states for the case λ = 0(2) are
identically equal to zero.

So far, we have described our protocol in absence of
measurement imperfections and propagation losses. In
what follows, we incorporate measurement inefficiencies
and propagating losses in our computational model and
investigate the resilience of the two different implemen-

tations of our protocol to these imperfections.

IV. FINITE QUANTUM EFFICIENCY AND
NON-ZERO PHOTON LOSS

The dominant source of imperfections in current
circuit-QED systems that affect our protocol is undesired
photon loss. These losses occur due to photon attenua-
tion on the transmission lines and other lossy devices
like circulators and isolators which are necessary for an
actual experimental implementation. These lead to deco-
herence of the entangled states of Alice (Bob) and arnie
(bert) as arnie and bert propagate from the stationary
qubits to the joint-photon-number-modulo-2/4 measure-
ment apparatus and from there on to the homodyne de-
tectors. For simplicity, we assume the losses to be equal
for both arnie and bert (the case of unequal losses can
be calculated easily using the method described below).
Thus, for each of arnie and bert, we define two efficiency
parameters η1 and η2. Here, η1 models the losses be-
fore the joint-photon-number-modulo-2/4 measurement
apparatus and η2 models the losses thereafter and be-
fore homodyne detection setup. These losses are mod-
eled as photons lost by each of arnie and bert as they
pass through beam-splitters with transmission probabili-
ties η1 and η2 in otherwise perfect transmission lines [38].
Finite qubit lifetimes, with current circuit-QED system
parameters, are much less dominant source of imperfec-
tion compared to photon loss and are thus neglected in
the subsequent analysis.

First, we qualitatively describe the effect of photon loss
for the two implementations. Consider the case when the
ancilla qubits are encoded in even/odd Schrödinger cat
states. Loss of a photon is a bit-flip error on the ancilla
qubit since a|C±α 〉 ' |C∓α 〉, where a is the annihilation
operator of the propagating temporal mode. This bit-
flip error occurs randomly as the entangled qubit-photon
states of Alice (Bob) and arnie (bert) propagate from the
stationary qubits to the joint-photon-number-modulo-2
measurement apparatus and from thereon to the homo-
dyne detectors. This results in decoherence of the entan-
gled states of Alice (Bob) and arnie (bert). Therefore,
the probability of generating a high fidelity Bell-state of
Alice and Bob diminishes drastically (see Sec. IV A).

Now, consider the case when the ancillas are encoded
in the mod 4 cat states. To lowest order in photon loss,
either arnie or bert can lose a photon. On losing a pho-

ton, the state of arnie or bert goes from |C0(2)mod4
α 〉 to

the state |C3(1)mod4
α 〉 (see Eq. (B7) and [27] for the def-

inition of |C1,3mod4
α 〉). Therefore, when either arnie or

bert loses a photon, the joint-photon-number-modulo-4
measurement now yields the values λ = 1 or 3, unlike
the perfect case outcomes λ = 0 or 2 [see Eqs. (12), (13)
and Sec. IV B]. Thus, measurement of the joint-photon-
number-modulo-4 allows us to keep track of loss of a pho-
ton in arnie or bert. This tracking of a single photon loss
error is equivalent to correcting this error since it allows
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the knowledge of exact state of the four-qubits after the
error has happened. As will be shown below, this enables
generation of high fidelity entangled states of Alice and
Bob with higher success rates than the mod 2 implemen-
tation.

In the next order in photon loss, either both arnie and
bert lose one photon each or arnie loses two photons, or
bert loses two photons. Consider the case in the mod 4
encoding when arnie and bert each lose a photon. Now,
the measurement outcome λ can be 0 or 2 as in the per-
fect case and just a measurement of λ does not reveal if
arnie and bert have indeed lost a photon each. However,
these events of loss of one photon each in the ancillas can
be tracked by individual photon-number-modulo-2 mea-
surements of the ancillas. In this way, we can suppress
the loss of coherence due to loss of a photon in both arnie
and bert. Note that the other second order or higher or-
der losses cannot be suppressed by this encoding (more
on this in Sec. V). In next two subsections, we describe
the effect of photon loss on the the two implementations
of our protocol. This is followed by a comparison of the
two. Lastly, we describe the protocol with added indi-
vidual photon-number-modulo-2 measurements of arnie
and bert.

A. Implementation using Schrödinger cat states

Consider the case when the ancilla qubits are encoded
in Schrödinger cat states (see Sec. III A). First, we de-
scribe the calculation of the state of Alice and arnie after
the propagation of arnie through the transmission line in
presence of imperfections. The state of Bob and bert can
be computed in an analogous manner. Following local
entanglement generation between Alice and arnie, their
states can be written as:

|ΨAa〉 =
1√
2

(
|g, C+

α 〉+ |e, C−α 〉
)

=
1√
2

1∑
j,µ=0

Nj(−1)jµ|j, (−1)µα〉, (18)

where Nj = 1/
√

2(1 + (−1)je−2|α|2) ⇒ N0(1) = N+(−)

and |j = 0(1)〉 = |g(e)〉. To compute the decoherence
due to propagation losses, without loss of generality, one
can introduce an auxiliary propagating mode a′, initial-
ized in vacuum, and pass the joint-states of Alice, arnie
and a′ through a beam-splitter with transmission proba-
bility η1. Subsequent tracing out of the auxiliary mode
yields the reduced density matrix for Alice and arnie after
the entangled states of Alice and arnie propagated along
the transmission line and arrived at the joint-photon-
number-modulo-2 apparatus.

Therefore, just prior to making the joint-photon-
number-modulo-2 measurement, we can write the total
state of the four-modes to be (cf. Appendix C 1 for de-

tails of the calculation) :

ρABab =
1

64

∑
Aa,Bb

NjNj′NlNl′
N̄kN̄k′N̄mN̄m′

(−1)µ·(j+k)+ν·(l+m)

e−ε
2{2−(−1)µ+µ

′
−(−1)ν+ν

′
}(|j, l〉〈j′, l′|)∣∣C(−)k

α , C(−)m

α

〉〈
C(−)k

′

α , C(−)m
′

α

∣∣, (19)

where
∑
Aa

=
1∑

j,j′=0

1∑
k,k′=0

1∑
µ,µ′=0

,
∑
Bb

=

1∑
l,l′=0

1∑
m,m′=0

1∑
ν,ν′=0

,µ = {µ, µ′},ν = {ν, ν′}, j =

{j, j′},k = {k, k′}, l = {l, l′},m = {m,m′}. Fur-

thermore, we have defined N̄j = 1/
√

2(1 + (−1)je−2|ᾱ|2)
where ᾱ =

√
η1α, ε =

√
1− η1α.

Note that Eq. (19) is expressed in the eigenbasis of the
joint-photon-number-modulo-2 measurement. An out-
come of p = 1(−1) results in the state of Alice, Bob, arnie
and bert to be in ρpABab = ρ̄pABab/Tr[ρ̄pABab], where the
post-measurement un-normalized density matrix ρ̄pABab
is given by:

ρ̄pABab =
1

64

′∑
Aa,Bb

NjNj′NlNl′
N̄kN̄k′N̄mN̄m′

(−1)µ·(j+k)+ν·(l+m)

e−ε
2{2−(−1)µ+µ

′
−(−1)ν+ν

′
}(|j, l〉〈j′, l′|)∣∣C(−)k

α , C(−)m

α

〉〈
C(−)k

′

α , C(−)m
′

α

∣∣. (20)

Here the prime in
′∑

Aa,Bb

indicates that the summation has

to be performed while keeping k +m = 0(1) mod 2, k′ +
m′ = 0(1) mod 2 for an outcome of p = 1(−1).

Next, we treat the photon-losses after the joint-photon-
number-modulo-2 measurement setup and before the ho-
modyne detectors. We model the measurement operator
for the imperfect homodyne detection with efficiency η2

as a superposition of projectors |xa, xb〉〈xa, xb| with a
Gaussian envelope [38, 39]:

ΩQ =
1

σ
√
πη2

∫ ∞
−∞

dxa

∫ ∞
−∞

dxb e
− 1

2σ2
( qa√

η2
−xa)2

e
− 1

2σ2
(
qb√
η2
−xb)2 |xa, xb〉〈xa, xb|,

σ2 =
1− η2

2η2
. (21)

Here qa(b) denote the imperfect measurement outcome
which, in principle, can arise out of the possible per-
fect measurement outcomes xa(b) with a Gaussian prob-
ability distribution shown above. For p = ±1, the sys-
tem density matrix due to this measurement evolves as:

ρpABab → ΩQρ
p
ABabΩ†Q/Tr

[
ΩQρ

p
ABabΩ†Q

]
, where the prod-

uct Tr[ρ̄pABab]×Tr
[
ΩQρ

p
ABabΩ†Q

]
is the probability distri-

bution of outcomes P̄ p(qa, qb). These can be evaluated
analytically following the method outlined in Appendix
B 1, along with the overlap to the Bell-states |φ±〉, |ψ±〉.
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FIG. 5. (color online) Probability distribution P̄ p(qa, qb) of
outcomes of the homodyne measurements of arnie and bert
and resulting overlaps of Alice and Bob’s joint density ma-
trix ρAB to the Bell-states |φ±〉 are shown for the case when
the joint-photon-number-modulo-2 measurement yields p = 1.
We choose α = 1 and η1 = η2 = 0.8. (Left) Probability
distribution showing four Gaussian distributions centered at
qa = ±ᾱ, qb = ±ᾱ. (Center and Right) The corresponding
overlap to the Bell-state |φ+〉 is substantial for (qa, qb) in the
vicinity of (ᾱ, ᾱ) and (−ᾱ,−ᾱ), while the overlap to the Bell-
state |φ−〉 is substantial for (qa, qb) in the vicinity of (ᾱ,−ᾱ)
and (−ᾱ, ᾱ). We note that the maximum fidelity Bell-state
that can be obtained for outcomes with non-negligible occur-
rence probability is ∼ 0.7 instead of 1.0 that was obtained for
perfect efficiency (compare Fig. 3). Outcomes along the lines
qa = 0 and qb = 0 do not yield entangled states for reasons
similar to that given for perfect efficiency. Similar results hold
for the case p = −1.

The explicit forms of these quantities are not provided
for the sake of brevity.

Fig. 5 shows the probability distribution of outcomes
for the imperfect measurement P̄ p(qa, qb) and the over-
laps to the Bell-states |φ±〉 for the case when the joint-
photon-number-modulo-2 measurement yields p = 1. We
choose α = 1 and the measurement inefficiencies to be:
η1 = η2 = 0.8. 2 The probability distribution shows four
Gaussian distributions centered at qa = ±ᾱ, qb = ±ᾱ.
The corresponding overlap to the Bell-state |φ+〉 is sub-
stantial for (qa, qb) in the vicinity of (ᾱ, ᾱ) and (−ᾱ,−ᾱ),
while the overlap to the Bell-state |φ−〉 is substantial for
(qa, qb) in the vicinity of (ᾱ,−ᾱ) and (−ᾱ, ᾱ). Note that
in presence of imperfections, the maximum fidelity for
outcomes with non-negligible occurrence probability is
∼ 0.7 instead of 1.0 computed earlier for the case of per-
fect efficiency (compare Fig. 3). For outcomes along the
lines qa = 0 and qb = 0, one does not generate entangled
states for reasons similar to the case of perfect efficiency.

2 We choose the inefficiencies to be 0.8 primarily to illustrate the
detailed structure of the phase-space distribution for α = 1.
Similar values of overlap to the Bell-states may be obtained for
smaller values of α and the inefficiency parameters. The detailed
dependence of the total success rate on the efficiency parameters
is given in Figs. 8 and 10. There, we also point out the estimated
total success rate that can be achieved with efficiencies present
in current circuit-QED systems.

Similar set of results hold for p = −1.

B. Implementation using mod 4 cat states

In this section, we consider the case when the ancilla
qubits are encoded in the mod 4 cat states discussed in
Sec. III B. The computation for this case is, in principle,
similar to that outlined in the previous subsection. We
begin by considering the entangled qubit-photon state of
Alice and arnie, which, in this case, is given by:

|ΨAa〉 =
1√
2

(
|g, C0mod4

α 〉+ |e, C2mod4
α 〉

)
=

1√
2

1∑
j,µ,ν=0

Ñ2jN2j(−1)jν |j, (−1)µiνα〉, (22)

where N2j and the states |j = 0, 1〉 for Alice are de-

fined as before. The definition of Ñ2j is obtained by set-

ting λ = 2j in the following: Ñλ =
[
2 + 2(−i)λ{ei|α|2 +

(−1)λe−i|α|
2}/{e|α|2 + (−1)λe−|α|

2}
]− 1

2 , λ = {0, 1, 2, 3}.
To compute the state of Alice and arnie after their entan-
gled qubit-photon state encounter propagation losses, we
follow a similar approach as in the previous section: in-
troducing an auxiliary mode a′, looking at the resultant
state after passage through a beam-splitter with trans-
mission probability η1 and subsequently, tracing out the
mode a′. Similar set of calculations can be done for Bob
and bert. Performing this computation results in (cf.
Appendix C 2 for details):

ρABab =
1

210

∑
Aa,Bb

∏
l

Ñ2lN2l∏
ζ

¯̃NζN̄ζ
(−1)µ·γ+ν·j+φ·δ+ψ·kiνγ−ν

′γ′

iψδ−ψ
′δ′e−ε

2{2−(−1)µ+µ
′
iν−ν

′
−(−1)φ+φ

′
iψ−ψ

′
}(|j, k〉

〈j′k′|
)∣∣∣Cγmod4

ᾱ , Cδmod4
ᾱ

〉〈
Cγ
′mod4

ᾱ , Cδ
′mod4
ᾱ

∣∣∣, (23)

where
∏
l

=
∏

l∈{j,j′,k,k′}
,
∏
ζ

=
∏

ζ∈{δ,δ′,γ,γ′}
,
∑
Aa

=

1∑
j,j′=0

1∑
µ,µ′=0

1∑
ν,ν′=0

3∑
γ,γ′=0

,
∑
Bb

=
1∑

k,k′=0

1∑
φ,φ′=0

1∑
ψ,ψ′=0

3∑
δ,δ′=0

and j = {j, j′},µ = {µ, µ′},ν = {ν, ν′} and γ =
{γ, γ′},k = {k, k′},φ = {φ, φ′},ψ = {ψ,ψ′} and δ =

{δ, δ′}. The definitions of ¯̃Nγ , N̄γ can obtained from the

definitions of Ñγ ,Nγ (cf. Secs. IV A, IV B) by making
the substitution α→ ᾱ and ᾱ, ε have been defined in the
previous subsection.

Noting that Eq. (23) expresses the density matrix
in the eigenbasis of the joint-photon-number-modulo-
4 measurement of arnie and bert, an outcome λ ∈
{0, 1, 2, 3} projects the state of the four modes to ρλABab =
ρ̄λABab/Tr

[
ρ̄λABab

]
, where ρ̄λABab is the un-normalized den-

sity matrix obtained from ρABab by restricting the sum-
mation of γ, γ′, δ, δ′ to be such that: γ+δ = λ mod 4, γ′+
δ′ = λ mod 4. The inefficiencies in the final homodyne
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FIG. 6. (color online) Probability distribution P̄λ(qa, qb) of
outcomes of the homodyne measurements of arnie and bert
and resulting overlaps of Alice and Bob’s joint density matrix
ρAB with the Bell-states |φ±〉 = (|g, g〉 ± |e, e〉)/

√
2, |ψ±〉 =

(|g, e〉 ± |e, g〉)/
√

2 are shown. We choose α = 1.0 and η1 =
η2 = 0.8 and show the cases λ = 0, 2 (see Fig. 11 in Appendix
C 3 for λ = 1, 3). The top (bottom) left panel shows the
probability of outcomes for the joint-photon-number-modulo-
4 outcome to be λ = 0(2). Corresponding overlaps to the
Bell-states |φ±〉(|ψ±〉) are plotted in the top (bottom) center
and top (bottom) right panels. Note that the maximum fi-
delity obtained for outcomes with non-negligible occurrence
probability is lowered compared to the perfect case (compare
Fig. 4). The overlap to the odd (even) Bell-states for λ = 0(2)
are not shown for brevity.

detection of arnie and bert can be done similarly to the
method described in Sec. IV A, using Eq. (21). The
probability of outcomes and the overlap to the Bell-states
|φ±〉, |ψ±〉 can be evaluated analytically, whose explicit
forms are not shown here for brevity.

Fig. 6 shows the probability of outcomes and the over-
lap to the Bell-states |φ±〉(|ψ±〉) when the joint-photon-
number-modulo-4 measurement outcome λ = 0(2). For
brevity, the results for the outcomes λ = 1, 3, (the cases
where the loss of a single photon in either arnie or bert
was tracked) are shown in Fig. 11 in Appendix C 3. We
have chosen α = 1.0 and η1 = η2 = 0.8 (see footnote in
Sec. IV A). The top (bottom) left panel shows the prob-
ability of outcomes for λ = 0(2), while the top (bottom)
center and right panels show the corresponding overlaps
to the Bell-states |φ±〉(|ψ±〉). We see that including inef-
ficiencies lowers the maximum fidelity obtained for out-
comes with non-negligible occurrence probability com-
pared to perfect case (compare Fig. 4).

C. Comparison of the mod 2 and mod 4
implementations in presence and absence of

imperfections

In the previous subsections, we described the probabil-
ity of outcomes for the two different implementations of
our protocol. In this section, we discuss the the total and
optimized success-rates of generating entangled states for
the two implementations, comparing the cases of perfect
and imperfect quantum efficiencies.

First, consider the mod 2 implementation of our pro-
tocol for perfect and imperfect quantum efficiencies. The
probability of success and the overlaps to the Bell-states
are given in Fig. 3 (Fig. 5) for the perfect (imperfect)
case. The total success-rate for generation of entangled
states can be computed for different cut-off fidelities by
integrating the appropriate region of (xa, xb) or (qa, qb)
space of outcomes. In the perfect (imperfect) case, the
majority of the outcomes, occurring around ±α(±ᾱ),
give rise to entangled states, while the events along the
lines xa(qa) = 0 and xb(qb) = 0 do not. Thus, in order
to have a high total success-rate of generating entangled
states, the number of outcomes along the lines xa(qa) = 0
and xb(qb) = 0 should be minimized. This can be done by
increasing the size of α because the probability of obtain-
ing an outcome along these lines goes down exponentially
with α2(ᾱ2). While in the perfect case α can be made
arbitrarily large giving rise to deterministic generation of
entangled states, in the imperfect case, too large a value
of α lowers the success-rate. This is because large values
of α are more susceptible to photon-losses.

Next, consider the mod 4 implementation of our pro-
tocol. The relevant probability of outcomes and over-
lap to the Bell-states are given in Fig. 4 (Fig. 6) for the
perfect (imperfect) case. Similar considerations, as in
the mod 2 implementation, lead to the conclusion that
in absence of imperfections, increasing α, in general, in-
creases the success-rate for the different cut-off fidelities.
Note that the increase, however, is not monotonic (see be-
low). However, in presence of imperfections, arbitrarily
increasing α does not increase the success-rate of gener-
ating high-fidelity entangled states. This happens again
because large values of α are more susceptible to photon-
losses. However, for large values of α, when photon loss
dominates, tracking the loss of photons and thereby cor-
recting the errors enables higher success rate of generat-
ing better entangled state compared to the mod 2 imple-
mentation.

Fig. 7 shows the total probability of generation of en-
tangled states as a function of different cut-off fidelities
and different choices of the parameter α for the perfect
case (left panels, indicated by η1 = η2 = 1) and the
imperfect case (right panels, for which, we have chosen
η1 = η2 = 0.8). The top (bottom) panels correspond
to the mod 2 (mod 4) implementation. For the mod 2
implementation, for the perfect case, for α� 1, the prob-
ability of generation of entangled states with an overlap
> 0.9 to a Bell-state is ∼ 0.5 while for α > 1 for which
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FIG. 7. (color online) Total success probability (Ptotal) for
different cut-off fidelities and different choices of α is plotted
for the case of perfect quantum efficiency (left panels, indi-
cated by η1 = η2 = 1) and the imperfect case (right panels,
where we have chosen η1 = η2 = 0.8). The top (bottom) pan-
els correspond to the mod 2 (mod 4) implementation. (Top
left) For α � 1, the probability of generation of entangled
states with overlap > 0.9 is around 0.5. Increasing α to � 1
generates perfect entangled states with near-unit probability.
(Top right) In presence of imperfections, for α � 1, we gen-
erate entangled states with overlap > 0.7 to Bell-states with
probability in excess of 0.3. However, increasing α does not
lead to a higher success-rate for generating better entangled
states. This is because larger values of α are more suscepti-
ble to photon loss. Depending on the desired cut-off fidelity
and the efficiency of an experimental setup, there is an opti-
mal choice of α that leads to the maximal success-rate. For
instance, in the case shown, for a desired cut-off fidelity of
0.75, the optimal choice is α ' 0.7. (Bottom left) The total
probability of generating entangled states with overlap > 0.9
is ∼ 0.3 and increasing α increases the success-rate to near-
unity. The increase is non-monotonic because the size of the
fringes in the overlap (Figs. 4, 6) depend on the value of
α. (Bottom right) In presence of imperfections, increasing α
to � 1 no longer increases the success-rate. As in the mod 2
case, there is an optimal choice for α: e.g. for a cut-off fidelity
of 0.75 for this choice of inefficiency, α ∼ 1.5. Further, for rel-
atively large values of α ≥ 1.5, it is more advantageous to use
the mod 4 implementation over the mod 2 implementation.
This is because the mod 4 protocol corrects for the decoher-
ence of the entangled qubit-photon states due to photon-loss
to first order.

we generate entangled states with unit-probability. On
the other hand, in the imperfect case, for the choice of
efficiency parameters η1 = η2 = 0.8, small values of α
(α � 1) give rise to entangled states with overlaps to

Bell-states > 0.7 with a success-rate in excess of 0.3.
However, unlike the perfect case, larger values of α do
not help getting better success-rate for similar or bet-
ter entangled states because of photon loss. Thus, for
different cut-off fidelities and measurement efficiencies,
there is an optimal choice of α, e.g. in the case shown,
for a cut-off fidelity of 0.75, the optimal choice for α is
' 0.7. For the mod 4 implementation, the success-rates
are ∼ 0.3 for generating entangled states with overlap
> 0.9 in absence of imperfections for α � 1. Increas-
ing α increases the success-rate to near-unity. Note that
the increase is non-monotonic, unlike the case of mod 2
implementation. This is because the size of the fringes,
which are regions of unentangled states, present in the
overlap to the Bell-states (see Figs. 4, 6) depends on
the value of α. In presence of imperfections, increasing
α does not necessarily increase the success-rate because
of decoherence due to photon loss. Just as in the mod
2 implementation, there is an optimal choice for α: e.g.
for a cut-off fidelity of 0.75 for this choice of inefficiency,
α ∼ 1.5. Note that for relatively larger values of α > 1.5,
it is more advantageous to use the mod 4 implementation
over the mod 2 implementation since it corrects for the
decoherence of the propagating qubit-photon states due
to photon-loss to first order.

Next, we optimize the success-rate with respect to the
parameter α for the two implementations. This opti-
mization is done numerically for the different values of
the efficiency parameters η1, η2 and the different cut-off
fidelities. This is shown below in Fig. 8. We take η1 = η2

for simplicity. For η1 = η2 = 0.8, one is able to gener-
ate entangled states with overlap to Bell-states ∼ 0.75
with a near-unity success-rate by both mod 2 and mod
4 implementation. Although the probability of genera-
tion of higher fidelity Bell-states decreases for both the
implementations, the rate of decrease is different for the
two. Enclosed by the white curves in the right panel is
the region where the mod 4 implementation has a higher
success rate than the mod 2 implementation. For in-
stance, for η1 = η2 = 0.9, the probability of generating
a Bell-state with overlap of 0.95 or greater is less than
10−10 for the mod 2 implementation (white rectangle in
left panel). On the other hand, the mod 4 implementa-
tion is able to generate these states with a success-rate of
10−4 (white rectangle in right panel). This is because of
its ability to correct for photon loss errors to first order.
Note, however, that for low enough efficiency and high
enough cut-off fidelity, the error correcting mod 4 proto-
col ceases to be advantageous. This is because for such
low efficiency because higher than first order photon loss
become more dominant.

D. Adding individual photon-number-modulo-2
measurements to the mod 4 implementation

In the previous subsections, we have shown that in
presence of finite quantum efficiency, it is more advan-
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FIG. 8. (color online) Optimized total success-probability P ∗

in logarithmic scale for different cut-off fidelities and different
choices of η1, η2 for the mod 2 and the mod 4 implementa-
tions. The optimization is done numerically for the value of
the parameter α. We choose, for simplicity, η1 = η2. The
left (right) panel corresponds to the joint-photon-number-
modulo-2(4) implementation. For both protocols, for an effi-
ciency of η1 = η2 = 0.8, entangled states with overlaps to the
Bell-states ∼ 0.75 are generated with near-unity success-rate.
The probability of generating high-fidelity Bell-states dimin-
ishes rapidly. However, the rate of decrease of success-rate
for the mod 2 and mod 4 implementations are different. The
white curves in the right panel enclose the region for which
the mod 4 implementation has a higher success rate than the
mod 2 implementation. For instance, for inefficiency values
∼ 0.9, the success-rate for the mod 2 implementation is less
than 10−10 for generating states with overlap to Bell-states
of ∼ 0.95 (white rectangle in left panel). However, the mod
4 implementation, due to its ability to correct for photon loss
errors to first order, can, in fact, generate states with over-
lap ∼ 0.95 to Bell-states with a success-rate of 10−4 (white
rectangle in right panel). However, the error correcting mod
4 protocol ceases to be advantageous to generate high fidelity
Bell-states for low enough efficiencies and high enough cut-off
fidelities. This is because for such low efficiency, higher order
photon loss become more dominant.

tageous to use the mod 4 implementation of our proto-
col, because this implementation corrects for decoherence
due to loss of a photon in either arnie or bert. In this
section, we describe an improvement of the mod 4 imple-
mentation. The improvement consists of measurement of
individual photon-number-modulo-2 of each of arnie and
bert, in addition to the joint-photon-number-modulo-4
measurement. Thus, this improved mod 4 implementa-
tion is referred to as the (mod 4) +Pa + Pb implemen-
tation, where Pa,b denote the individual photon-number-
modulo-2 measurements of arnie, bert. As explained in
the previous subsection, this improvement suppresses de-
coherence due to the loss of one photon in both arnie and
bert and increases the success-rate of generating high fi-
delity entangled Bell-states compared to the mod 4 im-
plementation. Note that in absence of imperfections, the
measurement of the individual parity of arnie and bert
provides no additional information and advantage.

Incorporating this improvement in an experimental im-
plementation poses no additional challenge compared to

FIG. 9. (color online) Total success rate for the mod 4 (left
panel) and the (mod 4) +Pa + Pb (right panel) implemen-
tations are shown for the case of finite quantum efficiency,
where we choose η1 = η2 = 0.8. While for α � 1, both the
mod 4 and the (mod 4) +Pa + Pb implementation perform
similarly, for larger values of α, the latter performs better
than the other. This is because the mod 4 implementation
corrects loss of a single photon loss in either arnie or bert,
while the (mod 4) +Pa + Pb implementation corrects for the
loss of single photons in each of arnie and bert.

the mod 4 implementation as demonstrated in [33]. Fur-
ther, the time required to make these additional mea-
surements, with current circuit-QED parameters, is neg-
ligible compared to the typical qubit coherence times.
This justifies neglecting the qubit decoherence for this
part of the analysis. The theoretical calculations can
be done in an analogous manner to that described in
Sec. IV B. The only difference comes in while comput-
ing the resultant state of Alice, Bob, arnie and bert
after the individual photon-number-modulo-2 and the
joint-photon-number-modulo-4 measurements, given by
ρλABab = ρ̄λABab/Tr

[
ρ̄λABab

]
. As before, the un-normalized

density matrix ρ̄λABab is obtained from ρABab [given in Eq.
(23)] by restricting the summation of γ, γ′, δ, δ′ to be such
that: γ+δ = λ mod 4, γ′+δ′ = λ mod 4. The only differ-
ence is that depending on the individual parity of arnie
(bert) to be even or odd, the values of γ, γ′(δ, δ′) are re-
stricted to 0, 2 or 1, 3. The computation of the homodyne
detection can also be done as before.

The results of the computation for the optimized total
success-rate is plotted in Fig. 9. We show total success
rate for the (mod 4) +Pa + Pb implementation in the
case of imperfect quantum efficiency, where we choose
η1 = η2 = 0.8. For comparison purposes, we show the
left the same for the mod 4 implementation (also shown
in Fig. 7, bottom right panel). While for α � 1, both
implementations perform similarly, for larger values of
α when photon loss becomes more dominant, it is more
advantageous to use the (mod 4) +Pa + Pb implemen-
tation over the mod 4 implementation. This is because
unlike the mod 4 implementation which corrects for loss
of single photons to first order, the (mod 4) +Pa + Pb

implementation corrects for the loss of single photons in
each of arnie and bert.
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As before, for each value of cut-off fidelity and ineffi-
ciency, an optimal choice of α can be obtained. This opti-
mization is done numerically. The optimized success-rate
as a function of inefficiency and cut-off fidelity is shown
below (Fig. 10). We again choose η1 = η2 for simplicity.
For comparison purposes, we show the optimized proba-
bility of success for the mod 2 implementation (what is
shown also in Fig. 8, left panel). The white curves in the
right panel enclose the region where the (mod 4) +Pa+Pb

implementation has a higher success rate than the mod
2 implementation. In particular, for η1 = η2 = 0.9, only
the (mod 4) +Pa + Pb implementation is able to give
rise to Bell-states with overlap ≥ 0.95 with a success-
rate of ∼ 10−2, whereas the mod 2 implementation has a
success rate less than 10−10 (the white rectangles in the
plots). Even with efficiency values achievable in current
circuit-QED systems of η1 = η2 = 0.6, with the (mod 4)
+Pa + Pb implementation, one can generate entangled
states with overlaps to Bell-states ≥ 0.8 with a success-
rate of 10−4 (the white circles in the plots). This shows
that on one hand, our protocol is useful for high efficiency
quantum systems, where by performing error correction,
one can give rise to really high fidelity Bell-states. On
the other hand, with current system parameters, our pro-
tocol can generate Bell-states with fidelity high enough
to violate CHSH inequalities. Note, however, that this
protocol is not able to generate perfect fidelity Bell-states
for efficiency parameters of around 0.6. This is because
the mod 4 encoding protects against photon loss to first
order. For higher order protection, one will have to resort
to different encodings [26, 40–42].

V. CONCLUSION

To summarize, we have presented in this paper, a pro-
tocol to remotely entangle two distant, mutually non-
interacting, stationary qubits. To that end, we have
used a propagating ancilla qubit for each of the sta-
tionary qubit. In the first step, local entanglement is
generated between each stationary qubit and its associ-
ated ancilla. Subsequently, a joint two-qubit measure-
ment is performed on the propagating ancilla qubits, fol-
lowed by individual single-qubit measurements on the
same. Depending on the three measurement outcomes,
the two stationary qubits are projected on to an en-
tangled state. We have discussed two continuous vari-
able implementations of our protocol. In the first imple-
mentation, the ancilla qubits were encoded in even and
odd Schrödinger cat states. For this encoding, the two-
qubit measurement was done by a joint-photon-number-
modulo-2 measurement and the single-qubit measure-
ments were performed by homodyne detections. Sub-
sequently, we described a second implementation, where
the ancilla qubits were encoded in mod 4 cat states. For
this encoding, the two-qubit measurement was performed
by a joint-photon-number-modulo-4 measurement and
the single qubit measurements were performed by ho-

FIG. 10. (color online) Optimized total success-probability
P ∗ for different cut-off fidelities and different choices of η1, η2
for the mod 2 (left panel) and the (mod 4) +Pa + Pb (right
panel) implementations. The optimization is done for the
value of the parameter α. We choose, for simplicity, η1 =
η2. In contrast to the mod 2 implementation, the (mod 4)
+Pa +Pb implementation shows substantially more resilience
to lower efficiency. The white curves in the right panel enclose
the region where the (mod 4) +Pa + Pb implementation has
a higher success rate than the mod 2 implementation. For
instance, the (mod 4) +Pa + Pb implementation gives rise to
Bell-states with fidelity ≥ 0.95 with a success rate of 10−2

for an efficiency of η1 = η2 = 0.9 (the white rectangle in
each plot). This should be compared with a success rate of
less than 10−10 for the mod 2 implementation (left panel) and
that of 10−4 for the mod 4 implementation (right panel of Fig.
8). Even with efficiency values achievable in current circuit-
QED systems of η1 = η2 = 0.6, one can generate entangled
states with overlaps to Bell-states ≥ 0.8 with a success-rate of
10−4 (the white circle in each plot). However, for low enough
efficiencies, the error correcting protocol ceases to be advanta-
geous since higher order photon loss become more important.
For higher order protection, one will have to resort to different
encodings [26, 40–42].

modyne detections. We analyzed the resilience of the
two implementations to finite quantum efficiency aris-
ing out of imperfections in realistic quantum systems.
We described how with the mod 4 implementation, it
is possible to suppress loss of coherence due to loss of
a photon in either of the ancilla qubits. Lastly, we
presented an improvement of the mod 4 implementa-
tion, where we made individual photon-number-modulo-
2 measurements of the ancilla qubits, together with the
joint-photon-number-modulo-4 measurement, by virtue
of which we suppressed the decoherence due to loss of
a photon in both the ancilla qubits. We demonstrated
that it is indeed possible to trade-off a higher success
rate, present in the mod 2 implementation, for a higher
fidelity of the generated entangled state, present in the
(mod 4) +Pa+Pb implementation, using error correction.

Next, we point out several future directions of research
that this work leads to. First, the use of homodyne de-
tection as the single-qubit measurement in the final step
of the mod 4 or the (mod 4) +Pa +Pb implementation of
our protocol lowers the success-rate of generating entan-
gled states. This is because both arnie and bert are in
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superpositions of |C+
α 〉 and |C+

iα〉, and thus, irrespective
of the choice of the quadrature, the homodyne measure-
ment is always made on the complementary quadrature
of the modes for one of the cat states. This gives rise to
fringes in the resultant overlap to the Bell-states and low-
ers the success rate of generating these Bell-states. It will
be worthwhile to explore alternatives for the homodyne
detection to boost the success rate of the error correcting
protocol. Second, the error correcting encoding we used
is designed to protect against losses of single-photons to
first order. This is why mod 4 implementation protects
against loss of a photon in either of the ancilla qubits.
By including individual parity measurements, in addi-
tion to the joint-photon-number-modulo-4 measurement,
we corrected for the decoherence due to loss of a pho-
ton in both of the ancillas. However, with this encoding,
higher order photon loss errors cannot be corrected. It
will be interesting to explore different encodings of the
ancilla qubits for protection against higher order photon
loss [26, 40–42]. Finally, while in our work we have ad-
dressed the question of correcting the dominant photon
loss error, it should be possible to correct for the photon
addition and photon dephasing errors using the binomial
codes [41]. Also, the possibility of repumping photons in
the mod 4 encoding opens the possibility of correcting
photon dephasing errors [27].
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2013-39273.

Appendix A: Protocol to realize a
joint-photon-number-modulo-4 measurement

Here, we describe the protocol to perform the joint-
photon-number-modulo-4 measurement of two resonator
modes. Consider two resonator modes (with annihilation
operators a,b), which are dispersively coupled to a trans-
mon qubit (whose ground, excited states are denoted by
|g〉, |e〉). We require the dispersive coupling strength to
be equal 3 for each of the modes a,b. The resultant
Hamiltonian describing the two cavity modes and the

3 Equal coupling of the transmon qubit to two different cavity
modes is challenging to realize experimentally and is not a pre-
requisite for making these joint-photon-number measurements.
It can be avoided by using higher excited states of the trans-
mon as was demonstrated in the joint-photon-number-modulo-2
measurements of [33].

transmon qubit is given by:

Hmod4 = ωq|e〉〈e|+ ωaa
†a + ωbb

†b

−χ(a†a + b†b)|e〉〈e|, (A1)

where χ is the cross-Kerr coupling of the transmon qubit
to the cavity modes. A joint-photon-number-modulo-
4 measurement can be performed in the following way.
First, a joint-photon-number-modulo-2 measurement is
performed [33]. This can be done by exciting the trans-
mon qubit at frequencies ωq− 2kχ where k ∈ Z, followed
by a Z measurement of the transmon. A Z measure-
ment result of p̃1 = 1(−1) corresponds to a joint-photon-
number of the modes a,b being 2k(2k + 1). Second,
a measurement is performed that reveals if the joint-
photon-number of the arnie and bert modes ∈ {4k, 4k+1}
or not, where k ∈ Z. This can be done by using the proce-
dure as making the joint-photon-number-modulo-2 mea-
surement. The only difference is that the transmon qubit
is now excited with frequencies ωq − 4kχ, ωq − (4k+ 1)χ,
k ∈ Z. In this case, a Z measurement outcome of p̃2 = 1
corresponds to the joint-photon-number of the modes
a,b ∈ {4k, 4k + 1}, while p̃2 = −1 corresponds to the
same ∈ {4k + 2, 4k + 3}. From these two measurement
outcomes p̃1, p̃2, we can infer the joint-photon-number-
modulo-4 outcome. For instance, p̃1 = p̃2 = 1, the
joint-photon-numer-modulo-4 outcome λ = 0. Similarly,
p̃1 = −1, p̃2 = 1 ⇒ λ = 1, p̃1 = 1, p̃2 = −1 ⇒ λ = 2
and p̃1 = −1, p̃2 = −1 ⇒ λ = 3. Obviously, in an ac-
tual experiment, one doesn’t need to send an infinite set
of frequencies to make these measurements. The actual
number of frequencies depend on the photon-number dis-
tributions of the two resonator modes.

Appendix B: Computation of probability of
outcomes and overlap to the Bell-states in absence

of imperfections

1. Implementation using Schrödinger cat states

In this section, we outline the computation of the prob-
ability of success and overlaps to the different Bell-states.
To that end, we start with the state of the four modes:
Alice, Bob, arnie and bert:

|Ψp=1
ABab〉 =

1√
2

(
|g, g, C+

α , C
+
α 〉+ |e, e, C−α , C−α 〉

)
,(B1)

|Ψp=−1
ABab〉 =

1√
2

(
|g, e, C+

α , C
−
α 〉+ |e, g, C−α , C+

α 〉
)
.(B2)

The homodyne detection can be modeled as a projec-
tion of arnie and bert on x eigenstates, described by the
projection operator: MX = |xa, xb〉〈xa, xb|. Consider
the case p = 1. After the homodyne detection, the un-
normalized wave-function for the modes of Alice, Bob,
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arnie and bert is given by:

MX |Ψp=1
ABab〉 =

1√
2

(
〈xa|C+

α 〉〈xb|C+
α 〉|g, g〉

+〈xa|C−α 〉〈xb|C−α 〉|e, e〉
)
|xa, xb〉.(B3)

Using the wave-function in the position basis of an even
(odd) Schrödinger cat state:

〈x|C±α 〉 =
( 2

π

)1/4

N±e−x
2−α2(

e2xα ± e−2xα
)
,

we arrive at:

MX |Ψp=1
ABab〉 =

2√
π
e−(x2

a+x2
b)e−2α2

[cosh(2xaα) cosh(2xbα)

1 + e−2α2

|g, g〉+
sinh(2xaα) sinh(2xbα)

1− e−2α2 |e, e〉
]
|xa, xb〉.

The probability distribution of outcomes P (xa, xb) and
the resultant state of Alice and Bob ρAB are then given
by:

P p=1(xa, xb) =
1

2
Tr
[
MX |Ψp=1

ABab〉〈Ψ
p=1
ABab|M

†
X

]
, (B4)

ρp=1
AB =

Trab

[
MX |Ψp=1

ABab〉〈Ψ
p=1
ABab|M

†
X

]
Tr
[
MX |Ψp=1

ABab〉〈Ψ
p=1
ABab|M

†
X

] ,(B5)

giving rise to: Eqs. (7), (8), (9). Note the factor of 1/2,
which arises in the total probability of outcomes due to
the fact that the p = 1 outcome happens with a proba-
bility 1/2. The calculation for p = −1 can be done in an
analogous fashion.

2. Implementation using mod 4 cat states

In this section, we outline the calculation for the prob-
ability of success and the overlap to the Bell-states when
the ancilla qubits are encoded in mod 4 cat states. The
state of Alice, Bob, arnie and Bert, following the joint-
photon-number-modulo-4 measurement can be written as
[Eq. (12), (13)]:

|Ψλ=0
ABab〉 =

1√
2

(
|g, g, C0mod4

α , C0mod4
α 〉

+|e, e, C2mod4
α , C2mod4

α 〉
)

|Ψλ=2
ABab〉 =

1√
2

(
|g, e, C0mod4

α , C2mod4
α 〉

+|e, g, C2mod4
α , C0mod4

α 〉
)
. (B6)

To compute resultant states of Alice and Bob after the
subsequent homodyne detection of arnie and bert, we use
the following definitions of the mod 4 cats:

|Cλmod4
α 〉 = Ñλ

(∣∣∣C(−)λ

α

〉
+ (−i)λ

∣∣∣C(−)λ

iα

〉)
, (B7)

where Ñλ =
[
2 + 2(−i)λ{ei|α|2 + (−1)λe−i|α|

2}/{e|α|2 +

(−1)λe−|α|
2}
]− 1

2 , λ ∈ {0, 1, 2, 3} and (−)λ = +(−) for
even (odd) λ. This leads to:

〈x|Cλmod4
α 〉 = Ñλ

(
〈x|C+

α 〉+ iλ〈x|C+
iα〉
)
, λ = 0, 2

where 〈x|C+
α 〉 and 〈x|C+

iα〉 are given by:

〈x|C+
α 〉 = 2

( 2

π

)1/4

N+e
−x2−α2

cosh(2αx), (B8)

〈x|C+
iα〉 = 2

( 2

π

)1/4

N+e
−x2

cos(2αx). (B9)

Thus, we arrive at:

MX |Ψλ=0
ABab〉 =

1√
2

(
〈xa, xb|C0mod4

α , C0mod4
α 〉|g, g〉

+〈xa, xb|C2mod4
α , C2mod4

α 〉|e, e〉
)
|xa, xb〉

=
4√
π
N 2

+e
−(x2

a+x2
b)
[
Ñ 2

0 F0(xa)F0(xb)|g, g〉

+Ñ 2
2 F2(xa)F2(xb)|e, e〉

]
|xa, xb〉, (B10)

where Fλ(x) = e−α
2

cosh(2αx) + iλ cos(2αx). This leads
to the probability distribution and the resultant density
matrix for Alice and Bob through the relations:

Pλ=0(xa, xb) =
1

2
Tr
[
MX |Ψλ=0

ABab〉〈Ψλ=0
ABab|M

†
X

]
,(B11)

ρλ=0
AB =

Trab

[
MX |Ψλ=0〉〈Ψλ=0

ABab|M
†
X

]
Tr
[
MX |Ψλ=0

ABab〉〈Ψλ=0|M†X
] .(B12)

Similar set of calculations can be done for the outcome
λ = 2.

Appendix C: Computation of propagating
qubit-photon states in presence of imperfections

1. Implementation using Schrödinger cat states

First, we describe the computation of the state of Alice
and arnie after their entangled qubit-photon states de-
cohere as they propagate through the transmission line.
The initial state of Alice and arnie is given by [Eq. (18)]:

|ΨAa〉 =
1√
2

1∑
j,µ=0

Nj(−1)jµ|j, (−1)µα〉. (C1)

To compute the final state after attenuation losses, first
we introduce an auxiliary mode a′, initialized to vacuum.
Then, we model the losses by passing the joint system of
Alice, arnie and a′ through a beam-splitter with trans-
mission probability η1. Thus, the state evolves according
to:

|ΨAa〉 ⊗ |0〉 → |Ψ̄Aa〉

|Ψ̄Aa〉 =
1√
2

1∑
j,µ=0

Nj(−1)jµ|j, (−1)µᾱ, (−1)µε〉,(C2)
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where ᾱ =
√
η1α and ε =

√
1− η1α. Thus, the density

matrix for the modes Alice, arnie and a′ can be written
as:

ρ̄Aa =
1

2

1∑
j,j′,µ,µ′=0

NjNj′(−1)µ·j
(∣∣j, (−1)µᾱ

〉
〈
j′, (−1)µ

′
ᾱ
∣∣)|(−1)µε〉〈(−1)µ

′
ε|

⇒ ρAa =
1

2

1∑
j,j′,µ,µ′=0

NjNj′(−1)µ·je−ε
2{1−(−1)µ+µ

′
}

(∣∣j, (−1)µᾱ
〉〈
j′, (−1)µ

′
ᾱ
∣∣) (C3)

where µ = {µ, µ′}, j = {j, j′} and in the last line, we have

traced out the auxiliary mode a′. Here, e−ε
2{1−(−1)µ+µ

′
}

shows explicitly the loss of coherence due to the loss of
information to the environment. At this point, we need
to re-express the |(−1)µᾱ〉 in the eigenbasis of the mea-
surement operator: joint-photon-number-modulo-2. To
that end, we use:

|(−1)µᾱ〉 =
1

2

1∑
k=0

(−1)µk

N̄k

∣∣C(−)k

ᾱ

〉
, (C4)

where N̄j = 1/
√

2(1 + (−1)je−2|ᾱ|2). Using Eqs. (C3),
(C4), we arrive at the density matrix for Alice and arnie:

ρAa =
1

8

∑
Aa

NjNj′
N̄kN̄k′

(−1)µ·(j+k)e−ε
2{1−(−1)µ+µ

′
}

∣∣∣j, C(−)k

ᾱ

〉〈
j′, C

(−)k
′

ᾱ

∣∣∣, (C5)

where
∑
Aa

=
1∑

j,j′=0

1∑
k,k′=0

1∑
µ,µ′=0

,k = {k, k′}.

Similar calculations can be done for the entangled
states of Bob and bert, yielding:

ρBb =
1

8

∑
Bb

NlNl′
N̄mN̄m′

(−1)ν·(l+m)e−ε
2{1−(−1)ν+ν

′
}

∣∣∣l, C(−)m

ᾱ

〉〈
l′, C

(−)m
′

ᾱ

∣∣∣, (C6)

where
∑
Bb

=
1∑

l,l′=0

1∑
m,m′=0

1∑
ν,ν′=0

,ν = {ν, ν′}, l = {l, l′} and

m = {m,m′}. The tensor product of ρAa and ρBb gives
Eq. (19).

2. Implementation using mod 4 cat states

First, we describe the computation of the qubit-photon
states of Alice and arnie after propagation through the
transmission line. The starting point is Eq. (22):

|ΨAa〉 =
1√
2

1∑
j,µ,ν=0

Ñ2jN2j(−1)jν |j, (−1)µiνα〉.(C7)

To compute the entangled qubit-photon state when it ar-
rives at the joint-photon-number-modulo-4 measurement
apparatus, we use the approach outlined in Appendix
C 1, introducing an auxiliary mode a′ in vacuum, com-
puting the resultant state of Alice, arnie and a′ as it
passes through a beam-splitter of transmission probabil-
ity η1 and subsequently, tracing out the mode a′. Fol-
lowing the notation in Appendix C 1, we find that:

|Ψ̄Aa〉 =
1√
2

1∑
j,µ,ν=0

Ñ2jN2j(−1)jν |j, (−1)µiν ᾱ, (−1)µiνε〉,

where ᾱ =
√
η1α and ε =

√
1− η1α. Thus, the density

matrix for the modes Alice, arnie and a′ can be written
as:

ρ̄Aa =
1

2

∑
{}

Ñ2jÑ2j′N2jN2j′(−1)ν·j
(∣∣j, (−1)µiν ᾱ

〉
〈
j′, (−1)µ

′
iν
′
ᾱ
∣∣)|(−1)µiνε〉〈(−1)µ

′
iν
′
ε|

⇒ ρAa =
1

2

∑
{}

Ñ2jÑ2j′N2jN2j′(−1)ν·j

e−ε
2{1−(−1)µ+µ

′
iν−ν

′
}∣∣j, (−1)µiν ᾱ

〉〈
j′, (−1)µ

′
iν
′
ᾱ
∣∣,

where
∑
{}

=
1∑

j,j′=0

1∑
µ,µ′=0

1∑
ν,ν′=0

, ν = {ν, ν′}, j = {j, j′}

and in the last line, we have traced out the auxiliary
mode a′. In the next step, we express the above equation
in the eigenbasis of the joint-photon-number-modulo-4
measurement. To that end, we use:∣∣(−1)µiν ᾱ

〉
=

1

4

3∑
γ=0

1
¯̃NγN̄γ

∣∣Cγmod4
(−1)µiν ᾱ

〉
=

1

4

3∑
γ=0

(−1)µγiνγ

¯̃NγN̄γ

∣∣Cγmod4
ᾱ

〉
, (C8)

where ¯̃Nγ , N̄γ can obtained from the definitions of Ñγ ,Nγ
(cf. Secs. IV A, IV B) by making the substitution α→ ᾱ
and the last line follows from the definition of mod 4 cats
(see Sec. 2.2 of [27]). Combining the last two equations
results in:

ρAa =
1

25

∑
Aa

Ñ2jÑ2j′N2jN2j′

¯̃Nγ ¯̃Nγ′N̄γN̄γ′
(−1)ν·j+µ·γiνγ−ν

′γ′

e−ε
2{1−(−1)µ+µ

′
iν−ν

′
}
∣∣∣j, Cγmod4

ᾱ

〉〈
j′, Cγ

′mod4
ᾱ

∣∣∣,
where

∑
Aa

=
1∑

j,j′=0

1∑
µ,µ′=0

1∑
ν,ν′=0

3∑
γ,γ′=0

. Here, we have used,

as before, the following definitions: j = {j, j′},µ =
{µ, µ′},ν = {ν, ν′} and γ = {γ, γ′}. Similar calculations
can be done for Bob and bert, yielding:

ρBb =
1

25

∑
Bb

Ñ2kÑ2k′N2kN2k′

¯̃Nδ ¯̃Nδ′N̄δN̄δ′
(−1)ψ·k+φ·δiψδ−ψ

′δ′

e−ε
2{1−(−1)φ+φ

′
iψ−ψ

′
}
∣∣∣j, Cδmod4

ᾱ

〉〈
j′, Cδ

′mod4
ᾱ

∣∣∣,
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where
∑
Bb

=
1∑

k,k′=0

1∑
φ,φ′=0

1∑
ψ,ψ′=0

3∑
δ,δ′=0

and k = {k, k′},φ =

{φ, φ′},ψ = {ψ,ψ′} and δ = {δ, δ′}. The tensor product
of ρAa and ρBb gives us Eq. (23).

3. Probability distribution and overlaps to
Bell-states for λ = 1, 3

After the homodyne detection of arnie and bert, corre-
sponding to the joint-photon-number-modulo-4 measure-
ment outcomes λ = 1, 3, the probability of success and
the overlap to the Bell-states |φ±〉, |ψ±〉 is shown in Fig.
11.

FIG. 11. (color online) Probability distribution P̄λ(qa, qb) of
outcomes of the homodyne measurements of arnie and bert
and resulting overlap of Alice and Bob’s joint density matrix
ρAB with the Bell-states |φ±〉 = (|g, g〉 ± |e, e〉)/

√
2, |ψ±〉 =

(|g, e〉 ± |e, g〉)/
√

2 is shown. We choose α = 1 and η1 =
η2 = 0.8 and show the cases λ = 1, 3 (see Appendix C 2 for
λ = 1, 3). The top (bottom) left panel shows the probability
of outcomes for the joint-photon-number-modulo-4 outcome
to be λ = 1(3). Corresponding overlaps to the Bell-states
|ψ±〉(|φ±〉) are plotted in the top (bottom) center and top
(bottom) right panels. The overlaps to the even (odd) Bell-
states for λ = 1(3) are not shown for brevity.
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