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We present a method to optimize qubit control parameters during error detection which is compatible with
large-scale qubit arrays. We demonstrate our method to optimize single or two-qubit gates in parallel on a
nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by
inserting a frequency drift and using our method to remove it. We remove both drift on a single qubit and
independent drifts on all qubits simultaneously. We believe this method will be useful in keeping error rates
low on all physical qubits throughout the course of a computation. Our method is O(1) scalable to systems
of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant
quantum computer.

A fault-tolerant quantum computer protects a quantum state
from the environment through the careful manipulations of
millions of physical qubits [1]. In such a computer, each qubit
must reliably perform a series of quantum logic gates [2–5] to
detect and negate errors [6–8]. However, operating such quan-
tities of qubits at the necessary level of precision is an open
challenge, as optimal control parameters can vary between
qubits [9] and drift in time [10]. Here we present a method to
optimize control parameters and counteract system drift that
scales to arbitrary numbers of qubits, that can be performed
during computation with no additional overhead in time. The
presented approach is in principle applicable to any code that
repetitively detects errors using small groups of qubits. We
implement our method on a superconducting nine-qubit de-
vice performing repetitive error detection demonstrating how
parameters for single and two-qubit gates can be scalably opti-
mized in parallel. Additionally, we show how independent pa-
rameter drifts on each qubit can be tracked and removed dur-
ing computation. These results provide a path forward to con-
trolling the large-scale qubit arrays needed for fault-tolerant
quantum computation.

Finding and maintaining optimal control parameters of a
continuously running quantum computer is of great interest
as useful algorithms on future computers will likely require
large arrays of qubits operating without fail for days at a time.
An ideal optimal quantum control method would run in par-
allel throughout the computation, to track and compensate for
the unavoidable drifts in the system [11]. Optimal quantum
control [12] has a rich history in state transfer [13, 14], creat-
ing macroscopic quantum states [15, 16], optimizing quantum
gates [17–20], and controlling many-qubit systems [21, 22].
Conventional methods such as tomography [23] and random-
ized benchmarking [24] use the final state of the system as a
metric to evaluate the performance of a control sequence [25],
and would require interruption of the necessary error detection
algorithm. Thus, these methods do not extend to a continu-
ously running quantum computer, as control is done on-the-
fly, the qubits which store the quantum data (“data qubits”)
may not be measured, and errors introduced while exploring
parameter space may lead to logical failure. Perhaps most im-
portantly, real-time device performance can only be assessed

in detection events, the outputs of error detection operators.
We present a method that uses detection events – the rate

that errors occur – as a metric. Using codes where error de-
tection and propagation is bounded, we can partition a sys-
tem into qubit groupings that can be tuned independently. We
feedback the error rate from a grouping to improve control pa-
rameters for gates contained within that grouping. By choos-
ing finite patterns of groupings, we can independently opti-
mize every control parameter of every qubit and retain O(1)
scaling with system size. Since we use error detection to in-
form our control parameters, we are guaranteed optimal per-
formance, and there is no need to interrupt error detection to
perform calibration. Additionally, the qubits do not need to be
operating below threshold to use this technique. We call our
method Active Detection Event Parameter Tuning (ADEPT).

We demonstrate ADEPT on a nine-qubit superconducting
quantum processor. It consists of a thin superconducting film
of Aluminum on sapphire, which is lithographically defined
into a linear chain of Xmon transmon qubits [26, 27] with
individual control and readout (Fig 1a). Single qubit rota-
tions are performed with microwave pulses at the qubit fre-
quency (4-6 GHz), and a current bias can be applied to bring
neighboring qubits into resonance, enabling a controlled-Z
(CZ) gate [4]. Measurement is achieved using dispersive read-
out [28–31].

For our error detection algorithm, we choose to work with
the repetition code. The nearest neighbor coupling makes it
a natural choice for our architecture, it has been experimen-
tally demonstrated to operate below the threshold for error
correction, and is the one-dimensional primitive of the two-
dimensional surface code [6]. The repetition code detects bit-
flip errors: here, entangling gates are used to copy bit errors on
data qubits, which store the quantum state, onto neighboring
ancilla measurement qubits (Fig 1b i, ii), where they can be
detected. Bit errors on measurement qubits will change their
state, but will not propagate back to data qubits (Fig 1b, iii).
Errors are detected by repeatedly performing the error detec-
tion circuit, a ẐẐ stabilizer, and analyzing the measured states
of the measurement qubits (Fig 1c). In a future quantum com-
puter, these operations would be running continuously with-
out interruption. While this is technically challenging today,
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FIG. 1: (Color) Error detection circuit and gate error detection.
(a) Linear chain of nine superconducting qubits with nearest neigh-
bor coupling. (b) Error detection circuit for the bit-flip repetition
code, where data qubits (black and gold) hold the quantum state, and
measurement qubits (red (dark), blue (dark grey), green (light grey)
and orange (grey)) are used to detect errors. Here we perform three
experiments i-iii, where rotation angles are tuned from their optimal
values and errors are recorded. Gate-induced bit errors on data qubits
(i and ii) are copied to measurement qubits through CZ gates where
they are detected as detection events, see text. Gate errors on mea-
surement qubits (iii) are localized to those qubits. Hadamard gates
are physically implemented with variable phase π

2
rotations. (c) De-

tection event fraction ζ vs variable angle X gates on data (i and ii)
and measurement (iii) qubits. Each data point is the average of 6,000
instances of eight rounds of detection. Change in gate parameters
from their ideal increases ζ. Change in ζ is localized to measure-
ment qubits near the gate being varied, as ζ for unaffected qubits is
constant.

we emulate the performance of N rounds of error detection
by initializing the system into the logical |0〉 state (which has
similar performance to the logical |1〉, see ref. 6), run eight
rounds of error detection, and end the code. Then, we repeat
this process to gather statistics and accumulate N total rounds
of detection [32].

We now discuss how we process the measured qubit states
into error detection events. In the presence of no error, mea-
surement qubits will report a string of repeated or alternating
states, depending on the states of the neighboring data qubits.
In the presence of an error on the measurement qubit or a
neighboring data qubit, the pattern of states will flip between
the repeated or alternating pattern. This is known as a detec-
tion event, and indicates the presence of a nearby error (see
ref 6 for more detail). The error rate of the system is thus di-
rectly related to the detection event fraction ζ, the fraction of
measurements that are detection events. The ζ presented are
consistent with the below threshold behavior demonstrated in
ref 6.

As an experimental demonstration of the relation between
gate errors and detection events, we have inserted error by tun-
ing rotation angles away from the optimum for specific qubits.

This error adds to the baseline ζ of the qubits that exists due to
imperfect gates and coherence. Additionally, we see variation
between ζ from inconsistencies in device coherence and oper-
ating conditions, consistent with Ref. 6. The results are shown
in Fig 1c. The errors from a miscalibrated gate on data qubits
(Fig 1c i and ii) are copied onto their neighboring measure-
ment qubits (red (dark), and red/blue (dark/dark grey) respec-
tively). Errors from miscalibrated gates on a measurement
qubit are localized to that qubit (Fig 1c iii).

Note that there is a clear connection between the parame-
ters of a gate and ζ of nearby measurement qubits. We see
that away from the optimal rotation angle for an X gate (rota-
tion around X-axis in the Bloch sphere representation), ζ in-
creases, making it a natural metric to improve the gate param-
eters. Second, we see that the change in ζ is local: if the gate
parameters are adjusted on a data qubit (i and ii), the dominant
effect is on the neighboring measure qubit ζ. If the gate pa-
rameters on a measurement qubit are adjusted (iii), only that
measurement qubit has a change in ζ. In both cases, unaf-
fected qubits see no change.

Crucially, the direct, correspondence between detection
events and gate errors on nearby qubits implies that we can
tune gate parameters in parallel whenever the measurement
qubits that pick up these gate errors do not overlap. This par-
allelization can be damaged due to crosstalk, as is visible In ii
where we find some small crosstalk to the green (light grey)
measure qubit. However, this is manageable and O(1) scaling
can be preserved as long as the effect is small and decays with
distance[32].

In Figure 2, we demonstrate how ζ can be fed back to im-
prove gate parameters in parallel. As a first experiment we
optimize single qubit gates on all measurement qubits simul-
taneously (Figure 2a). Initial gate parameters were chosen
using conventional methods, where each qubit was tuned in
isolation. We use the ζ of each measurement qubit – calcu-
lated over N = 36, 000 rounds of detection and constituting
one “emulation step” – as an error metric for the Nelder-Mead
optimization algorithm, and allow the algorithm to adjust the
gate parameters such as amplitude and drive frequency inde-
pendently on each measurement qubit (Figure 2b). We run
this for all four measurement qubits simultaneously. After 50
emulation steps, we find that the ζ of each measurement qubit
has been reduced, from an average of 0.202 to an average of
0.179.

In Figure 2c, we use the same technique to optimize CZ
gate parameters performed between measurement and data
qubits. Initial gate parameters were chosen by perturbing
them away from the optimum. In this case, adjusting gate
parameters will change the error rate on both data and mea-
surement qubits involved in the CZ. The additional errors on
the data qubit will be copied to both of its neighboring mea-
surement qubits through the error detection circuit (Fig. 1 ii).
Thus, adjusting CZ gate parameters will alter ζ of two mea-
surement qubits. To ensure that our chosen error metrics do
not overlap, we choose to optimize CZ gates that only involve
every other measurement qubit, and take the average ζ of pairs
of measurements qubits as the error metric for Nelder-Mead.
After 80 emulations steps, we find a decrease in ζ from 0.350
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FIG. 2: (Color) Parallel gate optimization using independent
hardware groupings. (a) Schematic of ADEPT for optimizing gates
on measurement qubits. Gate parameters are chosen and error de-
tection is run to determine ζ that is used as an error metric for the
Nelder-Mead optimization algorithm, which chooses new gate pa-
rameters. (b) Parallel optimization of measurement qubit gate pa-
rameters. Each measurement qubit is optimized independently, and
each iteration is 4,500 instances of eight rounds of detection. Aver-
age ζ is improved from 0.202 to 0.179. (c) Using ADEPT to opti-
mize CZ gates. As CZ gates include data qubits, both neighboring
measurement qubits will change ζ with changing gate parameters.
To avoid error overlap, we optimize CZ that are well separated (see
text). (d) Parallel Nelder-Mead optimization of two CZ gates. The
metric is the average ζ of the measurement qubits that neighbor the
data qubit in the CZ. Each iteration is 4,500 instances of eight rounds
of detection. Average ζ is improved from 0.350 to 0.172.

to 0.172 (Fig. 2).
These data show that we can optimize gates in parallel with-

out ever interrupting error detection. By extending these tech-
niques we can experimentally determine (or theoretically de-
rive for an ideal system [32]) a finite set of experiments that
can be run to optimize every gate on every qubit while error
detection is running [32]. As there are a finite number of ex-
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FIG. 3: (Color) Tracking and negating frequency drift with
ADEPT. (a) A slow sinusoidally varying frequency drift of up to
10 MHz is inserted onto the orange (grey) measure qubit. (b) Uncor-
rected, this will cause ζ of the orange (grey) qubit to double within
20 iterations (with each iteration 12000 instances of eight rounds of
detection), and eventually saturate near the randomization limit of
0.5 (c) The frequency drift can be compensated for by feeding ζ into
a following algorithm. The algorithm samples points above and be-
low the ideal bias value, and fits these points to a parabolic error
model [32]. (d) The drift following algorithm tracks and compen-
sates for the inserted frequency drift through one oscillation. The
other algorithms produce no compensation, as no drift is inserted. (e)
The measured ζ remain flat throughout the experiment, in contrast to
(b).

periments, ADEPT is fully parallelizable and has O(1) scal-
ing. We would like to point out that optimal qubit parameters
will likely vary between physical qubits due to manufacturing
variation, and that qubit parameters therefore need to be indi-
vidually tuned. Our method will be able to perform this task,
and scale to the arbitrary numbers of qubits in future proces-
sors running error detection.

We have shown ADEPT is adept at finding optimal con-
trol parameters, however in real physical systems these ideal
parameters can change over time. Given that a future quan-
tum computer will likely perform computations over hours or
days [1], it is important that parameters remain optimal on this
timescale.

In Figure 3, we show that ADEPT can be used to com-
pensate for parameter drift. To emulate uncontrolled param-
eter drift, we insert a slowly varying voltage to the frequency
bias of the orange (grey) qubit (Figure 3a), which will in-
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duce a large shift on the qubit frequency of up to ± 10 MHz
and updates once each emulation step. We find that after
just a 4 MHz shift over 20 rounds of emulation (equivalent
to 84.2 ms of non-emulated operation given a 878 ns cycle
time [32]), ζ for the orange (grey) qubit has more than doubled
from 0.11 to 0.26. ζ eventually exceeds at 0.4 for a 8 MHz
frequency error, indicating a near randomization of the mea-
surement qubit output and failure to reliably detect errors. In
Fig 3c, we now feedback ζ of each measurement qubit to a
tracking algorithm that can adjust the frequency bias of that
qubit by fitting ζ to a parabolic error model [32]. We find that
the algorithm is able to use ζ as a metric to zero out the in-
serted frequency drift (Figure 3d). The added offset bias to
the orange (grey) qubit follows the inserted bias, while the
compensation for qubits without an inserted bias stays near
zero or a constant value.

Importantly, we see that the ζ are stabilized in Figure 3e;
the orange (grey) qubit stays at an average ζ of 0.12, and stays
well below the randomization limit of 0.5. Thus, we show that
ADEPT can be used to keep parameters for a single qubit near
their ideal values. We note that the average ζ is slightly higher
than the initial ζ of 0.11. This highlights a system tradeoff:
in order to track the optimal value of a parameter we must
sample away from the optimum of that parameter. We argue
that paying this small price in error given that a future fault-
tolerant computer should operate safely below threshold, and
will provide a benefit in stability for long computations.

In Figure 4, we show that ADEPT can be used to compen-
sate for individual parameter drift on every qubit simultane-
ously. To emulate what may happen in a real system, we in-
sert frequency drifts for each qubit of ±10 MHz over 48 mil-
lion emulated rounds of detection (equivalent to 42 seconds
of non-emulated operation). We emphasize that this is a very
large and fast drift compared to what is typically seen in hard-
ware [10], making it an excellent stress test of our method.
To compensate for independent drifts on each qubit, we cycle
through the three different patterns, where in each pattern we
optimize a subset of the qubits (Figure 4b). In pattern i, we
use ζ of a measurement qubit as a metric its own frequency.
In pattern ii and iii we optimize data qubits by using the av-
erage ζ of neighboring measurement qubits as a metric. By
only adjusting the parameters relevant for each pattern at a
time (Fig. 4c), we can compensate for an independent bias for
each qubit (Fig. 4d). Using this strategy, we stabilize ζ of all
measurement qubits – indicating that all qubits are adequately
compensated for drift – and keep them well below the ran-
domization limit (Fig. 4e). This demonstrates how ADEPT
can be used to keep parameters near their optimum while run-
ning long algorithms.

We have introduced ADEPT in a one-dimensional chain of
qubits running the repetition code, but this technique is gen-
eralizable to most error correction schemes. Any scheme that
detects errors using groups of qubits of fixed maximum size,
and the number of groups that any qubit belongs to does not
scale with system size can use ADEPT. For example, this is
compatible with all topological codes [33–41] including sub-
system codes [42], and all concatenated codes [43–47] by fo-
cusing on the lowest level of concatenation. This includes sur-
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FIG. 4: (Color) Tracking and negating independent frequency
drift on all qubits. (a) A different amplitude frequency drift is in-
serted onto each of nine qubits in the device. (b) ADEPT is used in
conjunction with a frequency following algorithm on all qubits by
interleaving the active hardware pattern. In i, ζ is used to inform the
frequency following algorithm for the measurement qubits. In ii and
iii ζ is used to inform the frequency following algorithm of neighbor-
ing data qubits. (c) Compensation algorithms associated with each
hardware pattern i-iii are active one pattern a time in a sequential
repeating fashion. (d) Independent frequency drift on each qubit is
tracked independently. The traces have been spaced along the y-axis
for viewing clarity. Each data point is 6000 instances of eight rounds
of detection. (e) ζ is stabilized throughout the course of the experi-
ment, indicated that all qubits have their frequency drift compensated
for.

face [37] and color codes [38], and the Steane [45] and Shor
[43] codes. ADEPT may not be compatible with finite rate
block codes [48] if one wants to preserve O(1) scaling with
system size.

In a future quantum computer, ADEPT may be employed
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in the following manner. First, run error detection with no
algorithm and use ADEPT to fine tune initial gate parameters.
Second, use ADEPT to counteract parameters known to drift
while an algorithm is running.

While ADEPT can be useful, it also has some limitations
which are important to consider. It is challenging to relate ζ
and the performance of error correction directly, and this may
come with unexpected consequences. In principle, optimiz-
ing for ζ could trade off errors that are challenging to correct
for which fewer detection events, for easily correctable errors
with more detection events. ADEPT can find tradeoffs be-
tween gate fidelity and ζ, which may be an important consid-
eration. Lastly, ADEPT is best suited for finding local min-
ima, as the lowest achievable ζ is for measure qubits to never
detect errors.

We have demonstrated the ADEPT control technique,
which uses the error detection outcomes of operator measure-
ments for system optimization. We have shown that this can
be used to optimize gate parameters in a way that is O(1)
scalable to arbitrary numbers of qubits. Additionally, we have
demonstrated that ADEPT can be used to compensate for sys-
tem drift. By interleaving multiple hardware patterns, we can
track parameter drift on every qubit, and potentially every pa-
rameter of every gate on every qubit, all without interruption
of the error detection. With ADEPT, we are optimistic about
controlling the many physical qubits that constitute a future
fault-tolerant quantum computer.
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Appendix A: Determining patterns of independent parameter
groups

1. Theoretical ideal case: Repetition code

We consider the repetition code algorithm in the case where
gates are non-ideal and may generate errors, but only consider
the case where gate errors occur on the same qubit as the gate
is performed. We model an imperfect Clifford gate as an ideal
gate followed by some probability of an error X, Y or Z gate.
Using this treatment, we determine where gate errors from
each gate in the algorithm will be detected in Fig. 7a. Sin-
gle qubit gate errors on measurement qubits are detected on
the same qubit. Single qubit gate errors on data qubits are
detected on neighboring measurement qubits. Given a CZ be-
tween a measurement qubit and a data qubit, errors from that
CZ will be detected on both measurement qubits neighboring
the data qubit. With these propagations in mind, we can parti-
tion the system into different patterns, with each pattern con-
taining multiple groupings. Each grouping contains gates and
qubits: errors from gates within the grouping will not prop-
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FIG. 5: Hardware patterns and local groupings. (a) Error de-
tection circuit, where gate color corresponds to which measurement
qubit will detect errors from that gate. (b) First hardware pattern,
where each of four groupings contains a measurement qubit and the
single-qubit operations for that qubit. Errors from these gates will
not propagate back to neighboring qubits. The relative ζ from the
measurement qubit can be used to inform changes in gate parame-
ters. (c, d) Second and third hardware pattern, where each grouping
contains one data qubit and up to two measurement qubits. Group-
ings contain single-qubit gates on measurement qubits and CZ gates.
The ζ of measurement qubits within each grouping can be used to
inform gate parameters for gates within the grouping.

agate to qubits outside of that grouping. Each grouping al-
ways contains measurement qubits; their detection fraction ζ
is used as a metric for gate performance. Then, each grouping
can have its constituent gates optimized independently, and all
groupings in a pattern can be optimized in parallel.

The first hardware pattern is shown in Fig 7b, where each
grouping contains a measurement qubit and the single qubit
operations for that qubit. The second hardware pattern, shown
in Fig 7c, contains every other data qubit, and the neighbor-
ing measurement qubits. These groupings contain single qubit
gates on the data qubits, and the CZ gates that involve that data
qubit. The third hardware pattern shown in Fig 7d is the same,
with the compliment set of data qubits. Between the three pat-
tern and their groupings, we can access all gates on all qubits
shown in Fig. 7a.

To optimize all gates on all qubits, we would first (i) pick
a hardware pattern, (ii) pick a gate to optimize within that
hardware pattern and (iii) optimize that gate using ADEPT.
We would then repeat i-iii with a different gate until we have
covered all gates in all hardware patterns,

2. Experimental case

Any realistic system will deviate from the theoretically
ideal case to some degree. For example, crosstalk may make
gate parameters that should be local to one qubit effect the er-
ror rates of nearby qubits. However, this does not mean that
ADEPT is not viable in such a system as long as crosstalk has
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a finite extent and is small enough. One can simply choose
groups that contain qubits separated by the effective crosstalk
distance. This will incur an additional overhead in the number
of patterns used, but preserves O(1) scaling with system size.

All non-idealities can be determined experimentally and al-
gorithmically with a straightforward prescription. Assuming
that a future large-scale system is composed of a cell of qubits
with particular parameters (e.g. frequency, coupling) that is
repeated throughout the computer, we can simply sweep each
parameter of each gate of each qubit one at a time and record
the corresponding change in error rate for the system. Af-
ter going through all cases, and assuming that no parameter
effects the entire system simultaneously, we will have a char-
acteristic set of responses which can be used to determine in-
dependent patterns.

Appendix B: Emulating continuous error detection

Our current classical and quantum hardware is not yet
suited for continuously running quantum error correction. In
particular, our control software is not yet designed to update
on-the-fly, and the qubits will likely require leakage reset to be
able to operate with high fidelity for long numbers of rounds.
However, we can still verify the underlying the principles be-
hind ADEPT by emulating a continuously running system.

To simulate N rounds of continuously running error detec-
tion, we use an accumulation of experiments that each consist
of eight rounds of error detection, see Fig. 6. We repeat many
experiments, each with eight rounds of detections, until we
have accumulated N error detection cycles in total.

It is of interest to estimate how fast a future continuously
running quantum computer would be able to update param-
eters using ADEPT. We do this by quantifying “emulation”
time; the timescale that a future computer will run at by sub-
tracting out the time it takes to initialize, end and reset the
code. For example, 36 “emulated” rounds of detection would
take τemulated = 878ns ·36 = 31.6µs on a future device, where
our experiment would take τexperiment = 878ns·36+3·(25ns+
1µs + 250µs) = 785µs.

Appendix C: Bias-tracking algorithm

1. Quadratic error model

In principle, a variety of algorithms could be used to track
the bias drift of the qubit, but we use a simple algorithm based
on a parabolic error model, as it is easy to understand analyti-
cally. Our model assumes

ζ = a(x− x0)2 + ζ0 (C1)

where ζ is the instantaneous detection rate, ζ0 is the back-
ground detection rate, a relates the bias error to ζ (determined
prior to the experiment), x is the chosen bias parameter, and
x0 is the ideal bias value. Ideally, x = x0. However, the ideal
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Emulation of continuous error detection

Repeat 8 round segments
until N total rounds accumulated

repeat, feedback ζ
to update control

parameters

time

N rounds of detection

FIG. 6: Emulation of continuosuly running error detection. (a)
Error detection experiments are composed of four steps: initializa-
tion, error detection, ending the code, and system reset. (b)N rounds
of continuous error detection would involve initialization, N rounds
of error detection, then ending the code and resetting the system. (c)
We emulate continuous error detection by running an ensemble of
experiments that each contain eight rounds of detection, such that
we accumulate N total error detection rounds. (d) Ideally, ADEPT
would run without ever needing to end the code of reset the system.
Statistics over N rounds of detection would be used to calculate ζ,
and then parameters would be updated on-the-fly. (e) We emulate this
behavior by running ensembles of experiments to gatherN rounds of
error detection to compute ζ, and then updating parameters between
ensembles. In main text Figures 3 and 4, the inserted bias is updated
between ensembles of experiments.

value can evolve in time from x0 → x1, where x0 becomes
our most recent guess of the new ideal value x1. We wish to
determine δx = x1 − x0, the offset of our latest value to the
ideal so that we can update our bias compensation.
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ζ0

x0 x1

ζ+

ϵ-

Δx Δx

Fζ0ζ(x, t=0)

ζ(x, t=1)

δx

ζ

x

FIG. 7: Parabolic error model. Errors take the form of Eq. C1.
After some time, the ideal parameter x0 at t = 0 drifts to x1 at
t = 1. Detection fraction ζ is sampled at x0±∆x defined in Eq. C3.
ζ is increased by Fζ0 when using this sampling. After fitting to a
parabolic error model, a new parameter x1 is determined by adding
δx as defined in Eq C6.

2. Where to sample

We wish to determine δx while also keeping the instanta-
neous ζ to the base detection rate ζ0. In order to determine
δx, we sample at points x0±∆x and fit to a parabolic model.
Importantly, sampling x away from the optimum will increase
ζ, so there is a tradeoff in choosing ∆x to produce a large
enough signal, and keeping the instantaneous ζ of the qubits
compared to the base error rate.

We aim to operate in the regime that ∆x� δx, so let us set
δx = 0 temporarily. suppose we choose to tolerate a fractional
increase F in the base ζ0. We wish to determine ∆x, how far
we should sample from our most recent optimum value x0
while only incurring an additional detection of Fζ0,

ζ = ζ0(1 + F ) = a(∆x)2 + ζ0 (C2)

∆x =
√
ζ0F/a. (C3)

3. Updating the bias

Once we have sampled at x = x0±∆ giving us ζ±, we can
determine δx.

ζ+ = a(∆x+ x0 − x1)2 + ζ0 (C4)

ζ− = a(−∆x+ x0 − x1)2 + ζ0 (C5)

δx =
ζ− − ζ+
4a∆x

(C6)

4. Sampling statistics

As we sample for a finite time, we make imperfect measure-
ments of ζ±. These will translate into noise in our determined
δx parameter that we use to update the bias. We want to oper-
ate in the regime where for δx its standard error SEδx is much
less than ∆x, as we expect δx� ∆x for slow drift. Our goal
is to accumulate enough statistics from sampling N times to
achieve the condition for small relative noise P � 1.

P =
SEδx
∆x

(C7)

Given that ζ± will be sampling the binomial distribution of
detection fraction ζ, the standard error of the mean for ζ± is

SEζ± =

√
ζ±(1− ζ±)√

N
(C8)

where N is the number of experiments. Adding the standard
deviations in quadrature for ζ± and using Eq. C6 we find

SEδx =

√
2ζ±(1− ζ±)√
N4a∆x

(C9)

Solving Eq. C7 and Eq. C9 using Eq. C3 and ζ± = ζ0(1 +
F ) one finds the condition for N

N ≈ 1

8P 2F 2ζ0
(C10)

Plugging in the relevant parameters ζ0 = 0.15, F = 0.1
and taking P = 25 we get N ≈ 50, 000 where as we used
N = 48, 000 for the experiment in main text Figure 4.

5. Sampling speed

Assuming the 1.1 MHz error detection rate, N = 48, 000
measurements for each ζ measurement, two measurements
per update, and three qubit patterns to cycle between as in
main text Figure 4, frequency drift as fast as 0.3 Hz could be
compensated for every qubit in a continuously running repeti-
tion code experiment.
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