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We analyze the possibility to exploit charge-dipole interaction between a single polar molecule or
a 1D molecular array and a single Rydberg atom to read out molecular rotational populations. We
calculate the energy shift of a single Rb(60s) atom interacting with a single KRb or RbYb molecule
in their lowest two rotational states. At atom-molecule distances, relevant to trapping of molecules
in optical lattices, the Rydberg electron energy shifts conditioned on the rotational states, are of
the order of several MHz. Atom excitation to a Rydberg state and detection of atomic fluorescence
conditioned on a rotational state preserves the molecule, making our scheme a non-destructive
measurement of the rotational state. Similarly, a 1D array of polar molecules can shift the electron
energy of a blockaded Rydberg superatom. We consider a scheme to read out the molecular array
collective rotational states using the conditioned Rydberg energy shifts, and numerically analyze a
system with 3 and 5 KRb or RbYb molecules interacting with Rb(60s) superatom.

PACS numbers:

I. INTRODUCTION

Ultracold polar molecules placed in a periodic array
represent an attractive setup for quantum computation
[1] and simulation of strongly correlated many-body sys-
tems due to the ability to interact via anisotropic and
long-range electric dipole-dipole interaction. Such a sys-
tem can be used to simulate quantum magnetism [2],
exotic topological states [3], and complex many-body en-
tanglement [4]. First experimental observations of spin
exchange processes between the dipoles of KRb molecules
in a 3D optical lattice have been reported recently [5],
and a similar effect in a Cr gas of magnetic dipoles [6].

Typically a spin-1/2 particle or a qubit is encoded in
two rotational molecular states and an initial many-body
state becomes strongly entangled due to the interaction.
The state of such entanglement will need to be read out to
extract useful information about the system. One main
challenge for the current ultracold molecule setups is that
there exists no reliable scheme for readout which does not
lead to loss of molecules.

In this work, we propose an elegant approach to non-
destructively read out the rotational excitations in a
mesoscopic ensemble of molecular array. We consider a
linear or a ring 1D array of molecules interacting with a
1D array or cloud of neutral atoms in a symmetric state
with a single Rydberg excitation (superatom). We show
that in this setup it is possible to measure total popu-
lations of collective rotational states without loosing or
destroying the molecules.

Most current methods for molecular state readout,
such as inverse STIRAP (stimulated Raman adiabatic
passage) combined with Feshbach dissociation for alkali
dimers [5] and REMPI (resonantly enhanced multiphoton

ionization) [7], are destructive. Non-destructive readout
of rotational states of a single molecular ion interacting
with an atomic ion by Coulomb interaction has been re-
ported recently [8]. In previous work [9] we proposed a
technique to read out populations of rotational molecu-
lar states of a single neutral polar molecule relying on its
interaction with a nearby Rydberg atom [10, 11]. This
interaction shifts the states of the combined molecule-
Rydberg atom system depending on the rotational state,
allowing conditional excitation and fluorescence of the
atom, realizing readout of rotational states conserving
the molecule.

There is strong and growing interest in manipulating
states of few- to many-body systems using their inter-
action with a single ancilla system. Examples include
control of environment nuclear spins by a single electron
spin in diamond NV centers [12] or in quantum dots [13],
including polarization [14], superradiance [15], squeezing
[16], and quantum metrology [17]. Recently these ideas
have been extended to atomic systems, using Rydberg
states for spectroscopy [18, 19] or topological measure-
ments [20]. Here we propose using Rydberg atoms to
read out collective states of mesoscopic systems of polar
molecules.

Due to a lack of cycling transitions, non-destructive
measurements of molecular states need auxiliary systems
for readout, and our suggested path via Rydberg spec-
troscopy is akin to the technique of quantum logic spec-
troscopy [21]. Earlier [22], common mechanical oscilla-
tory modes of an ion and a molecule were suggested for
a similar task. The neutrality of Rydberg atoms and
molecules, as in our setup, however, makes co-trapping
and manipulation with external electric fields easier.

The paper is organized as follows. In Section II we
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derive matrix elements of the Hamiltonian for the com-
bined single molecule-single Rydberg atom system. In
Section III we numerically calculate energy shifts of the
rotational states of KRb and RbYb molecules interacting
with Rb(60s) atom. In Section IV we analyze the interac-
tion between a linear or a ring 1D array of molecules and
a Rydberg superatom, placed either in a parallel com-
mensurate 1D array or a dipole trap. In Section V we
discuss readout of rotational states of a single molecule
or an array of molecules using its interaction with a Ry-
dberg atom. Finally, we conclude in Section VI.

II. SINGLE ATOM - SINGLE MOLECULE
INTERACTION

We envisage a setup shown in Fig. 1a where a 1D
or 2D array of polar molecules is used to simulate a
strongly correlated many-body quantum system. Each
polar molecule represents a qubit or a spin-1/2, en-
coded in rotational states |↓〉 = |J = 0,mJ = 0〉 and
|↑〉 = |J = 1,mJ = 0〉 or |↑〉 = |J = 1,mJ = ±1〉 [5].
Parallel to the molecular array there is an array with
neutral atoms, which can be individually excited to Ry-
dberg states to read out molecular states. Although a
setup with two close lattices, one filled with molecules
and another with atoms has yet to be realized, two par-
allel optical lattices filled with neutral atoms have been
demonstrated recently [23].
The configuration for a single polar molecule interact-

ing with a single Rydberg atom [10] is depicted in Fig. 1b:
the molecule is a part of e.g. an array aligned along the
X axis with its own Rydberg atom at a distance ρ from
the X axis, placed at ∆x = 0.
The Hamiltonian governing the single atom - single

molecule system is given by

H = Ha +Hm + Ve−−M, (1)

where

Ha =
∑

n,l,m

Enl |nlm〉 〈nlm|

is the unperturbed Rydberg atom Hamiltonian at prin-
cipal quantum numbers n, orbital angular momentum
l, and a z projection of l, m. (Electron spin mixing
due to Rydberg electron spin-orbit and ground electron
hyperfine interactions are not included [24]). We cal-
culate interaction induced energy shifts of ns Rydberg
states due to electron-molecule interaction Ve−−M by in-
cluding the ns and the nearest p and d, and f states,
whose quantum defects are nonzero: |np〉 and |(n− 1)p〉,
|(n− 1)d〉 and |(n− 2)d〉, and |(n− 3)f〉. The corre-
sponding unperturbed energies of Rydberg states are
Enl = −1/2(n − µl)

2 in atomic units, µl is the quan-
tum defect (for Rb µs = 3.13, µp = 2.65, µd = 1.34,
µf = 0.016). As a typical example, we use for our sim-
ulations |ns〉 = |60s〉, |np〉 = |60p〉, |(n− 1)p〉 = |59p〉,

FIG. 1: (a) Setup geometry: a 1D or 2D array of polar
molecules, interacting via charge-dipole interaction with ne-
aby Rydberg atoms, placed in a parallel array; (b) a polar

molecule with a dipole moment ~d interacts with a Rydberg
atom. The distance between the X axis and the Rydberg
core is ρ, the distance between the molecule and the verti-
cal line connecting the core and the X-axis is ∆x; (c) Level
scheme of Rydberg states of Rb near 60s state, taken into
account in the calculations (not to scale). The energy split-
tings are: E60p − E60s = 17.06 GHz, E60s − E59p = 18.75
GHz, E59d − E60s = 27.46 GHz, E60s − E58d = 7.79 GHz,
E57f − E60s = 4.07 GHz.

|(n− 1)d〉 = |59d〉, |(n− 2)d〉 = |58d〉 and |(n− 3)f〉 =
|(ns− 3)f〉 = |57f〉 states. The corresponding atomic
level scheme with energy splittings is shown in Fig. 1c.
In Rb, the (n − 3)l with l > 3 degenerate manifolds are
known to produce considerable mixing of the Rydberg
energies, leading to formation of large permanent dipole
moments in the polyatomic molecules [25]. To be able
to manage the size of the Hamiltonian matrix, we do not
take account of these degenerate manifolds. Since the in-
clusion of such terms should yield more pronounced shifts
this means that we rather underestimate the interaction
induced resolution of rotational qubits. The Hm = BJ

2

Hamitonian describes a rigid rotor molecule with states
|J,mJ〉 with Hm|J,mJ〉 = BJ(J + 1)|J,mJ〉 and ro-

tational constant B, and Ve−−M = e~d·~R
R3 − e~d·(~R−~r)

|~R−~r|3 is

the charge-dipole interaction between the Rydberg atom

ionic core and electron and the molecule, where ~d is the

molecular dipole moment, ~R is the distance between the
Rydberg core and the molecule, and ~r is the distance be-
tween the core and the Rydberg electron. The molecular
permanent dipole moment of our two example molecules
is chosen to be below the Fermi-Teller critical value of
dcr = 1.63 D [10].

Next we calculate the shifts of the states
|nlm〉 |↓〉 = |nlm〉 |J = 0,mJ = 0〉 and |nlm〉 |↑〉 =
|nlm〉 |J = 1,mJ = 0,±1〉 of the combined atom-
molecule system. For that we additionally take into ac-
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count unperturbed states |nlm〉 |J = 2,mJ = 0,±1,±2〉.
The matrix elements of Ha, Hm and Ve−−M are given
by:

〈J,mJ | 〈n l m|Ha |n′ l′ m′〉 |J ′,m′
J〉 = (2)

= − 1

2(n− µl)2
δn,n′δl,l′δm,m′δJ,J′δmJ ,m′

J
,

〈J,mJ | 〈n l m|Hm |n′ l′ m′〉 |J ′,m′
J〉 =

= BJ(J + 1)δn,n′δl,l′δm,m′δJ,J′δmJ ,m′

J
,

〈J,mJ | 〈n l m|Ve−−M |n′ l′ m′〉 |J ′,m′
J〉 =

= 〈J,mJ | e~d · |J ′,m′
J〉

~R

R3
δn,n′δl,l′δm,m′

−〈J,mJ | e~d · |J ′,m′
J〉 〈n l m|

~R− ~r
∣

∣

∣

~R− ~r
∣

∣

∣

3 |n′ l′ m′〉 .

Energies of the states of the combined atom-molecule sys-
tem can be obtained by diagonalizing the Hamiltonian
Eq. (1). Details of the calculation of matrix elements
Eq. (2) are given in App. A.

III. NUMERICAL RESULTS FOR ENERGIES
OF KRb–Rb(60s) AND RbYb–Rb(60s) SYSTEMS

In this section we numerically calculate the energies of
the combined single atom-single molecule system, shown
in Fig. 1b, for the case ∆x = 0 and atom-molecule dis-
tances ρ ∼ 300− 600 nm, corresponding to a period of a
typical optical lattice.
We consider two polar molecules KRb and RbYb of

particular interest in the ultracold community. KRb with
a permanent electric dipole moment and rotational con-
stant of d = 0.566 D [26] and B = 1114 MHz [27], re-
spectively, was the first polar molecule produced in the
ground rovibrational electronic 1Σ+ state at ultracold
temperatures [28] and is the most experimentally well-
mastered at the moment. RbYb with d ≈ 1 D [29] and
B = 353 MHz [29] belongs to the family of open-shell
molecules with 2Σ+ ground electronic state, and is ac-
tively studied experimentally [30, 31] and theoretically
[32] towards the goal of producing ground rovibrational
state molecules. Polar molecules with the 2Σ+ ground
state have both an electric and a magnetic dipole moment
and are attractive for applications in quantum computa-
tion [33] and simulation of lattice-spin models [34]. Other
candidate molecules with subcritical dipoles, to which the
readout method is applicable, include RbCs (d = 1.25 D
[35], B = 490MHz [36]) and LiNa (d = 0.566 D, B = 11.3
GHz [37]) among alkali dimers, and a number of alkali
metal-alkaline earth diatoms such as NaSr (d = 0.63 D,
B = 1.89 GHz [38]), KSr (d = 1.5 D, B = 960 MHz [38]),
RbSr (d = 1.53 D, B = 540 MHz [38]), and NaCa (d = 1
D, B = 2.49 GHz [39]).
In RbYb, the unpaired electron spin couples to the

Rb nuclear spin, resulting in hyperfine splitting of the

ground electronic state, which is expected to be close to
the splitting of 6.835 GHz between F = 1 and F = 2 hy-
perfine states of Rb atom [31]. In the calculations RbYb
is assumed to be in the ground electronic potential, cor-
responding to the lowest in energy F = 1 hyperfine state.
Rotational states of the ground state of RbYb are further

split by a spin-rotation interaction γSR
~J ~S, whose cou-

pling strength can be approximated as γSR = −2∆g⊥B
[40], where ∆g⊥ = g⊥ − ge is the deviation of the molec-
ular g tensor component, perpendicular to a molecular
axis, from the electron’s value. The spin-rotation split-
tings have not been detected for J = 1 rotational states
of the last and second last bound vibrational levels of
RbYb [41]. In this experiment the frequency resolution
was ∆fres ≈ 6 MHz, limiting the spin-rotation constant
to this value. The rotational constant for such high vi-
brational states was measured to be B(ν = −1) ≈ 30
MHz, while for the ground vibrational state it is pre-
dicted to be B(ν = 0) = 353 MHz, setting an upper
limit on the spin-rotation constant in the ground vibra-
tional state ∼ ∆fresB(ν = 0)/B(ν = −1) ≈ 70 MHz,
provided ∆g⊥ does not significantly vary with the vibra-
tional number.

The effect of the spin-rotation splitting (not taken into
account in the calculations) can be estimated in the fol-
lowing way: if |Ve−−M| ≪ 2B (see App. B), the energy
shifts of the atom-molecule system can be approximated
using perturbation theory as |∆E| ∼ |Ve−−M|2/2B. The
spin-rotation will modify the energy shifts as |∆E| ∼
|Ve−−M|2/(2B±γsr) ≈ |Ve−−M|2 (1± γsr/2B) /2B, where
γsr/2B ≤ 0.1.

In Fig. 2a and Fig. 2b the energy shifts of the states
|J = 0,mJ = 0〉 and |J = 1,mJ = 0,±1〉, are shown for
KRb and RbYb, respectively, interacting with Rb(ns =
60s) state. The shifts are calculated with respect to un-
perturbed energies of the states Ens+2BJ(J+1). Since
in the ground atomic state |g〉 the atom-molecule inter-
action is much weaker compared to Rydberg states, the
energy shifts also give the frequency shifts of the tran-
sitions |g〉 |J,mJ〉 → |ns〉 |J,mJ〉. These states contain
admixtures of other states of the order of ≤ 0.7%. We
assume that the molecule and the atom are separated
by distances ρ ∼ 300 − 600 nm, corresponding to a pe-
riod of a typical optical lattice. At these distances and
for relatively small dipole moments (d ≤ 1 Debye) of
the molecules the interaction matrix elements between
|ns〉 |J = 0,mJ = 0〉, |ns〉 |J = 1,mJ = 0,±1〉 and other
states are small compared to energy difference between
the corresponding states (see App. B), which explains the
small admixing of other states.

In Fig. 2b, one observes that for RbYb the splitting
between the states |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉
lies in the range ∼ 6.5− 1.2 MHz for ρ ∼ 400− 600 nm,
and the states |J = 0,mJ = 0〉 and |J = 1,mJ = ±1〉 are
split in the range ∼ 3 − 0.6 MHz. Due to a smaller
permanent dipole moment of KRb and a larger rota-
tional constant the splittings for KRb are smaller com-
pared to the splittings for RbYb at the same ρ. Split-
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tings of the order ∼ 1 MHz can be achieved for KRb for
smaller ρ. As shown in Fig. 2a the states |J = 0,mJ = 0〉
and |J = 1,mJ = 0〉 are split by ∼ 2.2 − 0.4 MHz for
300 nm < ρ < 500 nm, and the states |J = 0,mJ = 0〉
and |J = 1,mJ = ±1〉 are split by ∼ 1.1 − 0.2 MHz for
the same range. The splittings are much larger than the
width of Rb(60s) Γ60s ≈ 1.644 kHz, resulting from spon-
taneous emission, black-body radiation (BBR) induced
decay, excitation and ionization and the width of the
J = 1 rotational state due to spontaneous emission and
interaction with black-body radiation [42].
The convergence of the energy shifts with respect to

the atomic and molecular basis states is discussed in
App. C, where it is shown that for KRb the basis set
of 60s, 60p, 59p, 59d, and 58d is required to obtain accu-
rate numerical results. For RbYb on the other hand, even
the smallest atomic basis set including only the 60s state
provides good agreement with the full atomic set. The ef-
fect of 57f state is rather small for both KRb and RbYb,
which is explained by the energy gap between the 60s
and 57f states and small interaction matrix elements be-
tween these states. The effect of higher rotational states
such as |J = 3,mJ = 0,±1,±2,±3〉 on the energy shifts
of the J = 0 and J = 1 states was found to be negligible.
Finally, we discuss the effect of position fluctuations

of both the molecule and the Rydberg atom during the
interaction. Assuming that they are trapped in ground
states of their harmonic traps, it is shown in App. D
that the energy shifts of the states |ns〉 |J = 0,mJ = 0〉,
|ns〉 |J = 1,mJ = 0,±1〉 get an additional contribution

∼ ∆Ens,J,mJ
(a/ρ)

2
, where a is the trap ground state

wavefunction width, asumed equal for the atom and the
molecule.

IV. N MOLECULES – RYDBERG SUPERATOM
INTERACTION

What happens if N polar molecules interact now with
Rydberg atoms? This section concerns a 1D array or
cloud of atoms placed in parallel to N molecules. Basi-
cally, it is the same setup as in the previous section where
only one atom–molecule pair was treated. Here, the laser
beam that excites atoms to their Rydberg state interacts
with all atoms simultaneously. Then, the dipole block-

ade [43] will ensure that exactly one collective Rydberg
excitation (a superatom) will exist in the ensemble.
The superatom wavefunction will be a superposition of

states with different single excited Rydberg atoms

|Ψatom〉 =
1√
Na

Na
∑

j=1

eikx RydbXj |g1, ...gj−1, rj , gj+1, ...gNa
〉 ,(3)

where Na is the number of atoms, |gj〉 and |rj〉 denote
jth atom in the ground or Rydberg state and Xj its po-
sition along the array, kx Rydb is the x component of the
wavevector of the exciting laser field.

Next, we analytically and numerically calculate the
energy shifts of the states of the combined interacting
system of N molecules and a Rydberg supertom. Nu-
merically the shifts can be obtained by diagonalizing the
Hamiltonian of the combined system using the basis of
superatom states with a range of Rydberg states, as was
done in the previous section, and a set of collective molec-
ular rotational states. Here, in order to simplify the
calculations we use the smallest atomic basis set of the
|r〉 = |60s〉 state for the superatom in diagonalizing the
interaction Hamiltonian Ve−−M. Then the interaction of
ith molecule with the atomic array takes the form:

〈Ψatom|Ve−−M, i |Ψatom〉 = (4)

=
1

Na

Na
∑

j=1

〈rj |Ve−−M, i |rj〉 =
1

Na

Na
∑

j=1

Vji,

where Vji = 〈rj |Ve−−M, i |rj〉 = 〈rj | e
~di·~Rji

R3
ji

−
e~di·(~Rji−~r)

|~Rji−~r|3 |rj〉 and ~Rji is the vector connecting jth atom

to ith molecule. In fact, one can see from Eq. (4) that
interatomic coherences do not play a role and the same
result can be obtained with a mixed atomic state de-
scribed by a density matrix

ρ =
1

Na

Na
∑

j=1

|φj〉 〈φj | ,

where |φj〉 = |g1, . . . gj−1, rj , gj+1, . . . gN〉.
The basis states of the combined atomic-molecular sys-

tem are |Ψatom〉 |Ψmol〉, where |Ψmol〉 = |a1 . . . aN 〉 and
|ai〉 = |J,mJ〉i. Matrix elements of the Hamiltonian of
the system

H = Ha +Hm + Ve−−M (5)

with Ha =
∑Na

j=1 Erj |rj〉 〈rj |, Hm =
∑N

i=1 BJ
2
i and

Ve−−M =
∑Na

j=1

∑N
i=1

e~di·~Rji

R3
ji

− e~di·(~Rji−~r)

|~Rji−~r|3 , have the form

〈Ψatom| 〈Ψmol|Ha |Φmol〉 |Ψatom〉 = (6)

= − 1

2(ns− µs)2
ΠN

i=1δai,a′

i
,

〈Ψatom| 〈Ψmol|Hm |Φmol〉 |Ψatom〉 =

=

(

N
∑

i=1

BJi(Ji + 1)

)

ΠN
i=1δai,a′

i
,

〈Ψatom| 〈Ψmol|Ve−−M |Φmol〉 |Ψatom〉 =

=





1

Na

Na
∑

j=1

〈ai|Vji |a′i〉



ΠN
k=1,k 6=iδak,a′

k
δJi,J′

i
±1,

for i = 1 . . .N , where |Φmol〉 = |a′1, a′2, ...a′i, ..., a′N 〉.
For a simplified analysis we also take into account only

|J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 rotational states in
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diagonalizing the Hamiltonian. Using only J = 0 and
J = 1 states makes calculations of the matrix elements
〈ai|Vji |a′i〉 particularly simple. For the atom located
next to the molecules at ∆x = 0 the matrix elements
are calculated as described in part (2) of App. A. For
an atom separated from the molecule by a lattice spac-
ing(s) the matrix elements can be calculated as discussed
in part (3) of App. A.
If the interaction strength is much smaller than the

rotational splitting between the J = 0 and J = 1
states |Ve−−M| ≪ Erot, where Erot = 2B, and only
the ns state is taken into account, the shifted energies
of the collective rotational states can be calculated us-
ing second-order perturbation theory. All unperturbed
states (k ↑, (N − k) ↓) with k spins up and N − k spins
down have the same energy E(k↑,(N−k)↓) = kErot, and
groups of states differing by one flipped spin are sepa-
rated by the rotational splitting Erot. The interaction
weakly couples states in neighboring spin groups result-
ing in shifts of their energy. Let us consider first the
|ns〉 |↓, ↓, ... ↓〉 state for N molecules and Na atoms. The
energy shift of this state will be given by:

∆EN↓ =

= −
N
∑

i=1

| 〈Ψatom| 〈↓, ., ↓|Ve−−M |↓, ., ↑i, ., ↓〉 |Ψatom〉 |2
Erot

=

= −
N
∑

i=1

| 〈↓i|
∑Na

j=1 〈nsj |Ve−−M |nsj〉 /Na |↑i〉 |2
Erot

=

= −
N
∑

i=1

|∑Na

j=1 V
ji
e−−M|2

ErotN2
a

.

Assuming for simplicity that ith molecule most strongly
interacts with its nearest atom with j = i and the matrix
elements V j=i

e−−M are the same for all i, the shift can be
approximated as

∆EN↓ ≈ −
∑N

i=1 |V
j=i
e−−M|2

ErotN2
a

≈ −
N |V j=i

e−−M|2
ErotN2

a

,

which gives the dependence ∆EN↓ ∼ 1/N for Na ∼ N .
For states with a single ith spin up and i′ = 1, ., i− 1, i+
1, ., N spins down, the perturbation theory gives the en-
ergy shift

∆E(1↑,(N−1)↓) = −
N
∑

i′=1,i′ 6=i

| 〈Ψatom| 〈↓, ., ↑i, ., ↓|Ve−−M |↓, ., ↑i, ., ↑i′ , ., ↓〉 |Ψatom〉 |2
Erot

+

+
| 〈Ψatom| 〈↓, ., ↑i, ., ↓|Ve−−M |↓, ., ↓〉 |Ψatom〉 |2

Erot
=

= − 1

N2
a

N
∑

i′=1,i′ 6=i

|
∑Na

j=1 V
ji′

e−−M|2
Erot

+
1

N2
a

|
∑Na

j=1 V
ji
e−−M|2

Erot
≈ − (N − 1)

N2
a

|V j=i′

e−−M|2
Erot

+
1

N2
a

|V j=i
e−−M|2
Erot

=

= − (N − 2)

N2
a

|V j=i
e−−M|2

Erot
,

which shows that the splitting between the N ↓ and (1 ↑
, (N − 1) ↓) states ∼ 2|Ve−−M|2/ErotN

2
a ∼ 1/N2. In the

general case of (k ↑, (N − k) ↓) states the shift will be
given by
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∆E(k↑,(N−k)↓) = − 1

N2
a

N
∑

i′=1,i′∈(N−k)↓

|∑Na

j=1 V
ji′

e−−M|2

Erot
+

1

N2
a

N
∑

i=1,i∈k↑

|∑Na

j=1 V
ji
e−−M|2

Erot
≈ (7)

≈ − (N − k)

N2
a

|V j=i′

e−−M|2
Erot

+
k

N2
a

|V j=i
e−−M|2
Erot

≈ − (N − 2k)

N2
a

|V j=i
e−−M|2
Erot

.

The energies of the collective states will also get an ad-
ditional contribution ∼ ∆E(k↑,(N−k)↓)(2a

2/ρ2) due to a
finite spread of atomic and molecular positions in their
traps, as shown in App. C.

In the case when only the ns atomic state is taken
into account there will be no terms exchanging spins
within the same group such as e.g. |↓, ., ↑i, ., ↓i′ , ., ↓〉 ↔
|↓, ., ↓i, ., ↑i′ , ., ↓〉 in the (1 ↑, (N − 1) ↓) manifold. The
spin-exchange terms will be absent because the second-
order perturbation theory connects these states via a sin-
gle state in the upper and a single state in the lower
neighboring spin groups, which cancel each other due to
the equal splitting between neighbouring groups. There
will be spin-exchange terms within the groups due to a
direct dipole-dipole interaction between molecules, which
has not been taken into account in the Hamiltonian (5).
The direct dipole-dipole interaction allows spin-exchange
processes within the same group leading to splittings
∼ d2/L3 ∼ 1 kHz for d ∼ 1 D and a lattice period
L ∼ 500 nm, which is of the order of the width of the 60s
state.

In the following we numerically consider a system of
N = 3 and 5 KRb and RbYb molecules interacting with
a Rb superatom. Due to the small size of the considered
molecular arrays, if one uses an atomic array of the same
size, effects of the boundaries will be sizable, because
the molecules in the center will strongly interact with all
three nearest atoms, while the molecules at the bound-
aries will interact strongly with only two atoms. This
is not going to be the case in a sufficiently long array,
in which all molecules (again, except for two boundary
ones) will have equal interaction conditions. To mitigate
the effects of the boundaries we therefore consider an ar-
ray of Na = N + 2 atoms, arranged in a way shown in
Fig. 3a such that there is an additional atom at each side
of the molecular array. In this arrangement all molecules
will interact strongly with three nearest atoms, i.e. sepa-
rated by at most one lattice period L = 500 nm. Atoms
separated from a molecule by two or more lattice periods
do not contribute significantly for the 60s Rydberg state.

Energy shifts of the states of a combined atomic-
molecular system from the unperturbed values
E(k↑,(N−k)↓), corresponding to different collective
rotational states, are given in Fig. 4 for KRb and RbYb
in the left and right columns, respectively. Since only
the 60s Rydberg state and J = 0 and J = 1 rotational
states have been used in calculation of matrix elements
of the Hamiltonian Eq. (5), the magnitude of the shifts is

only qualitatively correct. In order to get quantitatively
correct shifts the closest in energy p, d and f Rydberg
states as well as J = 2 rotational states have to be taken
into account, which is beyond the scope of our work. Fig.
4 shows the shifts calculated by (i) diagonalization of the
Hamiltonian Eq. (5) and (ii) using perturbation theory

expression (7) with V ji
e−−M calculated numerically. The

results of the two calculations agree very well.

From Fig. 4 one can see that the states with the same
number of spins up and down such as |↑, ↓, ↓〉, |↓, ↑, ↓〉
and |↓, ↓, ↑〉 group, as expected, so only states with at
least one spin flipped significantly differ in energy and
can be discerned. For N = 3 the spin groups split from
each other by ∼ 150−50 kHz for 300 nm < ρ < 500 nm
for KRb and by ∼ 600 − 200 kHz for 400 nm < ρ <
600 nm for RbYb. For an array of N = 5 molecules,
shown in Fig. 4c and d, the energy splittings between
spin groups become smaller: ∼ 70 − 10 kHz for KRb,
and ∼ 300− 100 kHz for RbYb in the same ranges of ρ.
The reduction of the splittings with increasing N comes
from the simultaneous increase in Na as expected from
Eq. (7). It suggests that for larger N the splittings will
get even smaller and eventually become comparable to
the width of the Rydberg state. The states will no longer
be discernable and there will be a continuous band of
collective molecular states.

In experiments it can be difficult to have two paral-
lel optical lattices, one filled with molecules and another
with atoms. The setup will be simplified if the atoms are
placed in a cigar-shaped dipole trap with a long axis par-
allel to the molecular array as shown in Fig. 3b. We mod-
elled the interaction of a molecular array with a Rydberg
superatom placed in such a trap by assuming that the
excited atom has a Gaussian 1D probability distribution
p(x) = exp(−x2/a2trap)/atrap

√
π along the longest trap

axis with x = 0 corresponding to the center of the molec-

ular array. In this case the summation
∑Na

j=1 Vji/Na over

atom’s j position in Eqs. (4) and (6) is replaced by an in-
tegral

∫

Vi(x)p(x)dx. Fig. 5a(c) and b(d) show the shifts
of the collective states for N = 3(5) for KRb and RbYb,
respectively, obtained by diagonalization of (5). The size
of the atomic distribution atrap was chosen to have the
largest splittings between spin states differing by one
flipped spin. Compared to the case of atoms in a lat-
tice the shifts between spin groups become about twice
smaller for N = 3 and three times smaller for N = 5 for
both KRb and RbYb. The splittings within groups ap-



7

pear, and for N = 5 become comparable to the splittings
between the groups. The reason for splittings within
the groups is in the unequal interaction conditions for
molecules in the center and at the boundaries. Due to
the decrease of the atom’s probability from the center to
the edges of the trap the corresponding molecules will ex-
perience weaker interaction. The interaction conditions
can be made more homogeneous if the trap size in the
longitudinal direction is much larger than the molecular
array’s, but in this case the probability to find the atom
in the range (Xi − L/2, Xi + L/2) around ith molecule
position Xi will be smaller than the corresponding prob-
ability 1/Na of atoms in a lattice.
The ∼ 1/N and ∼ 1/N2 scalings of the spin group en-

ergy shifts and splittings can be avoided if the molecules
are placed in a ring 1D array [44] instead of a linear one.
In this case if the superatom (or a single Rydberg atom)
is placed at the center of the array and its size is much
smaller than the radius of the array all interaction matrix
elements V ji

e−−M will be equal for a symmetric ns state

V ji
e−−M = Ṽe−−M and the shifts (7) will become:

∆E(k↑,(N−k)↓) = −(N − k)
|Ṽe−−M|2

Erot
+ k

|Ṽe−−M|2
Erot

≈

≈ −(N − 2k)
|Ṽe−−M|2

Erot
,

which shows that in this case the shifts and splittings
scale as ∆E ∼ N |Ṽe−−M|2/Erot and ∼ 2|Ṽe−−M|2/Erot

with the number of the molecules, so the splittings are
limited by the interaction strengths |Ṽe−−M|2, falling
with the atom-molecule distance, equal to the radius of
the array, as 1/R4

ji.
Selective excitation to the Rydberg state for a par-

ticular spin group will require the Rabi frequency Ω of
an exciting optical pulse be smaller than the splittings
between spin groups. With the splittings between spin
groups ∼ hundreds kHz one can use Ω = 10 kHz. In
this case the blockade radius for the 60s state will be of
the order of Rb = (C6/~Ω)

1/6 ∼ 2.2 µm, where C6 is
taken from [45]. For the linear array period L = 500 nm
the blockade can be realized for Na ≤ 9 atoms in 60s,
i.e. higher n are required for larger arrays. For example,
for n = 100 and the same Rabi frequency Ω = 10 kHz
the blockade radius will be ≈ 44 µm, which will allow
to use a linear array of ∼ 200 atoms and molecules. In
a ring array any number of atoms can be used provided
the atomic trap size is smaller than the blockade radius.

V. MEASUREMENT OF ROTATIONAL STATE
POPULATION

Let us first discuss the measurement of rotational
states population of a single molecule interacting with
a single Rydberg atom. In this case we assume that each
molecule in an array or optical lattice has its own readout
atom, which can be addressed individually using tightly

focussed laser beams and excited to the Rydberg state
without affecting neighboring atoms. Individual address-
ing of atoms in an optical lattice with a lattice period
λ/2 ∼ 500 nm has been demonstrated recently in [47].
Alternatively, low cross-talk addressing of atoms can be
realized if, before the readout, the molecular and atomic
lattices period is increased to values ∼ several µm using
tunable-period 1D or 2D optical lattices [48].

The populations of the ground and first excited rota-
tional states can be read out in the following way (see
Fig. 6a). First, the atom is prepared in the ground state,
e.g. |g〉 = |F = 2,mF = 2〉 for Rb, such that the state of
the combined system is (α |↓〉+β |↑〉) |g〉, where |α|2 and
|β|2 are the molecular qubit states populations to be read
out. The combined system next is transferred selectively
from e.g. the |g〉 |↑〉 to the |r〉 |↑〉, where |r〉 is the atomic
Rydberg state, with a π pulse, followed by another π
pulse transferring the system from the |r〉 |↑〉 to some ax-
iliarly |e〉 |↑〉 state with a short lifetime, which rapidly
decays back to |g〉 |↑〉 [49]. Repeating the excitation-
fluorescence cycle one can detect the population |β|2 of
the |↑〉 rotational state. Another way to read out pop-
ulations of molecular qubits is shown in Fig. 6b,c and d.
While the atom is in the ground state its fluorescence is
measured using the cycling transition |g〉 → |e〉, which
will include contributions from both rotational states
with probabilities |α|2 and |β|2 (Fig. 6b). Next a π optical
pulse is applied to excite the system conditionally only if
the molecule is in the |↑〉 state, producing an entangled
state of the combined system α |↓〉 |g〉+β |↑〉 |r〉, and again
the atomic fluorescence is measured using the cycling
transition (Fig. 6c). This time the part of the atom in the
Rydberg state will not fluoresce and only the |g〉 |↓〉 part
will contribute with the probability |α|2 (Fig. 6d). By
measuring the ratio of fluoresence intensities in the two
cases R = |α|2/(|α|2+ |β|2) one can calculate the popula-
tions of the rotational states |α|2 = R and |β|2 = 1−R.
The Rydberg state has a finite lifetime and can decay
during the readout steps of Fig. 6c,d. The decay can
be avoided if the atom is transferred to a stable ground
state |g′〉 by a π pulse: |g〉 |↑〉 → |r〉 |↑〉 → |g′〉 |↑〉 such
that |g′〉 is not affected by the excitation-fluorescence cy-
cles |g〉 ↔ |e〉. Additionally, it allows one to entangle
two atomic ground states and two rotational molecular
states as (α |↓〉+ β |↑〉) |g〉 → α |g〉 |↓〉+ β |g′〉 |↑〉. The π
pulses can be replaced by coherent control pulse sequen-
cies such as STIRAP or ARP (adiabatic rapid passage),
more robust with respect to pulse duration and intensity
fluctuations.

As was discussed in Section III the energies of the
|r〉 |↓〉, |r〉 |↑〉 states are additionally shifted due to a finite
spread of atomic and molecular positions in their traps.
This additional shift might tune the Rydberg state out
of resonance with an excitation laser. This difficulty can
be overcome by using the Rabi frequency of the excita-
tion pulses large enough to cover the additional shift, but
small enough to provide selective excitation to a partic-
ular rotational state. As shown in App. D the additional
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shifts of the |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 states
are of the order of ≤ 20 kHz for KRb and ≤ 40 kHz for
RbYb, and for the |J = 1,mJ = ±1〉 states they are of
the order of ≤ 60 kHz for KRb and ≤ 7 kHz for RbYb.
Given the splittings between the states ∼ 1 MHz for KRb
and ∼ 3 MHz for RbYb the Rabi frequency satisfying
both requirements can be realized. Another solution is
to excite the atom using ARP with a chirped pulse such
that the frequency sweep covers the additional energy
shift.
The main part of the measurement described in Fig. 6

is a CNOT gate applied to the atom-molecule system.
The measurement based on the CNOT gate is of a quan-
tum non-demolishion type, in which the measurement
is done on the ancilla system after it has interacted
with the primary system in such a way that the pri-
mary system is not destroyed and it’s projected states
are not disturbed by the measurement [50]. In [51] re-
quirements for a QND measurement on a primary qubit
by an ancilla qubit have been derived in terms of fideli-

ties of measurement FM =
√

∑

i p
M
i pini , QND fidelity

FQND =
√

∑

i p
in
i pouti and the quantum state prepa-

ration fidelity FQSP =
∑

i p
M
i pout|i〉|i, where pini , pMi and

pouti are the probability distributions of the input, mea-
sured and output states in the basis of the eigenstates
|i〉 of the measurement; pout|i〉|i is the conditional proba-

bility of finding the output state to be |i〉 if the mea-
surement gave the eigenvalue i. The CNOT gate gives
FM = FQND = FQSP = 1, i.e. it represents an ideal QND
measurement. The QND nature of the measurement can
be seen from the form of the actual atom-molecule inter-
action

|ns〉 〈ns| (∆E↑ |↑〉 〈↑|+∆E↓ |↓〉 〈↓|) =

=

(

Ŝat
z +

1

2

)(

∆E↑(Ŝ
mol
z +

1

2
) + ∆E↓(

1

2
− Ŝmol

z )

)

= (∆E↑ −∆E↓)Ŝ
at
z Ŝmol

z + Ŝat
z

∆E↓ +∆E↑
2

+

+Ŝmol
z

∆E↓ −∆E↑
2

,

which commutes with the measured observable Ŝmol
z .

Here Ŝat
z = (|ns〉 〈ns| − |g〉 〈g|)/2 and Ŝmol

z = (|↑〉 〈↑| −
|↓〉 〈↓|)/2.
The QND measurement based on the CNOT gate has

been used previously in systems of two ions [52], electron-
nuclear spins of N-V center [53] and was also theoretically
discussed for a system of two neutral atoms of different
species, interacting in Rydberg states [54].
Finally, we come to the main point of the work and

discuss how population of collective rotational states
can be measured in a molecular array interacting with
a Rydberg superatom. The measurement is based on
the interaction induced splittings between spin groups
|k ↑, (N − k) ↓〉 for k = 0, ...N , analyzed in the pre-
vious section. As shown in Fig. 7, first, the com-

bined system is excited selectively from some group
of k ↑ spins up |g, g, ...g〉 |Ψmol k↑〉 to the blockaded
state |Ψatom〉 |Ψmol k↑〉 by a π pulse, followed by an-
other π pulse connecting the |Ψatom〉 state to some

|Ψe〉 = 1√
Na

∑Na

j=1 e
i(kx Rydb−kx e)Xj |g1, g2, ..., ej, ..., gNa

〉
state, where |e〉 is an atomic state rapidly decaying to
|g〉. Again, instead of two π pulses a sequence of ei-
ther STIRAP or ARP pulses can be used. The collective
states will also acquire an additional energy shift due
to a finite spread of atomic and molecular positions in
their traps, which should be taken into account when ex-
citing the atom to the Rydberg state. It can be done
either using a sufficiently large Rabi frequency of the ex-
citation pulse, or using a chirped pulse. By repeating
these excitation-fluorescence cycles the population of the
|Ψmol k↑〉 can be detected. Let us illustrate the scheme
for N = 3 molecules. Initially, the molecular system is in
a superposition of all spin states:

|Ψmol〉 = a↓,↓,↓ |↓, ↓, ↓〉+ a↑,↓,↓ |↑, ↓, ↓〉+
+a↓,↑,↓ |↓, ↑, ↓〉+ a↓,↓,↑ |↓, ↓, ↑〉+
+a↑,↑,↓ |↑, ↑, ↓〉+ a↑,↓,↑ |↑, ↓, ↑〉+
+a↓,↑,↑ |↓, ↑, ↑〉+ a↑,↑,↑ |↑, ↑, ↑〉 .

Suppose one is to measure the total population of the
states with one spin up and two spins down, i.e. the
|↑, ↓, ↓〉, |↓, ↑, ↓〉, |↓, ↓, ↑〉 states. For that the initial state
|g, g, ..., g〉 |Ψmol〉 is transformed into

|g, g, ..., g〉 (a↓,↓,↓ |↓, ↓, ↓〉+ a↑,↑,↓ |↑, ↑, ↓〉+
+a↑,↓,↑ |↑, ↓, ↑〉+ a↓,↑,↑ |↓, ↑, ↑〉+
+a↑,↑,↑ |↑, ↑, ↑〉) + |Ψatom〉 (a↑,↓,↓ |↑, ↓, ↓〉+
+a↓,↑,↓ |↓, ↑, ↓〉+ a↓,↓,↑ |↓, ↓, ↑〉) =

= |g, g, ..., g〉 (|Ψmol〉 − |Ψmol k↑=1〉) + |Ψatom〉 |Ψmol k↑=1〉 ,

by selective excitation to the Rydberg superatom state,
where we denote the part of the state corresponding to a
single spin up as

|Ψmol k↑=1〉 = a↑,↓,↓ |↑, ↓, ↓〉+ a↓,↑,↓ |↓, ↑, ↓〉+ a↓,↓,↑ |↓, ↓, ↑〉 .

Next, atoms in |Ψatom〉 are transferred to the state |Ψe〉,
which rapidly decays to the |g, g, ..., g〉 state. Repeating
the excitation-fluorescence cycles and detecting fluores-
cence intensity will allow one to obtain the total popula-
tion of the |Ψmol k↑=1〉 state, given by |a↑,↓,↓|2+|a↓,↑,↓|2+
|a↓,↓,↑|2. Applying this sequence for all |Ψmol k↑〉, popula-
tions of all spin groups can be measured. This measure-
ment is non-destructive with respect to molecules and is
also of a QND type and will in fact project the molec-
ular system to a superposition of states with a certain
number of spins up and down provided a spontaneously
emitted photon is detected. In this way entangled many-
body molecular states can be prepared by measurement,
which does not require molecules to interact, similar to
the proposals in cQED systems [55]. For example, if ini-
tially all molecules are prepared in an equal superposition
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state (|↓〉i + |↑〉i) /
√
2, and the described above measure-

ment sequence is applied, one will be able to project the
system to an entangled state, which is an equal super-
position of states with one spin up - W state, and more
generally, equal superpositions of states with k spins up
andN−k spins down - Dicke states. The collective states
readout scheme could also be applied to measure the es-
timated Hamming weight of the molecular spin string
Nest =

∑

k ↑ pk↑, where 0 ≤ k ↑≤ N is the number of
spins up in a particular spin group and pk↑ is the prob-
ability of such a group, measured in our case by atomic
fluorescence intensity. The Hamming weight, which is
the total number of spins up in a string of N spins or
qubits, is a usefull quantuity in quantum error correction
[56] and in ion string clocks for determining the deviation
of the clock frequency from an unperturbed ion frequency
[57].

VI. CONCLUSION

We present a detailed analysis for non-destructive
readout of mesoscopic ensembles of polar molecules, by
exploiting the exquisite sensitivity of Rydberg states in
interaction with molecular rotational states. The ex-
treme dipole moment of the Rydberg atoms allows se-
lective addressing of single or collective molecular rota-
tional states. Our earlier proposal dealt only with single
atoms and single molecules and found that, for example
for distances of 300 - 600 nm between molecule and atom
a shift of several MHz can be detected in the Rydberg
level depending on the molecular rotational state. This
is wider than any line widths in this setup.
In the present article, we have shown that these shifts,

and the ensuing possibility of conditional Rydberg exci-
tation and thus atom-molecule entanglement allows non-
demolition readout not only for single atom-molecule
pairs but also for collective rotational states in molecular
ensembles. In the latter case instead of a single atom a
Rydberg superatom, i.e., a single Rydberg excitation of
a small ensemble of atoms, can be used.
In particular, detailed numerical estimates for small

arrays of ground state KRb or RbYb molecules show that
the difference of one excited collective rotational state
leads to shifts of 100s of kHz in a Rydberg superatom
about half a µm away. Our calculations were done for
atoms in both a linear array and a dipole trap, often
an easier experimental setup. Calculations in this case

predict only a slightly smaller shift, which shows that the
regularity in an optical lattice is not the defining feature
of the setup.
While, at the present status of experiments, arrays of

different species of under a µm distance might still be
challenging (although two close lattices were demostrated
for the same atomic species [23]), the techniques pre-
sented here address particularly the non-destructive read-
out of single or collective molecular rotational states,
which has been a mostly unsolved problem to date. With
the size of the Rydberg shifts of hundreds kHz, the su-
peratom can be conditionally excited depending on the
collective molecular state. While the fluorescence of the
atom(s) is measured, effectively reading out the molec-
ular state, the molecules remain untouched. An ob-
vious extension would be to use the Rydberg atom(s)
as a communication channel between two molecules or
two molecular ensembles, thus allowing for effective indi-
rect interactions between the molecular dipoles that are
much stronger than the direct dipole-dipole interaction
between the molecules. Proposals for many-body states
based on strongly interacting dipoles could potentially
be realized much easier this way. In addition, the condi-
tional excitation allows very well controlled entanglement
between molecules or groups of molecules, thus opening
the door to, for example, entanglement-enhanced metrol-
ogy.
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Appendix A

1. Calculation of interaction matrix elements Eq. (2) in a general case

In order to calculate the matrix elements of the interaction term (Ve−−M)nlmJmJ ,n′l′m′J′m′

J
=

〈J,mJ | e~d |J ′,m′
J〉 〈n l m| ~R

R3 |n′ l′ m′〉 − 〈J,mJ | e~d |J ′,m′
J〉 〈n l m| ~R−~r

|~R−~r|3 |n
′ l′ m′〉 we assume that the Rydberg atom

is fixed at its position by e.g. trapping in a deep dipole trap or optical lattice such that ~R = Rx~ex + Ry~ey + Rz~ez.
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The molecular dipole moment can be written as ~d = dx~ex + dy~ey + dz~ez leading to:

~d(~R − ~r) = dx(Rx − r sin θ cosφ) + dy(Ry − r sin θ sinφ) + dz(Rz − r cos θ),

where θ and φ are the polar and azimuthal angles of the electron with respect to the Rydberg core.
As a result,

Ve−−M =
e(dxRx + dyRy + dzRz)

R3
− edx(Rx − r sin θ cosφ) + edy(Ry − r sin θ sinφ) + edz(Rz − r cos θ)

((Rx − r sin θ cosφ)2 + (Ry − r sin θ sinφ)2 + (Rz − r cos θ)2)
3/2

,

which can be written as Ve−−M = V core
e−−M + V el

e−−M with

V core
e−−M =

e(dxRx + dyRy + dzRz)

R3
,

V el
e−−M = −edx(Rx − r sin θ cosφ) + edy(Ry − r sin θ sinφ) + edz(Rz − r cos θ)

((Rx − r sin θ cosφ)2 + (Ry − r sin θ sinφ)2 + (Rz − r cos θ)2)
3/2

=

= edx
∂

∂Rx

1

((Rx − r sin θ cosφ)2 + (Ry − r sin θ sinφ)2 + (Rz − r cos θ)2)
1/2

+

+edy
∂

∂Ry

1

((Rx − r sin θ cosφ)2 + (Ry − r sin θ sinφ)2 + (Rz − r cos θ)2)
1/2

+

+edz
∂

∂Rz

1

((Rx − r sin θ cosφ)2 + (Ry − r sin θ sinφ)2 + (Rz − r cos θ)2)
1/2

.

Let us express the vector connecting the core and the molecule via its spherical coordinates (see Fig. 8) ~R =
(R sin η cos ν,R sin η sin ν,R cos η) and express the derivatives ∂

∂Rx
, ∂

∂Ry
, ∂

∂Rz
via spherical coordinates as well:

∂

∂Rx
= sin η cos ν

∂

∂R
+

cos η cos ν

R

∂

∂η
− sin ν

R sin η

∂

∂ν
,

∂

∂Ry
= sin η sin ν

∂

∂R
+

cos η sin ν

R

∂

∂η
+

cos ν

R cos η

∂

∂ν
,

∂

∂Rz
= cos η

∂

∂R
− sin η

R

∂

∂η
.

Next we can use the expansion

1
√

R2 + r2 − 2rR cos γ
= 4π

∞
∑

l′′=0

1

2l′′ + 1

rl
′′

<

rl
′′+1
>

m′′=l′′
∑

m′′=−l′′

Y m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) =

= 4π

{

∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r < R

∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r > R,

where γ is the angle between vectors ~R and ~r (see Fig. 8).
As a result, we have

V el
e−−M, x = edx

∂

∂Rx

1

(R2 + r2 − 2rR cos γ)
1/2

= (A1)

= 4πedx sin η cos ν

{

∑∞
l′′=0 − l′′+1

2l′′+1
rl

′′

Rl′′+2

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r < R

∑∞
l′′=0

l′′

2l′′+1
Rl′′−1

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r > R

+4πedx
cos η cos ν

R







∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η for r < R
∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η for r > R

+4πiedx
sin ν

R sin η

{

∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1

∑l′′

m′′=−l′′ m
′′Y m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r < R

∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1

∑l′′

m′′=−l′′ m
′′Y m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r > R,
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V el
e−−M, y = edy

∂

∂Ry

1

(R2 + r2 − 2rR cos γ)
1/2

= (A2)

= 4πedy sin η sin ν

{

∑∞
l′′=0 − l′′+1

2l′′+1
rl

′′

Rl′′+2

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r < R

∑∞
l′′=0

l′′

2l′′+1
Rl′′−1

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r > R

+4πedy
cos η sin ν

R







∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η for r < R
∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η for r > R

−4πiedy
cos ν

R sin η

{

∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1

∑l′′

m′′=−l′′ m
′′Y m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r < R

∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1

∑l′′

m′′=−l′′ m
′′Y m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r > R,

V el
e−−M, z = edz

∂

∂Rz

1

(R2 + r2 − 2rR cos γ)1/2
= (A3)

= 4πedz cos η

{

∑∞
l′′=0 − l′′+1

2l′′+1
rl

′′

Rl′′+2

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r < R

∑∞
l′′=0

l′′

2l′′+1
Rl′′−1

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)Y m′′∗
l′′ (η, ν) for r > R

−4πedz
sin η

R







∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η for r < R
∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

∑l′′

m′′=−l′′ Y
m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η for r > R,

where

∂Y m′′∗
l′′ (η, ν)

∂η
= −1

2

(

√

(l′′ +m′′)(l′′ −m′′ + 1)(Y m′′−1
l′′ )∗e−iν −

√

(l′′ −m′′)(l′′ +m′′ + 1)(Y m′′+1
l′′ )∗eiν

)

.

2. Calculation of the interaction matrix elements Eq. (2) in the case ~R = R~ez

We can obtain the interaction matrix elements in the case ~R = R~ez by taking the limit η →
0, ν → 0 in Eqs. (A1)-(A3). In this limit Y m′′

l′′ (η, ν) →
√

2l′′+1
4π δm′′,0 and Y m′′

l′′ (θ, φ)
∂Y m′′

∗

l′′
(η,ν)

∂η →

− 1
2

√

(2l′′+1)l′′(l′′+1)
4π

(

Y 1
l′′(θ, φ) − Y −1

l′′ (θ, φ)
)

.

As a result, V core
e−−M = edz

R2 ,

V el
e−−M, x = −edx

2R







∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

rl
′′

Rl′′+1
(Y 1

l′′(θ, φ) − Y −1
l′′ (θ, φ)) for r < R

∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

Rl′′

rl′′+1
(Y 1

l′′ (θ, φ)− Y −1
l′′ (θ, φ)) for r > R.

Next, when η → 0, ν → 0

V el
e−−M, y → −4πiedy

R sin η

{

∑∞
l′′=0

1
2l′′+1

rl
′′

Rl′′+1
(Y 1

l′′ (θ, φ)Y
1∗
l′′ (η, ν)− Y −1

l′′ (θ, φ)Y −1∗
l′′ (η, ν)) for r < R

∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1
(Y 1

l′′ (θ, φ)Y
1∗
l′′ (η, ν)− Y −1

l′′ (θ, φ)Y −1∗
l′′ (η, ν)) for r > R

and we can use the small η approximation Y 1
l′′ (η, 0) → − sin η

2

√

(2l′′+1)l′′(l′′+1)
4π , giving

V el
e−−M, y =

iedy
2R







∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

rl
′′

Rl′′+1
(Y 1

l′′ (θ, φ) + Y −1
l′′ (θ, φ)) for r < R

∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

Rl′′

rl′′+1
(Y 1

l′′ (θ, φ) + Y −1
l′′ (θ, φ)) for r > R,
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resulting in

V el
e−−M, x + V el

e−−M, y = −e(dx − idy)

2R







∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

rl
′′

Rl′′+1
Y 1
l′′ (θ, φ) for r < R

∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

Rl′′

rl′′+1
Y 1
l′′ (θ, φ) for r > R

+
e(dx + idy)

2R







∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

rl
′′

Rl′′+1
Y −1
l′′ (θ, φ) for r < R

∑∞
l′′=0

√

4πl′′(l′′+1)
2l′′+1

Rl′′

rl′′+1
Y −1
l′′ (θ, φ) for r > R,

,

Ve−−M, z = edz







∑∞
l′′=0 −

√

4π
2l′′+1 (l

′′ + 1) rl
′′

Rl′′+2
Y 0
l′′(θ, φ) for r < R

∑∞
l′′=0

√

4π
2l′′+1 l

′′Rl′′−1

rl′′+1
Y 0
l′′ (θ, φ) for r > R.

Next we will analyze separately the three terms of Ve−−M:

1) The matrix element of the interaction between the molecular dipole and the Rydberg core has the form:

(V core
e−−M)nlmJmJ ,n′l′m′J′m′

J
= 〈J,mJ | 〈n l m| edz

R2
|n′ l′ m′〉 |J ′m′

J 〉 =
ed

J,mJ ;J
′,m′

J
z

R2
δn,n′δl,l′δm,m′δJ±1,J′δmJ ,m′

J
, (A4)

2) The matrix elements of the V el
e−−M, z and V el

e−−M, x + V el
e−−M, y terms have the form:

〈J,mJ | 〈n l m|V el
e−−M, z |n′ l′ m′〉 |J ′,m′

J〉 = (A5)

= δm,m′

(

−
∞
∑

l′′=0

(l′′ + 1)

√

4π

2l′′ + 1

1

Rl′′+2

∫ R

0

rl
′′+2Rnl(r)Rn′l′(r)dr

∫ 2π

0

dφ

∫ π

0

Y m∗
l Y 0

l′′Y
m′

l′ sin θdθ+

+

∞
∑

l′′=0

l′′
√

4π

2l′′ + 1
Rl′′−1

∫ ∞

R

1

rl′′−1
Rnl(r)Rn′l′(r)dr

∫ 2π

0

dφ

∫ π

0

Y m∗
l Y 0

l′′Y
m′

l′ sin θdθ

)

〈J,mJ | edz |J ′,m′
J〉 =

= δm,m′δJ′,J±1δmJ ,m′

J

(

−
∞
∑

l′′=0

(l′′ + 1)

√

4π

2l′′ + 1

1

Rl′′+2

∫ R

0

rl
′′+2Rnl(r)Rn′l′(r)dr

∫ π

0

Y m∗
l Y 0

l′′Y
m
l′ sin θdθ+

+

∞
∑

l′′=0

l′′
√

4π

2l′′ + 1
Rl′′−1

∫ ∞

R

1

rl′′−1
Rnl(r)Rn′l′(r)dr

∫ π

0

Y m∗
l Y 0

l′′Y
m
l′ sin θdθ

)

ed
J,mJ ;J

′,m′

J
z
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and,

〈J,mJ | 〈n l m|V el
e−−M, x + V el

e−−M, y |n′ l′ m′〉 |J ′,m′
J 〉 =

= −
( ∞
∑

l′′=0

1

Rl′′+1

√

4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0

rl
′′+2Rnl(r)Rn′l′dr

∫ 2π

0

dφ

∫ π

0

Y m∗
l Y 1

l′′Y
m′

l′ sin θdθ+

+

∞
∑

l′′=0

Rl′′

√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫ 2π

0

dφ

∫ π

0

Y m∗
l Y 1

l′′Y
m′

l′ sin θdθ

)

e 〈J,mJ | dx − idy |J ′,m′
J〉

2R

+

( ∞
∑

l′′=0

1

Rl′′+1

√

4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0

rl
′′+2Rnl(r)Rn′l′dr

∫ 2π

0

dφ

∫ π

0

Y m∗
l Y −1

l′′ Y m′

l′ sin θdθ+

+

∞
∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫ 2π

0

dφ

∫ π

0

Y m∗
l Y −1

l′′ Y m′

l′ sin θdθ

)

e 〈J,mJ | dx + idy |J ′,m′
J〉

2R
=

= −ed
J,mJ ;J

′,m′

J

+√
2R

δm,m′+1

( ∞
∑

l′′=0

1

Rl′′+1

√

4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0

rl
′′+2Rnl(r)Rn′l′dr

∫

Y m∗
l Y 1

l′′Y
m′

l′ sin θ′dθ′dφ′+

+
∞
∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫

Y m∗
l Y 1

l′′Y
m′

l′ sin θ′dθ′dφ′
)

−ed
J,mJ ;J

′,m′

J

−√
2R

δm,m′−1

( ∞
∑

l′′=0

1

Rl′′+1

√

4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0

rl
′′+2Rnl(r)Rn′l′dr

∫

Y m∗
l Y −1

l′′ Y m′

l′ sin θ′dθ′dφ′+

+

∞
∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫

Y m∗
l Y −1

l′′ Y m′

l′ sin θ′dθ′dφ′
)

,

where the dipole moment matrix elements are d
JmJ ,J

′m′

J
z = 〈J,mJ | dz |J ′,m′

J〉, d
JmJ ,J

′m′

J

± = ±〈J,mJ | dx ∓
idy |J ′,m′

J〉 /
√
2, where for J = 0, J = 1 and J = 2 rotational states the corresponding matrix elements are

d0,0;1,0z = d/
√
3, d1,0;2,0z = 2d/

√
15, d1,±1;2,±1

z = d/
√
5, d0,0;1,±1

± = −d/
√
3, d1,0;2,±1

± = −d/
√
5, d1,±1;2,±2

± = −d
√
2/

√
5,

d1,±1;2,0
± = −d/

√
15, where d is the permanent dipole moment of a molecule. The integrals involving three spherical

harmonics are calculated using the expression:

∫ 2π

0

∫ π

0

Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)Y m3

l3
(θ, φ) sin θdθdφ =

=

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3
0 0 0

)(

l1 l2 l3
m1 m2 m3

)

.

where

(

l1 l2 l3
m1 m2 m3

)

is the 3j-symbol.

The matrix elements of the full Hamiltonian including all terms are then given by

〈J,mJ | 〈n l m|H |n′ l′ m′〉 |J ′,m′
J〉 =

= − 1

2(n− µl)2
δn,n′δl,l′δm,m′δJ,J′δmJ ,m′

J
+BJ(J + 1)δn,n′δl,l′δm,m′δJ,J′δmJ ,m′

J

+ 〈J,mJ | 〈n l m|V core
e−−M |n′ l′ m′〉 |J ′,m′

J 〉+
∑

α=x,y,z

〈J,mJ | 〈n l m|V el
e−−M, α |n′ l′ m′〉 |J ′,m′

J〉 .

The total Hamiltonian is then diagonalized to find new eigenstates accounting for the interaction, and corresponding
eigenenergies.

3. Calculation of the matrix elements for the case ~R = Rx~ex +Rz~ez using |60s〉 atomic and |J = 0, mJ = 0〉,
|J = 1,mJ = 0〉 molecular basis states

The case Ry = 0 corresponds to the limit ν = 0 in Eqs. (A1)-(A3). These expressions are fur-
ther simplified by using only the |ns〉 atomic basis state. In the matrix elements 〈ns|Ve−−M, α |ns〉 ∼
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∫ 2π

0
dφ
∫ π

0
Y 0∗
0 (θ, φ)Y m′′

l′′ (θ, φ)Y 0
0 (θ, φ) sin θdθ only l′′ = 0,m′′ = 0 terms are non-zero. As a result,

∂Y m′′=0∗
l′′=0

(η,0)

∂η = 0

and the interaction terms have the form:

V el
e−−M, z = 4πedz cos η

{

− 1
R2 Y

0
0 (θ, φ) for r < R
0 for r > R

V el
e−−M, x = 4πedx sin η

{

− 1
R2Y

0
0 (θ, φ) for r < R
0 for r > R

and V el
e−−M, y = 0. Finally, using only |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 molecular basis states allows us to neglect

the V el
e−−M, x ∼ 〈J = 0,mJ | dx |J = 1,mJ = 0〉 = 0 term, as well as the edxRx/R

3 term in V core
e−−M. We are therefore

left with the only non-zero matrix element

〈J = 0,mJ = 0| 〈ns|Ve−−M |ns〉 |J = 1,mJ = 0〉 = ed0,0;1,0z cos η

R2
− d0,0;1,0z cos η

1

R2

∫ R

0

r2R2
nsdr.

Appendix B

In this section we show that interaction matrix elements between states |ns〉 |↓〉 = |ns〉 |J = 0,mJ = 0〉, |ns〉 |↑〉 =
|ns〉 |J = 1,mJ = 0,±1〉 and their closest in energy neighbours are much smaller than the energy difference between
the corresponding states. The corresponding level schemes are shown in Fig. 9a and b for KRb and c and d for RbYb,

respectively. We consider the case ~R = R~ez analyzed in part (2) of Appx. A.
The matrix elements 〈Ve−−M 〉 = 〈J = 0,mJ = 0| 〈ns|Ve−−M |n′l′m′〉 |J ′ = 1,m′

J〉, where m′
J + m′ = 0

by selection rules, are shown in Fig. 10a and b for KRb and RbYb, respectively. The matrix el-
ements 〈J = 1,mJ | 〈ns|Ve−−M |n′l′m′〉 |J ′ = 2,m′

J〉 (with mJ = m′ + m′
J and m′

J = mJ ,mJ ± 1)
describing transitions between J = 1 and J = 2 rotational states can be expressed via the cor-
responding J = 0 ↔ J = 1 matrix elements as 〈J = 1,mJ | 〈ns|Ve−−M, α |n′l′m′〉 |J ′ = 2,m′

J〉 =
(

d
1,mJ ;2,m

′

J
α /d

0,0;1,m′

J−mJ

α

)

〈J = 0,mJ = 0| 〈ns|Ve−−M, α |n′l′m′〉 |J ′ = 1,m′
J −mJ 〉, where α = z,± and

∣

∣

∣d
1,mJ ;2,m

′

J
α /d

0,0;1,m′

J−mJ

α

∣

∣

∣ ∼ 1 as can be seen from the end of part (2) of Appx. A. From Figs. 9 and 10 one

can see that
∣

∣

∣
V

ns,J,mJ ;n
′l′m′,J′,m′

J

e−−M /(Ens,J,mJ
− En′l′m′,J′,m′

J
)
∣

∣

∣
< 0.03 for KRb for both J = 0 and J = 1 rotational

states and all closest in energy states |n′l′m′〉 (this ratio is < 0.08 for RbYb). In particular, this validates the
discussion in Section III about the small effect of possible spin-rotation splitting of J = 1 states of RbYb on the energy
shifts. For both KRb and RbYb the most important contribution to the energy shift of the |ns〉 |J = 0,mJ = 0〉 state
comes from the interaction with the |ns〉 |J = 1,mJ = 0〉 state; for the |ns〉 |J = 1,mJ = 0〉 the largest contribution
is from interaction with |ns〉 |J = 0,mJ = 0〉 and |ns〉 |J = 2,mJ = 0〉 states; for the |ns〉 |J = 1,mJ = ±1〉 the
main contributions of the same amount and opposite sign come from interaction with |ns〉 |J = 2,mJ = ±1〉 and
|(n− 2)d,m〉 |J = 2,mJ = 0,±1,±2〉 states.

Appendix C

In this section we discuss the convergence of the calculations of the energy shifts shown in Fig. 2 with respect to
the atomic and molecular basis states. We checked if all the states np, (n − 1)p, (n − 1)d, (n − 2)d and (n − 3)f
are contributing significantly to the energy shifts. Figs. 11a and b show the shifts taking into account the full set
of 60s, 60p, 59p, 59d, 58d and 57f states (thick lines) and and three closest in energy 60p, 59p and 58d states (thin
lines) for KRb and RbYb, respectively. One can see that for both KRb and RbYb the smaller basis set gives a good
agreement with the full one except for the |J = 1,mJ = 0〉 state. We also compared the shifts calculated using the
full set and the smallest possible atomic set including only the 60s state. It will give a good approximation to the full
set if |〈J = 0,mJ = 0| 〈ns|Ve−−M |ns〉 |J ′ = 1,m′

J〉|
2 /2B ≫ |〈J,mJ | 〈ns|Ve−−M |n′(l′ > 0)m′〉 |J ′,m′

J 〉|
2 /|Ens,J,mJ

−
En′(l′>0)m′,J′,m′

J
|. The results are shown in Fig. 11c and d for KRb and RbYb, respectively. Again, for RbYb the

smallest set has a good agreement with the full one except for the |J = 1,mJ = 0〉 state. For KRb the smallest and the
full sets agree approximately, giving shifts of the same order of magnitude and sign except for the |J = 1,mJ = ±1〉
states.
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The effect of the 57f state can be seen in Fig. 2a and b for KRb and RbYb, respectively. The thick lines show the
shifts calculated using the full set, and the thin lines correspond to shifts calculated without the 57f state. One can
see that the effect of the f state is reasonably small. For RbYb the curves with and without 57f completely overlap.
The above calculations were done taking into account J = 0, 1, 2 rotational states. We also checked if higher

rotational states such as |J = 3,mJ = 0,±1,±2,±3〉 influence the shifts. Fig. 11e and f compare the shifts for KRb
and RbYb, respectively, using the smaller basis set of 60s, 60p, 59p, 58d to simplify the calculations and J = 0, 1, 2
(thick curves) and J = 0, 1, 2, 3 (thin curves) rotational states. One can see that the curves completely overlap, which
means that the shifts of the J = 0 and J = 1 rotational states are hardly affected by the J = 3 states.

Appendix D

In this section we estimate the effect of a finite spread of atomic and molecular positions in their respec-
tive traps on the energy shifts obtained in Section III and IV. For that we assume both the Rydberg atom
and the molecule to be in a ground state of their harmonic traps and approximate the corresponding wavefunc-

tions as Ψat(mol)( ~Rat(mol)) = exp
(

−(Rat(mol))
2/2a2ho at(mol)

)

/(πa2ho, at(mol))
1/4, where ~Rat(mol) is the position of the

atom(molecule) with respect to its trap center, aho at(mol) is the corresponding wavefunction width. In Appx. B it
was shown that the main contributions to the shifts of the |ns〉 |J = 0,mJ = 0〉 and |ns〉 |J = 1,mJ = 0〉 come from
the interaction with other |ns〉 |J ′,m′

J〉 states. For the |ns〉 |J = 1,mJ = ±1〉 both the |ns〉 |J = 2,mJ = ±1〉 and
|(n− 2)d,m〉 |J = 2,mJ = 0,±1,±2〉 states contribute significantly. The interaction matrix elements for ns states
can be written as follows

V
nsJmJ ;nsJ

′m′

J

e−−M =
cnsJmJ ;nsJ′m′

J

(ρ+Rz mol −Rz at)2 + (Rx mol −Rx at)2 + (Ry mol −Ry at)2
, (D1)

where cnsJmJ ;nsJ′m′

J
is a constant coefficient. The matrix element between |ns〉 |J = 1,mJ = ±1〉 and

|(n− 2)d,m〉 |J ′,m′
J〉 states has the following form:

V
nsJmJ ;(n−2)mdJ′m′

J

e−−M =
cnsJmJ ;(n−2)dmJ′m′

J

((ρ+Rz mol −Rz at)2 + (Rx mol −Rx at)2 + (Ry mol −Ry at)2)
2 . (D2)

The matrix elements Eqs. (D1) and (D2) should be multiplied by |Ψat(mol)|2 and averaged over atomic and molecular
positions:

〈V nsJmJ ;nsJ
′m′

J

e−−M 〉 =
cnsJmJ ;nsJ′m′

J

π3a3ho ata
3
ho mol

∫

exp
(

−(Rat)
2/a2ho at

)

exp
(

−(Rmol)
2/a2ho mol

)

(ρ+Rz mol −Rz at)2 + (Rx mol −Rx at)2 + (Ry mol −Ry at)2
d3 ~Ratd

3 ~Rmol,(D3)

and the same averaging should be done for V
nsJmJ ;(n−2)mdJ′m′

J

e−−M .

Let us introduce the integration variables ~Rp = ( ~Rmol + ~Rat)/2, ~Rm = ~Rmol − ~Rat with the inverse relations
~Rmol = ~Rp + ~Rm/2, ~Rat = ~Rp − ~Rm/2, giving d3 ~Rmold

3 ~Rat = d3 ~Rpd3 ~Rm. Let us also assume for simplicity that
aho at = aho mol = a. In this case Eq. (D3) becomes

〈V nsJmJ ;nsJ
′m′

J

e−−M 〉 =
cnsJmJ ;nsJ′m′

J

π3a6

∫

exp
(

−2(Rp)2/a2 − (Rm)2/2a2
)

(ρ+Rm
z )2 + (Rm

x )2 + (Rm
y )2

d3 ~Rpd3 ~Rm.

The integration over ~Rp is straightforward and gives unity. In order to carry the integration over ~Rm we assume that
ρ ≫ a and expand the denominator in Rm

x /ρ, Rm
y /ρ, Rm

z /ρ up to second order:

1

(ρ+Rm
z )2 + (Rm

x )2 + (Rm
y )2

≈ 1

ρ2

(

1− 2Rm
z

ρ
+ 3

(Rm
z

ρ

)2

−
(Rm

x

ρ

)2

−
(Rm

y

ρ

)2
)

.

The integration over ~Rm then gives the following result:

〈V nsJmJ ;nsJ
′m′

J

e−−M 〉 ≈
cnsJmJ ;nsJ′m′

J

ρ2

(

1 +
a2

ρ2

)

.

The same procedure results in

V
nsJmJ ;(n−2)mdJ′m′

J

e−−M ≈
cnsJmJ ;(n−2)mdJ′m′

J

ρ4

(

1 + 6
a2

ρ2

)

.
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Finally, the energy shifts of the states |ns〉 |J = 0,mJ = 0〉, |ns〉 |J = 1,mJ = 0〉, and |ns〉 |J = 1,mJ = ±1〉 will have
the form:

∆Ens,0,0 ≈
|V ns,0,0;ns,1,0

e−−M |2
Ens,0,0 − Ens,1,0

≈ −|cns,0,0;ns,1,0|2
ρ4Erot

(

1 + 2
a2

ρ2

)

,

∆Ens,1,0 ≈
|V ns,1,0;ns,0,0

e−−M |2

Ens,1,0 − Ens,0,0
+

|V ns,1,0;ns,2,0
e−−M |2

Ens,1,0 − Ens,2,0
≈ |cns,1,0;ns,0,0|2

ρ4Erot

(

1 + 2
a2

ρ2

)

− |cns,1,0;ns,2,0|2
ρ42Erot

(

1 + 2
a2

ρ2

)

,

∆Ens,1,±1 ≈
|V ns,1,±1;ns,2,±1

e−−M |2
Ens,1,±1 − Ens,2,±1

+
∑

m,m′

J
=0,±1,±2

|V ns,1,±1;(n−2)d,m,2,m′

J

e−−M |2
Ens,1,±1 − E(n−2)d,m,2,m′

J

≈ −|cns,1,±1;ns,2,±1|2
2Erotρ4

(

1 + 2
a2

ρ2

)

+
∑

m,m′

J
=0,±1,±2

|cns,1,±1;(n−2)d,m,2,m′

J
|2

ρ8(Ens,1,±1 − E(n−2)d,m,2,m′

J
)

(

1 + 12
a2

ρ2

)

,

For sufficiently deep traps oscillation frequencies reach ωho ∼ 100 kHz, resulting in a =
√

~/mωho ≤ 30 nm, where
m is the mass of Rb, KRb or RbYb. Ror KRb at ρ ≥ 300 nm it gives 2(a/ρ)2 ≤ 2 · 10−2, for RbYb at ρ > 400
nm the corresponding number is 2(a/ρ)2 ≤ 10−2. It allows to estimate the corrections to the energy shifts shown
in Fig. 2 due to the finite spread of atomic and molecular positions in their traps. For KRb maximal energy shifts
of the |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 states are ∼ 1 MHz, giving the correction ≤ 20 kHz. For RbYb the
maximal energy shifts ∼ 4 MHz result in the energy correction ≤ 40 kHz. The correction to the energy shift of
the |J = 1,mJ = ±1〉 state can be calculated using interaction matrix elements discussed in Appx. B, giving the
maximal correction ≤ 60 kHz for KRb and ≤ 7 kHz for RbYb. The same corrections apply to the energies of

collective rotational states Eq. (7), which become ∆E(k↑,(N−k)↓) ≈ −N−2k
N2

a

|V j=i

e−−M
|2

Erot

(

1 + 2a2

ρ2

)

, where we took into

account that only ns state is used to calculate V j=i
e−−M. It means that to the energy of each collective state the term

∆E(k ↑, (N − k) ↓)(2a2/ρ2) is added. For the case of N = 3, 5 molecules considered in Section IV, the corrections for
the collective states is ≤ 4 kHz for KRb and ≤ 10 kHz for RbYb.
This energy correction has to be taken into account when the system is excited to the Rydberg state selectively

for a particular rotational state because it can tune the excitation field out of resonance. The excitation field can be
made resonant by e.g. making its Rabi frequency to be larger than the corresponding energy correction. Another
solution is to excite the system with a chirped pulse such that its frequency sweep covers the corrected energy.
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FIG. 2: (a) and (b) Shifts of the |60s〉 |J = 0,mJ = 0〉 (thick solid black lines), |60s〉 |J = 1, mJ = 0〉 (thick dashed red lines)
and |60s〉 |J = 1,mJ = ±1〉 (thick dotted blue lines) states of the combined single Rydberg atom-single polar molecule system
for KRb and RbYb and Rb, respectively. The atomic basis set included the 60s, 60p, 59p, 59d, 58d and 57f states and the
molecular basis set included the J = 0, 1, 2 rotational states (full set). The shifts are calculated with respect to unperturbed
energies of the states Ens + 2BJ(J + 1). Thin lines correspond to calculations in which 57f state has not been taken into
account.

FIG. 3: (a) Schematic of the N molecular array interacting
with an array of Na = N +2 atoms. The first and last atoms
are added to mitigate the effects of the boundaries. When
the atomic system is excited to the 60s state the wavefunc-
tion becomes |Ψatom〉 = 1√

Na

∑Na

j=1
|g1, ...rj , .., gNa〉, and each

molecule equally interacts with all (most strongly with three
nearest) Rydberg atoms; (b) an array of molecules interacting
with a cloud of atoms in the superatom state, placed in an
elongated dipole trap
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FIG. 4: (a) and (b) Shifts of the states of the combined system of N=3 polar molecules andNa = N+2 atoms for KRb and RbYb,
respectively, and Rb(60s) calculated by diagonalizing Hamiltonian (5) (lines) and using the perturbation theory expression (7)

(open symbols). The atomic system is in the state |Ψatom〉 = 1√
Na

∑Na

j=1
|g1, ...rj , .., gN1〉, and only 60s, |↓〉 = |J = 0, mJ = 0〉

and |↑〉 = |J = 1,mj = 0〉 atomic and molecular basis states have been used in diagonalizating (5). Solid black line (open
squares) correspond to |3 ↓〉 = |↓, ↓, ↓〉 state, dashed red lines (open triangles) correspond to single spin up states |1 ↑, 2 ↓〉,
dotted green lines (open diamonds) correspond to two spins up |2 ↑, 1 ↓〉 states and a dashed-dotted blue line (open circles)
correspond to three spins up |3 ↑〉 state; (c) and (d) the same as in (a) and (b) but for N = 5 molecules: solid black line (open
squares) correspond to |5 ↓〉 state, dashed red lines (open triangles) correspond to |1 ↑, 4 ↓〉 states, dotted green lines (open
diamonds) correspond to |2 ↑, 3 ↓〉 states, dash-dotted blue lines (open stars) correspond to |3 ↑, 2 ↓〉 states, dash-dot-dotted
orange lines (open pentagons) correspond to |4 ↑, 1 ↓〉 states, and short dash pink line (open circles) correspond to the |5 ↑〉
state.
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FIG. 5: (a) and (b) Shifts of the states of N=3 polar molecules of KRb and RbYb, respectively, and a Rb superatom in
60s, calculated by diagonalizing the Hamiltonian Eq. (5). The atoms are placed in a 1D Gaussian trap along molecular array
with the center of the trap corresponding to the center of the array. The probability to find a single Rydberg atom scales as
p(x) = exp (−x2/a2

trap)/
√
πatrap along the trap. The trap widths are atrap = 1.3 µm and atrap = 1.7 µm for KRb and RbYb,

respectively. (c) and (d) shifts of collective states for N = 5 molecules of KRb and RbYb, respectively. The trap widths are
atrap = 2.5 µm for KRb and atrap = 3 µm for RbYb. Collective rotational states are denoted similarly to Fig. 4 (detailed
description is given in [46]).
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FIG. 6: Readout of populations of molecular rotational states |↓〉 = |J = 0,mJ = 0〉 and |↑〉 = |J = 1, mJ = 0,±1〉. (a)
Population of the |↑〉 state can be measured by selectively exciting the atom-molecule system to the |r〉 |↑〉 state by a π
pulse, followed by transfer by a second π pulse to some |e〉 |↑〉 state, rapidly decaying to the |g〉 |↑〉 state. The transfer
|g〉 |↑〉 → |r〉 |↑〉 → |e〉 |↑〉 can be also done using STIRAP or ARP. The population of the |g〉 |↓〉 can be read out in a similar
way; (b) While the atom is in the ground state and does not interact with the molecule atomic fluorescence intensity can be
measured using excitation and deexcitation on a cycling transition |g〉 ↔ |e〉; (c) The combined system can be conditionally
transferred from the |g〉 |↑〉 to the |r〉 |↑〉 state vis a π pulse or an ARP pulse; (d) Atomic fluorescence intensity on the |g〉 ↔ |e〉
transition is measured again. The difference between the fluorescence intensities before and after the Rydberg excitation allows
to obtain populations of the rotational states.

FIG. 7: Schematic of measurement of populations of collective
states with a certain number of molecular spins up and down.
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FIG. 8: Angles of the vectors ~R and ~r in the case of a general orientation of the Rydberg atom with respect to the molecule.



24

FIG. 9: Schematic of the states closest to the qubit states |↓〉 = |ns〉 |J = 0, mJ = 0〉 and |↑〉 = |ns〉 |J = 1, mJ = 0,±1〉 with
the corresponding energies.
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FIG. 10: Interaction matrix elements, most relevant to the energy shifts of the |ns〉 |↑〉, |ns〉 |↓〉 states:
〈Ve−−M 〉 = 〈ns| 〈J = 0,mJ = 0| Ve−−M |n′l′m′〉 |J ′ = 1, m′

J〉, where m′
J + m′ = 0. The curves correspond to

|n′l′m′〉 |J ′ = 1,m′
J 〉 = |ns〉 |J ′ = 1, m′

J = 0〉 (solid black line), |np,m′ = −1〉 |J ′ = 1,m′
J = 1〉 (thick dashed red line),

|np,m′ = 0〉 |J ′ = 1, m′
J = 0〉 (thin dashed red line), |(n− 1)p,m′ = −1〉 |J ′ = 1,m′

J = 1〉 (thick dotted green line),
|(n− 1)p,m′ = 0〉 |J ′ = 1, m′

J = 0〉 (thin dotted green line), |(n− 1)d,m′ = −1〉 |J ′ = 1,m′
J = 1〉 (thick dash-dotted blue line),

|(n− 1)d,m′ = 0〉 |J ′ = 1,m′
J = 0〉 (thin dash-dotted blue line), |(n− 2)d,m′ = −1〉 |J ′ = 1,m′

J = 1〉 (thick dash-dot-dotted
magenta line), |(n− 2)d,m′ = 0〉 |J ′ = 1,m′

J = 0〉 (thin dash-dot-dotted magenta line), |(n− 3)f,m′ = −1〉 |J ′ = 1, m′
J = 1〉

(thick short-dashed orange line), and |(n− 3)f,m′ = 0〉 |J ′ = 1, m′
J = 0〉 (thin short-dashed orange line).
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FIG. 11: (a) and (b) Shifts of the |ns〉 |J = 0, mJ = 0〉 (solid black lines), |ns〉 |J = 1,mJ = 0〉 (dashed red lines) and
|ns〉 |J = 1, mJ = ±1〉 (dotted blue lines) states of the combined single Rydberg atom-single polar molecule system for KRb
and RbYb and Rb, respectively. The shifts are calculated with respect to unperturbed energies of the states Ens+2BJ(J +1).
The atomic basis set included the 60s, 60p, 59p, 59d, 58d and 57f states and the molecular basis set included the J = 0, 1, 2
rotational states (thick lines). Thin lines correspond to calculations in which a smaller atomic basis set of 60s, 60p, 59p and
58d was used; In (c) and (d) the full shifts (thick lines) are compared to the shifts calculated using the smallest atomic basis
set of 60s (thin lines); in (e) and (f) the shifts calculated using the smaller atomic basis set of 60s, 60p, 59p, 58d and J = 0, 1, 2
rotational states (thick lines) are compared to the shifts calculated using J = 0, 1, 2, 3 rotational states (thin lines).


