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One-way quantum computing is experimentally appealing because it requires only local

measurements on an entangled resource called a cluster state.

Record-size, but non-universal,

continuous-variable cluster states were recently demonstrated separately in the time and frequency
domains. We propose to combine these approaches into a scalable architecture in which a single
optical parametric oscillator and simple interferometer entangle up to (3 x 10® frequencies) x
(unlimited number of temporal modes) into a new and computationally universal continuous-variable
cluster state. We introduce a generalized measurement protocol to enable improved computational

performance on the new entanglement resource.

PACS numbers: 03.67.Bg,42.50.Dv,42.50.Ex, 42.65.Y]

I. INTRODUCTION

One-way quantum computing [1] is a form of
measurement-based quantum computing (MBQC) [2, 3]
and an appealing alternative to the circuit model [4],
which is being more widely pursued [5]. In one-way
quantum computing, the primitives of the universal gate
set are pre-encoded in a “quantum substrate” that is
a generic, yet precise, entangled cluster state described
by a graph specifying the entanglement structure of the
qubits [6] or qumodes [7]. Quantum computing proceeds
solely from single-node measurements on the cluster
graph and feedforward of the measurement results [1, 8].

Quantum error correction and fault tolerance in one-
way quantum computing have been theoretically proven
feasible for qubit cluster states [9], with thresholds
comparable to those for concatenated codes (1073
to 107%), and then later improved using topological
methods to thresholds slightly above the percent
level [10]. Fault tolerance has recently been proven
for continuous-variable (CV) cluster states in terms of
required levels of squeezing, the squeezing threshold
being no more than 20.5 dB for a 1075 error rate [11].
Since the techniques used in Ref. [11] mirror those in
Ref. [9], this threshold value is conservative and can most
likely be improved.

A fully fledged, scalable experimental demonstration
of one-way quantum computing has yet to be achieved,
as none of the proof-of-principle implementations using
four photonic qubits [12, 13] or four optical qumodes [14]
employed a scalable architecture.

Recently, one-dimensional cluster-state entanglement
was demonstrated, at record sizes, over the continuous
variables represented by the quantum amplitudes of the
electromagnetic field, a.k.a. qumodes. This was achieved
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in the frequency domain [15], with 60 simultaneously
addressable entangled qumodes, and in the time
domain [16, 17], with 10* sequentially addressable
entangled qumodes. Solely technical issues reduced these
numbers from their potential higher values of 3 x 103
qumodes in the frequency architecture [18] and unlimited
qumodes in the temporal architecture [17]. Besides
this scalability breakthrough, optical implementations of
quantum information offer other advantages such as room
temperature operation, naturally low decoherence, and
significant potential for device integration [19, 20].

In this paper, we show that one can create
computationally universal CV cluster states by
entangling, both in time and in frequency, the quantum
frequency comb of EPR pairs emitted from a single
optical parametric oscillator (OPO). Based on previous
results [15, 17], the lattice for this state could potentially
be up to 3 x 10% nodes in one dimension (frequency) and
unlimited in the other (time bins). We then show that
this state enables universal quantum computing.

This work combines the best of all previous proposals
for scalable CV cluster states: It employs Gaussian states
with bipartite, self-inverse graphs—which are known to
be highly scalable [22, 23]—and reduces the experimental
requirements by simultaneously utilizing both frequency
multiplexing [15, 21] and temporal multiplexing [16, 17,
24]. In addition, these architectures are known to admit
more compact computation [17] with more favorable
noise properties [25] when compared to approaches
based on CV cluster states generated by the canonical
method [8, 26]. Those so-called canonical CV cluster
states [27]—which also admit a temporal [24] and a time-
frequency implementation [28]—are not so easily scalable
in optics due to frequent use of the CV controlled-Z gate.

Our proposal, in contrast, employs macronode-
based cluster states [23] entangled into a bilayer
square lattice (BSL), which has 2 qumodes per
macronode (hence ‘bilayer’), instead of 4 as in previous
proposals [21-23, 27]. The BSL CV cluster state admits a
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FIG. 1. Experimental setup to generate a bilayer square-lattice (BSL) CV cluster state (see text for details). Abbreviations:
HWP@¢ = halfwave plate at angle 6 to the horizontal principal axis of the crystal (rotates polarization by 260); (P)BS =
(polarizing) beamsplitter; MZI = Mach-Zehnder interferometer. Local oscillator fields, at the frequencies of the qumodes to
be measured, will be injected at the unused input port of the MZI and will also be used for locking all optical phases in the
experiment. Note that light propagates from right to left in the figure. The labeled panels show a precise graphical representation
of the Gaussian state present in the beam at each step of the experiment, using the simplified graphical calculus for Gaussian
pure states (for notation and definitions, see Appendix A). Blue and orange correspond to edge weights of +C tanh 2r [10],
respectively, with C given below for each panel. All qumodes (black dots) are labeled as shown in the left panel: by node
index [Eq. (2.1)] (vertical) and by time bin and polarization (horizontal). (a) The OPO generates a temporal sequence of
frequency-encoded two-mode squeezed states (C = 1). (b) Multiple (time-binned) CV dual-rail quantum wires encoded in
frequency [15, 21] (C = 27'/2). (c) Result of delaying all odd-numbered Z-polarized qumodes (C = 27'/2). (d) Final BSL CV

cluster state (C = 27%/2) after required phase delays (see text).

more versatile elementary gate set than do canonical CV
cluster states [8, 26], generalizing an analogous result for
single-qumode operations on the CV dual-rail quantum
wire [25].

The structure of this Article proceeds as follows: In
Sec. II we describe the BSL resource state and give an
explicit experimental procedure for how to generate it. In
Sec. IV we describe our measurement protocol, describing
how single-site measurements can be used for universal
quantum computation on the BSL. In Sec. VI we discuss
noise due to finite squeezing and we conclude in Sec. VII.

II. STATE GENERATION

Construction of the BSL CV cluster state is illustrated
in Fig. 1 and described in more detail here. A type-
IT OPO is pumped at two frequencies 21y + Av, one
of each polarization (Y and Z). Each pump produces
a number of two-mode squeezed (TMS) states [29]
over the frequency comb of the OPO eigenmodes, as
shown in Fig. 1(a). These states are each a Gaussian
approximation to an FEinstein-Podolski-Rosen (EPR)
state [30] between two frequencies that add to the

corresponding pump frequency. Now, even if the pump
beams are continuous wave (CW), we still can, and will,
logically assign pieces of the output beam to sequential
time bins [17].

The OPO modes have linewidth v and are spaced
by the free spectral range Av. Each output frequency
vn = 19 + nAv has a corresponding frequency index n
and associated macronode index [21]

m:=(=1)"n, (2.1)
which we will call the node index for short and is used
to label qumodes sequentially (rather than by frequency)
in Fig. 1(a). Indeed, phasematching two frequencies v,
and v, requires n +n’ = +1, and all TMS states are
generated between adjacent node indices (i.e., m —m' =
+1 [21]) in Fig. 1(a).

A 7 polarization rotation (by a halfwave plate at
g rad from the horizontal principal axis of the OPO
crystals), equivalent to a balanced beamsplitter for
polarization qumodes, entangles these TMS states into
a temporal sequence of frequency-encoded dual-rail
quantum wires [15, 21], as shown in Fig. 1(b). A
Mach-Zehnder interferometer (MZI) of path difference
c(2Av) =t [31, 32] separates frequencies of even and odd



frequency index (and node index) into separate beams.
For all odd qumodes, the Z polarization is then time-
delayed with respect to the Y polarization by the interval
0t between two consecutive time bins. The result is
shown in Fig. 1(c). A final § polarization rotation on the
odd qumodes (another “balanced beamsplitter”) yields
the BSL graph of Fig. 1(d).

A final phase delay by 7 (not shown) on either all
odd or all even frequencies converts this into a finitely
squeezed CV cluster state with the same ideal graph as in
panel (d). It is this state that we call the BSL CV cluster
state. The fact that the BSL is a bipartite, self-inverse
graph makes this possible and ensures the scalability of
the scheme [16, 21-23, 27]. (See the general discussion of
bipartite, self-inverse graphs in Ref. [27].)

IIT. EXPERIMENTAL DETAILS

We now outline the basic experimental requirements
for generating the BSL CV cluster state, verifying
its entanglement structure, and using it for quantum
information processing.

Generating the BSL CV cluster state requires
a “musical score” condition—i.e., the measurement
times must be compatible with resolving all qumode
frequencies: 6t > Av~!, an easily fulfilled condition.
In addition, the measurement times must allow one to
achieve maximum squeezing—that is, they must be at
least as long as the OPO cavity storage time [33]. This
translates into 6t > dv—! > Av~! since dv is also half
the squeezing bandwidth [34]. This condition can also be
easily fulfilled in practice [17] and ensures that the time
bins contain maximally squeezed qumodes, to the extent
permitted by the experiment’s squeezing limit (mainly
determined by the intracavity losses).

Moreover, it is important to remember that as
long as the undepleted pump approximation remains
valid, the number of modes to be entangled has
no bearing on the required pump power. To see
that the undepleted-pump approximation holds for our
scheme, note that a typical 100-mW pump power
(i.e., 2.5x10'7 photons/s for green light) and a
typical OPO cavity lifetime of 20 ns together yield
5 x 10° pump photons available for downconversion.
Squeezing of 20 dB corresponds to 24.5 OPO
photons per output mode (since <€LT€L> = sinh? r, with
#dB = 10log;, e?” ~ 8.69 r). With each pump photon
downconverting into two daughter photons, even with
one million output modes the total number of pump
photons required is only 4 x 24.5x 10% = 1.2 x 107, which
is just 0.25% of the total number available. Therefore,
pump depletion is indeed negligible.

To wverify that the BSL CV cluster state has been
generated successfully, we use a balanced homodyne
measurement with a two-tone local oscillator (LO), as
demonstrated in our two previous works [15, 35]. For
entanglement characterization alone, the qumodes do not

need to be separated in frequency.

When wusing the BSL CV cluster state for quantum
information processing, complete qumode separation
is required. The qumode separation is straightforward
in the time and polarization domains. Experimental
techniques that have been honed on classical optical
frequency combs [36] can be used for the frequency
domain qumode separation. Such techniques include
virtually-imaged phase arrays (VIPAs), arrayed
waveguide gratings (AWGs), as well as diffraction
gratings and combinations thereof. After separation, the
individual beams will be directed to homodyne detectors
or photon counters as required by the particular
algorithm [26]. In the case of homodyne detection, the
local oscillators will likely need to be derived from a
stable classical comb, be it a femtosecond laser or a
cavity-enhanced EOM, whose beam can be overlapped
with the OPO’s and subjected to the same frequency
separation method. The use of integrated optics may
assist in implementing this scheme to full scale.

IV. BASICS OF QUANTUM COMPUTING ON
THE BILAYER SQUARE LATTICE

The BSL CV cluster state is easily shown to be
universal for MBQC. Simply measure ¢ on all qumodes
of one (e.g., Y) polarization, resulting in a CV cluster
state with an ordinary square-lattice graph, which can
be used with standard CV MBQC protocols [8, 26]. This
is shown in Fig. 2(a).

Using so-called deletion measurements (as above) to
simplify the graph structure of a CV cluster state is a
standard way to prove universality of a given graph [16,
23], but it is a wasteful procedure to follow in practice
since half of the graph nodes and their connectivity
are lost. More precisely, this method inefficiently uses
available squeezing (and therefore entanglement [37]),
which leads to extra noise when using these resources
for quantum computing [25]. Furthermore, lattice edges
are at 45° to the direction of increasing temporal index,
meaning that either the information must flow in a
zig-zag pattern or the lattice width will have to scale
linearly with the length of the computation, hindering
the scheme’s scalability.

Fortunately, there exists a more favorable MBQC
protocol that eschews all these complications and makes
better use of the structure of the BSL CV cluster state,
while still using just single-site measurements. The
idea is to use both layers of the graph simultaneously
and in a way analogous to the conventional (single-
layer) square lattice protocol, as shown in Fig. 2(b).
Each lattice site, which we call a macronode [23], is
composed of two qumodes (one of each polarization).
Qumodes with even node index carry the quantum
information to be processed and are therefore called wire
macronodes (for ‘quantum wires’). Those with odd node
index control the connectivity between the wires and
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FIG. 2. Two MBQC protocols applied on the bilayer square-
lattice cluster state (C = 273/2). In both cases, information
is encoded on the left (in purple nodes) and flows from left
to right along (green) wire segments. Wires are separated
by lines of sacrificial qumodes (shown in the red segments).
These are referred to as control macronodes c(i,i+ 1) because
measurements on them control whether one- or two-qumode
gates are applied on the adjacent wire macronodes wi(i)
and w(i + 1). Two-qumode gates are represented by
a connecting green segment between two adjacent wires.
(a) Standard one-way protocol [8, 26] applied to the BSL
graph after measuring ¢ on all Y-polarized qumodes (shown
faded). Time-ordering of the nodes has been preserved,
resulting in an atypical nodal arrangement of an ordinary
square-lattice graph. Information propagates at 45° to the
direction of increasing temporal index. Control nodes are
measured in the ¢-basis to delete them or in a different basis
to implement a two-qumode gate. (b) New MBQC protocol
taking advantage of the BSL structure. Both layers of the
lattice are used simultaneously, and quantum information
propagates in the direction of increased temporal index,
i.e., horizontally on the figure. Control and wire macronodes
are now at a constant frequency, as shown. See text for further
details.

are therefore called control macronodes. Input states
are localized with respect to the macronode structure
and are encoded within the symmetric subspace of each
macronode (defined in the section below). One- and
two-qumode Gaussian gates are selected by the choice
of homodyne measurement angles.

To simplify the presentation, we will introduce our
protocol within the context of an infinitely-squeezed BSL
resource state. Any physical CV cluster state can only
be finitely squeezed [8, 27], and this leads to introducing
finite squeezing effects into the computation [25], which
we discuss in Sec. VI.

A. Computing with macronodes

For a given macronode with node index m, comprised
of individual qumodes labeled Y and Z, we define the

symmetric (+) and anti-symmetric (—) qumodes via

dmi = ﬁ(dmz + dmy) N (41)

which is mathematically equivalent to a 7 polarization
rotation into the diagonal and anti-diagonal qumode
decomposition (equivalently, a 50:50 beamsplitter
between the two qumodes). Input states at a particular
time step will either be the output state from the previous
time step or new states directly injected into the BSL via
an optical switch [17]. They are localized to macronodes
but distributed (symmetrically) between the two physical
qumodes. We further define quadrature operators ¢
(position) and p (momentum) for each qumode through
a= %(q + ip), which satisfy [¢,p] = with i = 1.

Before describing our measurement protocol, we also
provide some definitions for useful CV logic gates. These
include an optical phase delay by 6,

R(0) = exp(ifata) = exp [g((f +p* — 1)} . (4.2)

and a 50:50 beamsplitter between qumodes ¢ and j,

BZ—J— = exp [—g(ai a; — d;di)]

LT A A A
= exp [—Zz(%'pj — qui)} . (4.3)
We also define a (nonstandard) single-qumode squeezing
operation:

S(s) = R(ImIn s) exp {—%(Re Ins)(a® — ELTQ):|

i

= R(ImIn s) exp[ 5 (Relns)(gp + m)} . (4.4)

where s is known as the squeezing factor. This gate is
just an ordinary squeezing gate with squeezing parameter
r = In|s|, followed by a 7 phase delay if and only if s < 0.
We chose this form of the gate so that for all real s # 0, its
Heisenberg action on the quadratures is S(s)'¢S(s) = s¢
and S(s)fpS(s) = s~ 1p.

As is standard in MBQC, once the entangled resource
state is prepared, quantum computation proceeds
solely through adaptive local measurements. Here we
restrict the measurements to linear combinations of
the quadrature operators, which will be shown to be
sufficient to implement arbitrary multi-qumode Gaussian
unitaries. Experimentally, this can be performed through
homodyne detection. For any given qumode, we define
the rotated quadrature operators

%(6) = <%D — R(6) (g) 2(6)

~ [cosf —sinf)\ (§
“ \sinf cosf p)’
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FIG. 3. (a) Simplified graphical-calculus representation |

| of the bilayer square-lattice (BSL) CV cluster state. Here,

qumodes are ordered according to temporal index. Input states are encoded within macronodes on the left, shown in purple.
Here and also in (b), C = (2v/2)"*. (b) As in (a) but time ordering has been partially sacrificed in order to make the square-
lattice graph structure more apparent. (c¢) Each macronode is now represented in terms of the logical-mode tensor-product
structure [see Eq. 4.1]. We use the same time-ordered node arrangement is as in (b). Unlike in the previous subfigures, here the
graph has a lower connectivity [it is a disjoint collection of square graphs| and all input states are localized. In this subfigure,

C =272, We indicate internal qumode labeling on the top right macronode of each lattice.

where the second line shows the symplectic-matrix
representation of the Heisenberg action of a phase delay
by 0 [25].

In Fig. 3 we show alternative (and equivalent)
graphical representations of the BSL CV cluster state.
Recall that within each macronode the map from the
physical and logical mode labels is given by Eq. 4.1. We
can apply this map to every macronode, giving us a graph
where each node now represents the symmetric or anti-
symmetric mode of the enclosing macronode, as shown
in Fig. 3(c). This graph reveals a simpler underlying
logical structure that will provide us with a convenient
framework for describing how homodyne measurements
on the physical modes can implement useful gates.

Generically, due to the non-local nature of the map
from physical (Z,Y") to logical (+, —) mode labels, local
measurements on the physical modes will effectively
“stitch together” the disjoint square graphs present in
Fig. 3(c). For a macronode m, measurement of p,, z (6., 2)
and Py (0my) can be represented by the following
quantum circuit:

logical (+, —) mode tensor product structure. Above, the
50:50 beamsplitter takes us from logical to physical mode
labels. Rotated quadratures are measured as in Eq. 4.5.
Such measurements on the wire macronodes connect
square subgraphs with their neighbors in the horizontal
direction, enabling “wire-like” transmission along the
BSL. The measurements on the control macronodes
connect these neighboring wires vertically.

B. Keeping square graphs disconnected

For a fixed macronode, there exists a one-parameter
class of homodyne angles that do not connect
the adjacent square graphs. Specifically, when
Oz = Omy = 0, the above circuit (4.6) is equivalent to

R(O)

pm_h_

= —R(sz)

—+7

N _R(QmY)

— 7

p7n+‘ _

A

R

7N

p=
p

i

, (4.6)

where p,,, _ denotes the input state with respect to the

where the single-qumode rotation gates commute with
the 50:50 beamsplitter because the rotation angles are



the same [38]. This in turn is equivalent to
— R(6) —/7‘\@
— R(0) H-N >

where all circuit elements are now local, and we take
the sum and difference of the measurement outcomes.
Therefore, choosing 6,,z = 0,,y for a particular wire
or control macronode m will disconnect the neighboring
regions of the BSL graph in the horizontal or vertical
direction, respectively. By restricting all control
macronode measurements in this way and including the
required post processing (i.e., sum and difference of
outcomes), the disjoint square graphs of Fig. 3(¢) remain
uncoupled by homodyne measurements with respect to
the physical modes.

pm+’_

V. UNIVERSAL GATE SET

The methods above allow us to apply single-qumode
gates on adjacent wires without them interacting.
Alternatively, relaxing the restriction on a particuar
control macronode implements a two-qumode gate
between the adjacent wires at that location. In this
section, we elaborate on this and construct a universal
gate set for quantum computation on the BSL.

A. Single-qumode gates

Fig. 4(a)—(c) shows a new way to represent the BSL
such that all measurements are local, but with respect
to a mixture of physical (Z,Y) and logical (4, —) mode
labels. As information propagates along the lattice in the
direction of increasing time index, information will flow
strictly in the horizontal direction, and there will be no
interactions between neighboring wire macronodes.

The structure shown in Fig. 4(c) is identical to
a collection of CV dual-rail quantum wires [16, 25],
which are resources for universal single-qumode quantum
computation.  Therefore, we can implement single-
qumode gates on the BSL by directly implementing
the macronode protocol for the CV dual-rail wire from
Ref. [25]. We briefly review it here. If the qumodes at the
left-most wire site are measured in the bases P,z (0m2)
and P,y (0my ), as depicted here,

P (6Omz)y
@
> @
o o @&
G RENGRY
then (up to a displacements conditioned on the

measurement outcomes and neglecting the effects of finite

squeezing—see Sec. VI) the overall Gaussian unitary
applied to the encoded input state is [25] V(0mz, Omy ),
where

V(0;,6r) = R(6,)S(tan0_)R(6, ) (5.2)
with 64 = 1(6; +6;). This is the basic building block
for all single- and two-qumode gates that can be
implemented on the BSL.

There is an important difference between the
conventional CV dual-rail wire and the BSL, however.
With respect to the original BSL time-ordered node
layout [see Fig. 3(a)], it is natural to consider a
single measurement step as translating input states
horizontally by one time step—from wire macronode to
wire macronode. This corresponds to translating two
sites along the CV dual-rail wire since wire macronodes
are interleaved by control macronodes, as shown here:

w o w w

c
v vy ¥ ¥ ¥
- z \=

< N
<

+ Y [+

| —

L (53)

where the horizontal black arrows indicate the size of each
measurement step. Each measurement step implements
two V gates [Eq. (5.2)], but with one important caveat:
the measurements on the control macronodes have to
be constrained by the condition 6.z = 6.y (for control
macronode ¢) so that that neighboring wires decouple
[as in Fig. 4(c)]. Note that these constraints jointly
affect nodes of separate neighboring wires, which share a
control macronode.

Although these constraints do not completely specify
the set of possible measurements on the control
macronodes, some care has to be taken in assigning
the measurement angles. For one thing, constraining
all control macronode measurements to the same angle
would projectively measure the encoded information
(as discussed below in Sec. VB), thereby ending the
computation at that point. On the other hand,
attempting to use control macronode degrees of freedom
to locally implement some desired gate on a particular
wire would necessarily implement a nontrivial gate on
both neighboring wires. For this reason, we fix all
measurements on the control macronodes and only use
the measurements on the wire macronodes to implement
gates.

A particularly convenient choice is to set the homodyne
angles to be 0.z = 0.y = +£7% (for control macronode c),
where the sign alternates vertically with each row of
control macronodes, as shown in Fig. 5. For one physical
time step (i.e., measuring one wire macronode w and its
neighboring control macronodes) on a wire above a row
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FIG. 4. (Color online) Implementing single- and two-qumode gates on the bilayer square lattice. Node indices [Eq. (2.1)] for all
macronodes are provided on the left. A red ellipse indicates a restriction on the measurements of that macronode—specifically,
0cz = 0.y for control macronode c. (a) We begin with the configuration as in Fig. 3(c), with each macronode decomposed into
logical (+,—) modes. Note that measurements on macronodes 1 and 5 are restricted (red coloring). This decouples the two
fully displayed square graphs from their partially displayed neighbors above and below. (b) Same as (a), except we visually
separate the internal nodes of the control macronodes. (c¢) Starting with (b), we decompose the wire macronodes (within
the green regions) with into physical (Z,Y) modes in order to reveal a pair of CV dual-rail wires [15, 17, 25]. Restricting the
measurements (red ellipse) of control macronode 3 allows one to implement single-qumode gates [25] on each wire independently
[Sec. VA]. (d) Alternatively, if we set 03z # 03y, then control macronode 3 will mediate an entangling gate between the two

neighboring wires [Sec. V CJ.

"—" control
macronodes

"+" control
macromodes

FIG. 5. (Color online) Sign convention for measurements
on the control macronodes. Both physical modes of each
=+ control macronode (alternating top to bottom, as shown
above) are measured in the basis specified by homodyne angle
0 = £ 7, respectively.

of £ control macronodes, this implements

v (:Ff, if) V(0uz, 0uy), (5.4)

4" 4
where the first gate V(sz,ewy) results from
measurement of the wire macronode w, and the

second gate ‘A/(:F%, +7) results from the measurements

of the two control macronodes above and below, as in

Fig. 3(a). Plugging into Eq. (5.2), we get

() - s

Noting that g(—l)V(Gwz,Gwy) = V(Gwy,ﬁwz), a single

measurement step on the BSL implements V (0,,y, 6.,7)

or V(@wz,ﬁwy), depending on whether the control
macronodes below the wire are + or —, respectively. Two
applications of these gates generate all single-qumode
Gaussian unitaries (up to displacements) [17, 25].

As mentioned above, we have neglected a
ubiquitous phase-space displacement (dependent on
the measurement outcomes) and the effects of finite
squeezing in our discussion above. We did this in order
to present clearly the basic logic of the protocol. The
details of the additional displacements and squeezing
effects can be found in Sec. VL.

(5.5)

B. Projective measurement

Notice that when 6,7 = 0,y = 0, the squeezing term
in Eq. (5.2) diverges. A gate is not applied in this case.
Instead, this projectively measures both logical modes
in p(f), as can be seen from the symmetry discussed in
Sec. IV B.

C. Two-qumode gates

In the above, we found that (by appropriately
restricting the control macronode measurements) we



could treat the BSL as a collection of independent
non-interacting quantum wires.  This protocol can
be extended to also include a two-qumode entangling
gate by lifting the measurement restrictions on control
macronodes that lie between neighboring wires. This
corresponds to the case shown in Fig. 4(d). We
parameterize the choice of measurements by the vector
of homodyne angles 8 = (612, 01yv,02z, .. .05y ).

We would like our two-qumode gate protocol to be
compatible with single-qumode gates applied on adjacent
regions of the BSL. With respect to Fig. 4(d), we allow
03z and 63y to be free parameters, while 617 = 61y =
05z = 05y = £7, corresponding to macronode 3 being
a F control macronode, respectively. Correspondingly,
selecting homodyne angles

w w w
117922792)/,9327931/,9427941/, iz, £

0= (iz’ 4
(5.6)
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implements a two-qumode gate whose form we will now
derive.

Our strategy for the derivation will be to wuse
symmetries of CV cluster states and “beamsplitter
gymnastics” to reduce the evolution to a form that can be
interpreted as a combination of two steps of evolution on
the CV dual-rail wire [25] interleaved with two additional
beamsplitters. To this end, we call attention to Fig. 6,
which shows that measurements on the original resource
shown in (a) are equivalent to the same measurements
on the resource shown in (e). As such, we can read off
the evolution from the last subfigure, using knowledge of
evolution on the CV dual-rail wire [25].

We summarise this procedure here, referring to
Fig. 6(e). First, the leftmost wire macronodes (2 and 4)
are measured, applying V(ng,Hgy) ® V(94Z,94y) to
the input and teleporting the output into qumodes 1—
and 3—, respectively. Then, the 50:50 beamsplitter
between those two qumodes (dotted arrow) is applied.
Next, the solid-arrow beamsplitters and measurements of
the control macronodes implement the gate V(£7,057)®

V(03y,£%), teleporting the output to qumodes 2+
and 4+ at the following timestep. Finally, the
last dotted-arrow beamsplitter acts on this output,
concluding the evolution.

Thus, up to displacements and neglecting finite-
squeezing-induced noise (see Sec. VI), the total gate
applied is the combination of all of these individual gates:

Buve [7 (55.02) 07 (057

X BQ+74+ [V (egz, 92)/) & V (94Z7 94Yﬂ ’ (57)

where the tensor product is H o4 ) ®H 44 This captures
the most general type of two-qumode Gaussian unitary
gate compatible with our framework.

Though we have the general form, it is useful to give
particular measurement parameters that reduce the two-
qumode gates into a simple form. It is also desirable

to choose a form that is commonly included in universal
gate sets, such as the CV controlled-Z (Cz) gate [20],
defined as Cz(g) = exp [igq ® §].

While there is no valid choice of measurement
parameters in 6 that yields an exact Cyz gate, it is
possible to implement one followed by phase delays that
can be corrected in the next step by applying the single-
qumode measurement protocol immediately after this
gate. Again assuming macronode 3 is a F control
macronode, choosing

T w3TT ™ T3t Tow
e—i(1717—§7§=Zi¢7z¥¢7—§7§7171>
(5.8)
reduces Eq. (5.7) to
. 3T . o N
[R <]FI) ®R (iz)} Cy(2cotd),  (5.9)

which is a tunable-strength Cy gate followed by (known,
fixed) phase delays that can be undone at the next time
step. Appendix D contains the detailed derivation. Once
again, we postpone discussing finite-squeezing effects and
outcome-dependent displacements until Sec. VI.

D. Alternative representation of two-qumode gate
implementation

In the previous two subsections, we showed how
measurements on the control macronodes selected
between applying either a pair of single-qumode gates
or a two-qumode gate on neighboring wires. Here we
provide an alternative description of this mechanism that
employs more fully the graphical calculus for Gaussian
pure states [27].

Rather than finding a graphical description of the
BSL that uses a mixture of physical (Z,Y) and logical
(4, —) mode labels as in Fig. 4, we can instead consider
the graphical representation of the premeasurement of
the control macronodes (in analogy to “wire shortening”
in cluster state terminology [26]), as shown in Fig. 7.
Note that for the measurement-based implementation of
Gaussian gates, cluster nodes can be measured in any
order since the result is equivalent up to a final phase-
space displacement [20].

The edge weights that are changed by the
measurements are functions of the homodyne angles
on the control macronodes and are given below in the
large squeezing limit. We get these from the graph
transformation rules [27] corresponding to homodyne
measurements on the physical modes of the BSL and
then taking the limit 7 — oo (we choose this limit for
clarity of presentation only). The edge weights in Fig. 7
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FIG. 6. (Color online) Beamsplitter gymnastics. All graphs are drawn in terms of logical (+, —) modes. A 50:50 beamsplitter Bij
between two qumodes ¢ and j is indicated by a red arrow from ¢ to j. Where applicable, dashed-arrow beamsplitters always act
before solid-arrow beamsplitters. (a) We start from Fig. 4(a). Measuring control macronode 3 in the physical (Z,Y) modes is
equivalent to performing a beamsplitter as shown and then measuring in the logical modes. (b) Since all qumodes of control
macronodes 1 and 5 are measured in the same basis, we are free to insert an additional beamsplitter between them as shown
[see Sec. IV B]. This is the key observation. (c) The squares in (b) (with C = 271/2) can be replaced by pairs of two-qumode
CV cluster states (with C = 1) followed by two additional beamsplitters as shown (dashed) [16]. These occur before the other
two (solid). (d) By direct calculation using their symplectic representation [27], ByBjk(BBi;j) = (BriBij)BijBix. (e) The
symmetries of a pair of two-qumode CV cluster states (see Appendix C) allow for the beamsplitter to be moved to the other

two qumodes as shown.

are
1

fi= Z(COt 0;z — cot Oy ), (5.10)
1

hij = Z(— cot Bz — cot by — cotfz —cotbjy), (5.11)
1

gij = Z(cot 0z + cot Oy — cotjz —cotO;y).  (5.12)

After the control macronodes are measured and
when 63z # 03y, wire macronodes 2 and 4 are clearly
connected by horizontal and diagonal links [see Fig. 7(b)].
Attempting to “teleport” the input states through this
highly connected resource state will entangle the input
states. Contrast this with the case when 037 = 3y [see
Fig. 7(c)], where the resource state is simply a pair of
unconnected entangled pairs. The latter is useful for
propagating input states horizontally across the lattice
without entangling the inputs [25].

E. Achieving Universal Quantum Computation

A CV controlled-Z gate Cy can be applied between
any two adjacent wires at any point on the BSL by
locally substituting the macronode protocol with the
entangling-gate protocol described in Sec. V C. This can
be done repeatedly so long as each wire is involved
in at most one Cz gate at a time. Together with
vacuum input states and Weyl-Heisenberg displacement
operations, these gates are universal for multimode
Gaussian computation [26].

In order to achieve universal quantum computation, we

also need to include non-Gaussian resources [26]. (Sub-
universal algorithms, such as state verification [15, 17],
only require homodyne detection.) In principle, it
does not matter which type of resource is used [39)].
Typical examples include photon-counting measurements
supplemented with Gaussian resources to implement a
cubic phase gate [10] or preparation and injection of
non-Gaussian magic states such as photon subtracted
states [41]. We leave the detailed implementation to
future work.

VI. DISPLACEMENTS AND
FINITE-SQUEEZING EFFECTS

Thus far, we have neglected both the measurement-
outcome-dependent displacements and finite squeezing
effects that always arise in CV MBQC [25, 26]. We
account for them here.

Since all evolution on the BSL can be reduced to
evolution on the CV dual-rail wire (plus additional
beamsplitters in the case of the two-qumode gate), all
we need to do to take into account the effects of the
measurement outcomes and finite squeezing is to use
Eq. (3.4) from Ref. [25], which amounts to replacing

V(0;,0,) [Eq. (5.2)] with

V(r, mj, my, 0;,05) = N(T)ﬁ(mj, M, 05, Ok)f/(Hj, Or),
(6.1)
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FIG. 7. Graphical-calculus representation [27] of

measurements on a subregion of the bilayer square lattice
with inputs in purple. Here we show how measuring the
control macronodes (1,3,5) in two different ways leads to
different connectivities of the wires. (a) The lattice prior to
measurement. We assume that 01z = 61y and 05z = Os5y.
Having 037 # 63y or 03z = 03y will result in a graph as
shown in subfigures (b) and (c), respectively. (b) After
measurement, the resulting graph has connecting edges
between the wire macronodes. This is consistent with the
application of a two-qumode gate between the encoded
inputs as was shown in Sec. V C. Relevant graphical weights
are defined in Egs. (5.10), (5.11), and (5.12). (c) After
measurement, there are no graph edges connecting the input
macronodes. Therefore, performing measurements on the
input macronodes results in the application of single-qumode
gates only. Thus, these entangled pairs can be thought of
as separate quantum wires. Note that the four remaining
edge weights share a dependence on 03z. In other words, the
weights of adjacent quantum wires—and hence the single-
qumode gate applied on them—are logically dependent in
general. This is consistent with what was shown in Sec. V A.
Unlabeled edges all have C = 27 1/2,

where

D(mj,mk, 6‘]', Hk) =D

—ierm,; — ie

sin(t?j — Hk)

(6.2)

is a phase-space displacement [D(a) = e‘mto‘*[’] that

depends on the homodyne angles and associated
measurement outcomes (m;, my), and

N(r) = e=e0*/2e=<0"/2* g (4= 1) (6.3)

is a nonunitary operator that captures the effects of finite

squeezing. We recover Eq. (5.2) in the limit of large

squeezing and when all measurement outcomes are zero:

V(0;,6k) = Tlingo V(r,0,0,6;,0k). (6.4)

More generally, the displacements can either be actively

corrected at each step or merely accounted for using
feedforward [20].
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Noise from finite squeezing is ubiquitous in all MQBC
protocols using CV cluster states, but fault tolerance is
still possible using quantum error correction [40] provided
that the overall squeezing levels—which set the amount
of noise introduced per gate [25]—are high enough [11].
The only known threshold result [11] states that no more
than 20.5 dB of squeezing will be required. Squeezing
levels in temporal-mode [17] and frequency-mode [15]
cluster-state experiments (5 dB and 3.2 dB, respectively)
fall short of this, but state-of-the-art experiments in
optics [42] are within an order of magnitude (12.7 dB).
The existence of a compact and scalable protocol such
as the one presented here is likely to further spur on
experimental and theoretical work to close this gap.

Technical note—The astute reader will note that
this presentation differs from that of Ref. [25] in three

ways. First, the r-dependent squeezing term S (t1)
appears after the displacements in Eq. (6.1), while it
appears before them in Eq. (3.4) of Ref. [25]. We have
modified our displacement operator (6.2) accordingly
(Cf. Egs. (3.8) and (3.9) in Ref. [25]), which allows us to
group all finite-squeezing effects to the end and allows our
displacement to depend only on the measurement angles
and outcomes (and not on r). Second, we have written
the displacement in terms of the standard quantum-
optics displacement operator, which relates to the Weyl-
Heisenberg displacements as X (s)Z(t) = (phase)D[(s +
it)/+/2], and we ignore the overall phase. Third, we have
corrected a typo in Egs. (3.8) and (3.9) in Ref. [25], which
is that sin 6, should actually be sin 20,_.

VII. CONCLUSION

We have proposed an extremely compact and scalable
method for producing—from a single OPO and simple
interferometer—a continuous-variable (CV) cluster state
of unprecedented size [(3 x 10%) x oo] that is universal
for quantum computation. The proposal has all the
advantages of record-breaking temporal- and frequency-
multiplexed schemes [15, 17] while vastly increasing
the size of the lattice by utilising both types of
multiplexing at once. This is the most compact and
scalable proposal for CV cluster states to date, and it
is implementable today using demonstrated quantum-
optical technology. In addition, we have generalized the
one-way model for quantum computing to utilize the
generated resource for quantum computation. The result
translates familiar notions of CV measurement-based
quantum computing (MBQC) to the particular state
proposed here, generalizing prior work based on one-
dimensional, macronode-based CV cluster states [17, 25].

The vast majority of the existing literature on CV
cluster states to date has treated canonical CV cluster
states (i.e., those described in Refs. [7, 8, 20]) as the
appropriate target for an MBQC resource state. The
work presented here—as well as the entire research
direction upon which it is based—shows that we should



shift the focus onto CV cluster states with a macronode
structure [15-17, 21-23, 25]. These schemes, which
are all based on bipartite, self-inverse graphs [23], have
been demonstrated to have unprecedented scalability [15,
17] and to admit novel, flexible [43], and more
efficient [25] quantum-computing schemes within the
MBQC paradigm.

The work presented here further underscores this
point, emphasizing the importance of bipartite, self-
inverse graphs and of focussing on scalable designs from
the ground up when working with CV cluster states.
One might hope that the optimized protocols available
for these states [25, 43] could be used to improve the
fault-tolerance threshold for MBQC using CV cluster
states [11]. We leave this question to future work.
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Appendix A: Graphical calculus for Gaussian pure
states

Any N-qumode Gaussian pure state [iz) can be
represented uniquely (up to phase-space displacement
and overall phase) by an N-node, complex-weighted,
undirected graph [27]. This graph Z can be represented
pictorially or, equivalently, by a corresponding N x N
complex-valued adjacency matrix

Z:=V +iU, (A1)
where V and U are N x N symmetric real-valued
matrices, and U > 0. This object is related to the
wavefunction in the following way:

(det U)1/4
aN/4

Vz(q) = (A2)

exp [ﬁqTZq] :
2
A covariance matrix for this state can be expressed
in terms of the matrices in Eq. (Al). First, denote
the vector of 2n position and momentum quadrature
operators as

X = (qu7qA27'"qANuﬁluﬁ27"'ﬁN)T' (A?’)

1y, .\ LU oUW
=3 <{X’X }> 2 (Vu—1 U+VU—1V> » (A4)
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which in turn allows us to give an expression for the
Wigner function:

W (x) = (27) "N (det )2 exp {_%xTzlx} (A5)

For some Gaussian unitary U, we can define |1)z/) to be

[z:) = U |vz).

|thz:) is also a Gaussian pure state (by the definition of a
Gaussian unitary). How is the graph Z’ (corresponding
to state [1z/)) related to the original graph Z by the
Gaussian unitary? The Heisenberg action of U on % is
linear, which means it can be represented as [27]

(A6)

UTkU =: Sp% (A7)
where Sp is a 2N x 2N symplectic matrix. If we
represent Sy as

A B

si= (& b): (A%)
then the corresponding graph update rule is [27]

Z —7Z =(C+DZ)(A+BZ)" (A9)

Appendix B: Simplified graphical calculus

In general, representing all the features of Z requires an
appropriately connected graph with all edges (including
self-loops) labeled by complex-valued weights [27].
When representing Gaussian pure states with uniformly
weighted graphs, it is convenient to employ a simplified
set of rules. In the main text and wherever possible in
the supplementary material, we represent Gaussian pure
states using simplified graphs, as introduced in Ref. [16].
This allows us to represent graph edge weights by color
and omit self-loops from the illustrations.

With the exception of the (omitted) self-loop weights,
the edge weights are implicitly defined as +Ct, where C
is called the edge-weight coefficient and can be thought
of as the edge weight magnitude in the infinite squeezing
limit, while

t:=tanh2r (B1)

can be thought of as a rescaling factor that depends on an
overall squeezing parameter r for the state. In the graphs,
signs of + and — are represented by blue and orange
coloring, respectively, and C is indicated within relevant
figure captions. Note that in the infinite squeezing limit
(r — 00), edge weight £Ct — +C. For all graphs, all
black nodes have self-loop edges with weight ie, where

g = sech 2r. (B2)

Technically, the simplified graphical calculus
representations used in the majority of the figures
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FIG. 8. Going from using the simplified graphical calculus
description of the bilayer square lattice with C = 2-1/2
(left)—with edge weights defined implicitly by coloring—to
the full graphical calculus description (right) [27]. Edge
weights ¢ and ¢ are defined in text [Egs. (B1) and (B2),
respectively].

of this Article are valid for both infinite- and finite-
squeezing cases [16].  To include finite squeezing
explicitly, the full graphical calculus [27] must be used.
To do this, simply replace the simplified disjoint square
graphs in Fig. 3(c) by more detailed versions with
self-loops and edge weights as in Fig. 8.

We note that there is a subtlety in Fig. 1 of the main
text. The state that exists at various stages (a)—(d)
of the optical circuit diagram is technically not a CV
cluster state, but is in fact an H-graph state [27] that
would have an edge weight of —isinh2r. However, at
every stage of the diagram this state can be converted
into a CV cluster state with edge weights as quoted and
with the same simplified graphical representation [16] by
simply applying an optical phase delay of 7 (ak.a. a
Fourier transform [26]) on half the qumodes (specifically,
all qumodes with either even or odd frequencies). In
practice, this difference is unimportant because this
phase delay can be incorporated directly into the
homodyne measurements acting on the final state, and
in fact, the simplified graphical calculus [16] is defined in
Ref. [16] to represent both types of states (i.e., with or
without these final Fourier transforms).

Appendix C: Beamsplitter symmetries of a pair of
two-qumode CV cluster states

We use Ref. [38] to derive the symmetries of a pair
of two-qumode CV cluster states. This result is used to
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equate panels (d) and (e) of Fig. 6.

Each individual CV cluster state shown in Fig. 6(d)
has a graph given by

7z — isech2r tanh2r
L= \ tanh 2r isech2r

= i(sech 2r)I 4 (tanh 2r)o (C1)
and an alternative graph representation of [27, 38]
K, = (I+iZ)(I1—iZ)™*
0 ttanhr .
= (z tanhr 0 ) = i(tanhr)o, , (C2)

A pair of such states (one between qumodes ¢ and j
and a separate one between qumodes k and [) has the
alternative graph

K, 0 .
K; = ( 01 Kl) =i(tanhr)I®eo,, (C3)
with rows and columns ordered (4, j, k,1). Note that ®

here merely indicates a matrix Kronecker product and
has nothing to do with a tensor product of Hilbert spaces.

1a'"™Ma, with
M = M, generates a symmetry of the Gaussian pure
state defined by K if and only if MK = —(MK)T [35].
One choice (among many) for M that works for Ko is

M = o, ® I. This generates a one-parameter class of
symmetry operations [38], one example of which is

An interferometric Hamiltonian

Since this pair of beamsplitters is a symmetry of the pair
of CV cluster states actmg with Bm alone is equivalent

to acting with Bl = Bl7 alone, which is exactly the
symmetry employed in Fig. 6(e).

Appendix D: Derivation of the two-qumode gate

Here we derive the two-qumode gate [Eq. (5.9)] implemented by using the measurement settings from Eq. (5.8) in
Eq. (5.7). As usual, we neglect outcome-dependent displacements and finite-squeezing effects, with discussion of these
effects relegated to Sec. VI. Before we start, we define the following abbreviations of phase shifts and squeezing on
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two qumodes at a time:
R(0;,0y) =
S(Sj, Sk) =

For the chosen measurement settings [Eq. (5.8)], the bottom line of Eq. (5.7) (measurements of wire macronodes)

gives
BV (#5275 o7 (+5+%)] ‘B{Rz%((_—?:;)}’ Y

where the two cases on the right correspond to the top and bottom signs, respectively, and we omit subscripts on B
for clarity. Next, we evaluate the top line of Eq. (5.7) (measurements of control macronodes), which gives

R(6;) ® R(61) , (D1)

S(s;) @ S(sn) . (D2)

~ ~ i i ~ ™ 7T
B[V(iz’iz”’)@i’v(ﬂ‘%iz)]

o T ¢ T 9\ 4 ¢ ?\ A ™ ¢ T_¢
e A A W A WP ) ¢ ¢\ 5 3T _3m

The total gate is therefore the following product of the two lines:

BR (ﬂ%, Z)R(g —g) (tan?,tani)R(g —%)RGZWE%) B{RR((__%;:BT;)}. (D5)

Noting that BR(0,0) = R(0,0)B, the full gate becomes

~ ™ (b (b (b ¢ ¢ (b I
R(+5.+ )BR( ) (tan2,tan2) (2 VBR(ZT), -
. A —
R(7,0)Cz(2cot )R (_5, _5)
where we have used the Bloch-Messiah decomposition [37] of the Cz gate. This reduces the gate to its final form:
A 37r
R (¥ T ) Cz(2cot ). o7)
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