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We investigate the efficiency of Quantum Adiabatic Optimization when overcoming potential barriers to get

from a local to a global minimum. Specifically we look at n qubit systems with symmetric cost functions

f : {0, 1}n → R where the ground state must tunnel through a potential barrier of width nα and height nβ .

By the quantum adiabatic theorem the time delay sufficient to ensure tunneling grows quadratically with the

inverse spectral gap during this tunneling process. We analyze barrier sizes with 1/2 ≤ α + β and α < 1/2

and show that the minimum gap scales polynomially as n1/2−α−β when 2α + β ≤ 1 and exponentially as

n−β/2 exp(−Cn(2α+β−1)/2) when 1 < 2α + β. Our proof uses elementary techniques and confirms and

extends an unpublished folklore result by Goldstone from 2002, which used large spin and instanton methods.

Parts of our result also refine recent results by Kong and Crosson and Jiang et al. about the exponential gap

scaling.

I. INTRODUCTION

Quantum Annealing seeks to solve optimization problems

by taking a state of a quantum system and evolving its Hamil-

tonian to get a desired result. Quantum Adiabatic Optimiza-

tion (QAO) [1] is a form of quantum annealing that seeks to

keep a system in the ground state while adiabatically evolving

the Hamiltonian. Quantum annealing is often compared with

classical simulated annealing, which seeks the ground state of

a system through temperature variation, and with simulated

quantum annealing, which is a classical simulation of quan-

tum annealing using path-integral Quantum Monte Carlo. A

lot of recent work has gone into analyzing QAO in its own right

[2–4] and comparing QAO with classical algorithms such as

simulated quantum annealing [5–14] to see how much speed-

up QAO can give if any.

It has been conjectured that a large part of QAO’s power

comes from the ability of quantum systems to tunnel through

potential barriers. In this article, we focus on an n-qubit

Hamiltonian, but by making it symmetric in the qubits, we

can effectively reduce our problem to a one-dimensional tun-

neling problem. This setup of one-dimensional tunneling in

n symmetric qubits has been studied before by Farhi, Gold-

stone, and Gutmann [2] who considered tunneling through a

constant width spike of height n and who showed for this set-

ting a gap scaling of gmin ∝ n−1/2. In [2], the authors also

showed that QAO has an exponential speed-up over classical

simulated annealing for the spike tunneling problem. This ex-

ponential speed-up over classical simulated annealing for the

spike problem was one of the original impetuses for studying

barrier tunneling in QAO.

Reichardt [3] showed that QAO can tunnel in constant time

(gmin ∝ 1) provided that the area (width × height) of the bar-

rier is bounded by O(
√
n). More recently, Crosson and Deng

[8] examined thin barriers of varying height, and Kong and

Crosson [15] found that sufficiently large barriers lead to ex-

ponential run-times. Jiang et al. [14] showed that Quantum

Monte Carlo (QMC) can reproduce the exponential run-time

behavior of thermally assisted quantum tunneling through

such large barriers. Crosson and Harrow [13] have show that

QMC can efficiently solve barrier tunneling problems for spike

barriers and barriers of the size considered by Reichardt’s

proof. Independently the current authors have numerically

found [11] that the transitions between constant, polynomial,

and exponential run-time scaling for QMC simulations coin-

cide with the same transitions for QAO.

In this article, we consider barriers with width proportional

to nα and height proportional to nβ and mainly focus on bar-

riers with 1/2 ≤ α + β, which is above Reichardt’s [3] con-

stant scaling region, and 2α + β < 1 which is below Kong

and Crosson’s [15] exponential scaling region. We show that

barriers in this intermediate size regime lead to polynomial

scaling of the minimum spectral gap with gmin ∝ n1/2−α−β .

Through the quantum adiabatic theorem this scaling implies

that a polynomial running time is sufficient for the QAO al-

gorithm to tunnel through such barriers. Additionally, our

method also confirms Kong and Crosson’s exponential scal-

ing and provides an exact form for the polynomial prefactor

on the exponential.

In Section II, we present our problem and discuss the

Hamiltonian governing the interactions of our n-qubit sys-

tem. Section III presents details of previous work on this prob-

lem and highlight both the polynomial scaling region between

1/2 ≤ α + β and 2α + β < 1 where few solid results have

been published and the unexplored region for α > β.

Our problem lends itself to a large spin analysis using either

spin coherent states [18] or the Villain transformation [19].

Section IV briefly touches on spin coherent states, which have

been used to analyze this problem before [15], and presents an

in depth analysis using the Villain transformation, resulting in

a semi-classical Hamiltonian that describes our dynamics for

large n.

Focusing on just the critical region of the problem where

the spectral gap is smallest, Section V derives a model that ap-

proximates the semi-classical Hamiltonian in the large n limit.

We provide several arguments for why this model accurately
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represents the asymptotic behavior of our original problem.

Finally, in Section VI, we use this model to derive an exact

asymptotic expression for the scaling behavior of the spectral

gap.

Appendix A provides an in depth look at a modified ver-

sion of the Villain transformation, which we use to transform

the barrier tunneling problem into a semi-classical differen-

tial equation. Our detailed analysis keeps track of the exact

assumptions made and provides the scaling behavior of the

next leading order terms that are ignored. This precision and

robustness is in contrast with standard path-integral methods

whose errors are difficult to check. The modified Villain trans-

formation and our subsequent approximations also provide

polynomial accuracy in the spectral gap, unlike spin-coherent

state methods or the WKB approximation.

II. QUANTUM ADIABATIC OPTIMIZATION OF

SYMMETRIC FUNCTIONS

Our main goal is to explore quantum tunneling through a

barrier in a symmetric cost function f : {0, 1}n → R defined

on the n-dimensional hypercube {0, 1}n. Our specific cost

function is

f(x) = |x|+ b(|x|), (1)

where |x| is the Hamming Weight of the length n bit string x.

The barrier function, b : {0, . . . , n} → R, is some function

that is localized around |x| = n/4 and has width proportional

to nα and height proportional to nβ . We describe these barri-

ers using the notation nα × nβ .

To create an algorithm to minimize the cost function, we

first encode it into a quantum Hamiltonian on n qubits:

H1 =
∑

x∈{0,1}n

f(x)|x〉〈x|. (2)

QAO starts the system in a different Hamiltonian with

known and easily prepared ground state; the typical starting

Hamiltonian applies a magnetic field in the x̂ direction so that

H0 =
n
∑

i=1

(H0)i with H0 =
1

2

(

1 −1
−1 1

)

. (3)

The ground state of H0 is an equal superposition of all

states |x〉, which corresponds to a binomial distribution in

Hamming weight. Then, QAO finds the ground state of H1

by slowly evolving the system from H0 into H1 using

H(s) = (1− s)H0 + sH1, (4)

and the quantum adiabatic theorem says that the system will

stay in the ground state if 0 ≤ s ≤ 1 varies slowly enough. In

order to ensure adiabaticity the evolution time, T , must scale

depending on both the norm of dH(s)/ds and the inverse of

the minimum spectral gap between the two smallest eigenval-

ues λ1(s) and λ0(s) of H(s):

gmin := min
s∈[0,1]

(λ1(s)− λ0(s)) . (5)

Historically, sources [1] have claimed that the adiabatic theo-

rem requires

T ≫ maxs ‖ dHds ‖
g2min

. (6)

Recent work [20] has shown that the adiabatic condition may

be a more complicated function of these parameters, but all of

this recent work has the running time scaling like a polyno-

mial in 1/gmin and n. Since the norm of the Hamiltonian’s

derivative is usually independent of parameters such as our α
and β, typically the gap is taken as the important part of this

expression. Therefore, the key issue of this paper is the calcu-

lation of gmin.

The Hamiltonian, H(s), on n qubits can be simplified by

considering just the symmetric subspace. For each Hamming

weight 0 ≤ h ≤ n, the Hamiltonian is degenerate on the sub-

space of {|x〉 : |x| = h}, so there will only be one degenerate

energy level for each Hamming Weight h. This symmetry

can be utilized to rewrite the full 2n × 2n Hamiltonian as an

(n+ 1)× (n+ 1) symmetric Hamiltonian:

Hsym(s) =
n
∑

h=0

[

(1− s)

2
n+ s(h+ b(h))

]

|h〉〈h|

− (1− s)

2

n−1
∑

h=0

√

(h+ 1)(n− h)|h〉〈h+ 1|

− (1− s)

2

n−1
∑

h=0

√

(h+ 1)(n− h)|h+ 1〉〈h| (7)

When b(z) = 0, the ground state of the symmetric Hamil-

tonian is explicitly

|GSb(z)=0〉 =
1

(2δ(δ + s))n/2

×
n
∑

h=0

√

(

n

h

)

(s+ δ)n−h(1 − s)h|h〉, (8)

where δ :=
√
1− 2s+ 2s2 is the unperturbed spectral gap.

This distribution is a binomial for s = 0, and the width re-

mains proportional to
√
n for 0 ≤ s < 1. The maximum

amplitude |h〉 state here corresponds with the zero amplitude

state in the first excited state and can be thought of as the cen-

ter of the distribution. The center coincides with h = n
4 when

s = s∗ := 1
2 (
√
3− 1).

In the large n limit with a non-zero barrier, b(z) becomes

extremely narrow relative to the dimension of the Hilbert

space, so for most s values, the energy states are unaffected

by the barrier. It is only when the energy states get close to

the barrier that the perturbation becomes important. There-

fore, in the large n limit, the location of the minimum spectral

gap becomes this critical s∗.

III. PREVIOUS ASYMPTOTIC RESULTS

A 2002 folklore result by Goldstone [16] says that for α <
β and α < 1/2 the minimum gap for tunneling through an
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FIG. 1: The spectral gap scaling of QAO according to the original

folklore result by Goldstone [16]. This large n behavior describes

tunneling through a barrier of size nα × nβ in the setting of n sym-

metric qubits. The folklore result is restricted as it only works for

α < β and α < 1/2, and it predicts constant, polynomial, or ex-

ponential scaling of the minimum gap gmin depending on the barrier

size. The proof of this result has not been formally published.
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FIG. 2: The spectral gap scaling during QAO tunneling through a

barrier of size nα × nβ . Unlike Fig. 1, this figure displays all cur-

rent knowledge of each region, which includes the case α > β.

The yellow “Constant” region was proven by Reichardt [3], and the

blue “Exponential” region was shown in [14, 15] up to the poly-

nomial prefactor. The current article proves the polynomial scal-

ing gmin ∝ n1/2−α−β for the red region with 1/2 < α + β and

2α + β < 1. Our article also determines the polynomial prefac-

tor for the blue exponential region described by 1 < 2α + β with

gmin ∝ n−β/2 exp(−Cn(2α+β−1)/2).

nα × nβ barrier scales as a function of n like

gmin ∝











1 if α+ β ≤ 1
2 ,

n1/2−α−β if α+ β > 1
2 and 2α+ β ≤ 1,

p(n) exp
(

−C n(2α+β−1)/2
)

if 2α+ β > 1,
(9)

where p(n) is some polynomial in n.

While this result has never been published, its derivation is

known to use “large spin and instanton methods” [16]. Fig. 1

shows the scaling behavior according to [16]. Parts of Gold-

stone’s result have been verified by several other sources.

Reichardt [3] rigorously proved the existence of the con-

stant region, and his results apply to the entire region where

α+ β < 1/2 not just for α < β. Recently, Kong and Crosson

[15] verified the behavior of the gap in the exponential region

for 2α+ β > 1 using the instanton method [17], and Jiang et

al. [14] have also found the same exponential scaling behav-

ior for the runtime of thermally assisted quantum annealing on

this barrier problem using a WKB approach. In a previous ar-

ticle [11] we numerically analyzed the transition between the

polynomial and exponential regions. Notably, no previously

published work has been able to verify the polynomial region,

and while Kong and Crosson [15] proved the exponential re-

gion scaling, they restricted their proof to α < β and did not

derive the polynomial prefactor. The different scaling regions

in α and β are shown in Fig. 2, with references in the figure

caption to which sources proved that region’s scaling behav-

ior, including what is proven in this paper.

The goal of the current article is to explore both the poly-

nomial region between α + β > 1/2 and 2α + β < 1 and in

general the region whereα > β. We develop elementary tech-

niques to analyze the spectral gap and verify the polynomial,

n1/2−α−β , scaling behavior, and we show that the results of

Eq. 9 are valid even when α > β.

IV. LARGE SPIN APPROXIMATION

Our Hamiltonian readily lends itself to reinterpretation as

the Hamiltonian for a single particle with spin J = n/2. A

common analytic technique for dealing with a spin Hamil-

tonian is to use spin coherent states [18] to create a semi-

classical continuous version of the Hamiltonian. Several

groups [2, 15] have used spin coherent states to analyze qubit

systems, and Kong and Crosson [15] have employed spin co-

herent states to analyze the symmetric barrier problem for ex-

ponentially small gaps. We use a similar technique employing

a modified and formalized version of the Villain transforma-

tion [19]. The Villain transformation has been used for simi-

lar problems [21–23]; in this article, we present a more formal

approach to this transformation in Appendix A.

If we re-imagine our Hilbert space as representing a spin

J = n/2 particle and associate Ĵz eigenstates |m〉 with |h〉
states through |m〉 = |h−J〉, then our symmetric Hamiltonian

can be rewritten in terms of spin operators Ĵi as

Ĥ(s) = −(1− s)Ĵx + sĴz + s b(Ĵz + J) + J∆, (10)

where ∆ represents some constant. Since we only care about

energy differences, this constant ∆ can be arbitrary, and later,

we use it to ensure that the bottom of our potential energy well

sits at zero energy.

Large spin techniques then pull a factor of J = n/2 =: 1/ε
out of our Hamiltonian so that we are dealing with opera-

tors ̂i = εĴi that have eigenvalues that run from −1 to +1.

Specifically, we call the ̂z eigenvalue −1 ≤ q ≤ 1, and in the
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large J (i.e. small ε) limit, q can be treated as a continuous

variable. We also introduce r(q) := εb(Jq + J) that is zero

everywhere except in the vicinity of q = −1/2 where there is

a bump of width ε1−α and height ε1−β . Our Hamiltonian can

be rewritten as

εĤ(s) = −(1− s)̂x + ŝz + sr(̂z) + ∆. (11)

At this point, we can write an approximate Schrödinger equa-

tion for this Hamiltonian using the Villain transformation. In

Appendix A, we have taken the standard Villain transforma-

tion and made its logic more formal, applying it specifically

to Eq. 11. In making the logic more formal, we have held

off taking the continuum limit of q as long as possible. The

end result of the Villain transformation itself before making

any assumptions about the properties of our eigenstates gives

a continuum Schrödinger equation:

εEψ(q) =
(

sq + sr(q) + ∆− (1− s)
√

1− q2

−(1− s)
ε2

2

√

1− q2
∂2

∂q2
+O(ε)

)

ψ(q). (12)

The first line includes a potential energy, and the next one

contains the kinetic term for the problem. Note that the norm

of the second derivative operator, ∂2

∂q2 , is proportional to ε−2

which is why this term survives. At this point, the problem

cannot be simplified without making reference to the eigen-

states we want to solve for. Notably, if we assume we are

at s∗ = 1
2 (
√
3 − 1) where the minimum of the potential en-

ergy is at q = − 1
2 in the ε → 0 limit and make reasonable

assumptions about the nature of the ground state and first ex-

cited state, then Eq. 12 can be simplified even more. In Ap-

pendix A, we formalize these approximations, and in Sec. V

we analyze the resulting approximate differential equation.

V. QUADRATIC POTENTIAL APPROXIMATION

In Appendix A, we continue our approximation of Eq. 12

by noting that the low-lying energy states for s∗ = 1
2 (
√
3−1)

are centered in the extremely close vicinity of q = −1/2.

This allows us to focus on the variable x := q + 1
2 and the

region near x = 0. For the low-lying energy states, such as

the ground state and first-excited state that we care about, the

approximate differential equation representing our problem in

the small ε limit is

∂2ψ

∂x2
=

1

ε2
[

ω2x2 + 4
3r(x − 1

2 )− cεE
]

ψ(x), (13)

where c := 8/(3(
√
3− 1)) and ω := 4/3.

The potential has become an ordinary quadratic well, so we

can use standard techniques from the quantum harmonic os-

cillator to solve the Schrödinger equation. Furthermore, since

the width of the barrier r(x−1/2) is proportional to ε1−α and

the height is proportional to ε1−β , in the region of the barrier,

it will overshadow the quadratic potential in the small ε limit

if (ε1−α)2 < ε1−β which translates to 1 > 2α − β. If we

restrict ourselves to α < 1/2 and β > 0, this is always true,

so we can treat the barrier as the dominant factor in the region

where |x| = O(ε1−α). Therefore, we can say that the fol-

lowing is a good approximation for our problem in the large n
limit:

∂2ψ

∂x2
= ε−2 [V (x) − εcE]ψ(x) (14)

where

V (x) =

{

ε1−β if − a < x < a

ω2x2 otherwise
, (15)

where a := 1
2ε

1−α. In Eq. 15 we have settled on a form

of r(q) that is just a step function. We have focused on the

step function barrier since it makes the differential equation in

Eq. 14 easy to solve, but we have done numerics that indicate

other barrier shapes, such as binomial or Gaussian barriers,

give similar scaling results for gmin.

VI. ASYMPTOTIC EXPANSION

In this section, we focus on the differential equation in

Eq. 14 and find the spectral gap. Since Eq. 14 describes our

originaln dimensional hypercube problem in the large n limit,

an asymptotic analysis of Eq. 14 in the small ε limit will give

us the correct asymptotics for the original problem.

Outside of the barrier, the Schrödinger equation looks like

that of an ordinary quantum harmonic oscillator problem, but

we cannot use the standard harmonic oscillator solutions since

these have already had boundary conditions imposed, ensur-

ing that the wave-functions go to zero as x→ ±∞. To get the

solutions for arbitrary boundary conditions, we can compare

the harmonic oscillator equation to the Weber equation [24]

d2Dν(z)

dz2
+

(

ν +
1

2
− 1

4
z2
)

Dν(z) = 0, (16)

where ν is an arbitrary eigenvalue, and Dν(z) is known as

a parabolic cylinder function. Note that when ν is a posi-

tive integer and z is real, these functions become the standard

Gaussians times Hermite polynomials we expect from the har-

monic oscillator.

When ν is not a positive integer and z is real, these func-

tions blow up as z → −∞ but go to zero as z → ∞, so we can

use these as the solution to our DE for x > a. Furthermore, to

get the solution in the x < −a region, we can just employ the

symmetry of our problem about x = 0 to say that we either

have symmetric or anti-symmetric eigenfunctions. Therefore,

the eigen-solutions to our differential equation will have the

form

ψ(x) =















±A1Dν±

(

−
√

2ω
ε x
)

if x < −a
A2e

k±x ±A2e
−k±x if − a < x < a

A1Dν±

(
√

2ω
ε x
)

if x > a

, (17)
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tained by diagonalization of Eq. 7 and the gap obtained by solving

for the eigenenergies of the differential equation in Eq. 14. The latter

is calculated by numerically solving the transcendental equation in

Eq. 18. Note that these scalings converge for n > 105, confirming

that our derivation of Eq. 14 is indeed valid in the limit of large n.

This data was obtained for a rectangular barrier with α = β = 0.3.

where ν± := cE±

2ω − 1
2 and k± :=

√

ε−1−β − ε−1cE±.

By applying continuity in the wave-function and its deriva-

tive across the boundary at x = ±a, we can find a transcen-

dental equation for the energies, which we denote by E± rep-

resenting the two lowest level energy states:

k±Dν±

(

√

2ω

ε
a

)

(

ek±a ∓ e−k±a
)

=

√

2ω

ε
D′
ν±

(

√

2ω

ε
a

)

(

ek±a ± e−k±a
)

. (18)

This transcendental equation can be solved numerically for

the lowest energy levels, and a comparison of this numerical

solution to the full spectral gap of the Hamiltonian in Eq. 7 is

shown in Fig. 3. In the rest of this section, we show that we

can do better than numerical solutions to Eq. 18 by finding an

asymptotic solution in the limit of large n.

We expect the energies to be close to the unperturbed first

excited state energy of E1 = 3ω/c, so we say E± = (3ω +
δ±)/c and find δ± in the limit of small ε. In this limit ν± =
δ±
2ω + 1 and k± ≈ ε−

1

2
− β

2 .

At this point, we want to calculate gmin = |δ+−δ−|/c up to

leading order in ε using these approximations. If we assume

that 2α+β < 1, α < 1/2, and α+β > 1/2 (this corresponds

to the polynomial region in Fig. 2), then the gap becomes

gmin =
8(ω)3/2

c
√
π

εα+β−
1

2 ∝ n
1

2
−α−β. (19)

Similarly, if we assume 2α + β > 1 and α < 1/2, then the
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FIG. 4: The ground state and first excited state wave functions for the

quadratic well approximation of Eq. 14. We also display the potential

energy from Eq. 15 multiplied by a factor of 10/
√
ε so that it is fully

visible. Notice that the ground state looks like a Gaussian with the

middle dragged downward and the first excited state looks unchanged

from the unperturbed quantum harmonic oscillator since the barrier

sits in a region where this function was already small.

gap becomes

gmin =
16(ω)3/2

c
√
π

εβ/2exp
(

−ε 1

2
−α− β

2

)

∝ n− β
2 exp

(

−(n/2)α+
β
2
− 1

2

)

. (20)

This result matches the exponentially small gap found by

Kong and Crosson [15] and Jiang et al. [14].

The dependences on ε in Eqs. 19 and 20 are exactly what

we would expect given Eq. 9. Notice that we do not need

to assume α < β as in Eq. 9, so our result extends farther

than Goldstone’s result and covers the entire area bounded by

0 < α < 1/2 and α+ β > 1/2.

In Fig. 4, we plot the exact ground state and first excited

state for the quadratic approximation for ε = 1/5000, a bump

width of 1/70, and a bump height of 1/300. These values

were chosen to provide visibility for the bump and its effect

on the eigenfunctions. The potential is also plotted, multi-

plied by 10/
√
ε so that it is visible. Here we are using the ex-

act energies, obtained by solving the transcendental equation,

Eq. 18, numerically. Notice that the ground state looks like a

Gaussian with its center pulled down whereas the first excited

state looks almost unchanged from its unperturbed state. The

first excited state is unchanged because it was already small

in the vicinity of x = 0, so the barrier does not alter this state

much by making that region more unfavorable. This is also

reflected in our approximation in Eq. 19 where the leading or-

der term shown here is due to the ground state rather than the

first excited state.
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VII. CONCLUSION

We have taken our original n qubit barrier tunneling prob-

lem and, through a series of large-n approximations, have ar-

rived at an elementary barrier tunneling problem in one con-

tinuous dimension. The resulting approximate Schrödinger

equation gives a transcendental equation for the energies that

in the large-n limit gives a spectral gap that is proportional

to 1/nα+β−
1

2 for 1/2 < α + β and 2α + β < 1, and

n−β/2 exp(−Cn(2α+β−1)/2) when 1 < 2α+β. Our gap scal-

ing result verifies and provides a solid proof the 2002 folklore

result by Goldstone [16].

Combined with the work of Reichardt [3] and Kong and

Crosson [15], our result provides a full picture of the asymp-

totic behavior of the spectral gap during barrier tunneling for

a symmetric cost function on n qubits. Additionally, our

method holds no matter where the barrier is centered (with

suitable redefinitions of some of the constants involved). Our

work does focus on a step function barrier and can therefore

be made more general in terms of barrier shape, but numer-

ics indicate that other barrier shapes give the same scaling for

gmin.
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Appendix A: Discrete Villain Transformation

Our goal in this appendix is to fill in the gaps in the deriva-

tion of Eq. 13, starting from Eq. 11. The Villain representation

[19] is a standard semi-classical approximation which first

takes the continuum limit of the eigenvalues of ̂z and then

defines a conjugate momentum to this continuous “position”

variable. This technique, as it is commonly implemented, has

many subtleties that are ignored, so this appendix formalizes

the assumptions implicit in the Villain representation. Fur-

thermore, we extend these results and show that certain as-

sumptions about the ground and first excited states allow us

to refine our approximations and improve the analysis of the

barrier tunneling problem. We also derive all of our results in

the discrete case, only resorting to the continuum limit at the

end, elucidating the nature of our assumptions.

The original Villain transformation [19] says that ̂z and

̂± := ̂x ± îy act on the ̂z eigenkets with the following

relations

̂z|q〉 = q|q〉
̂+|q〉 = e−ip

√

1 + ε− q(q + ε)|q〉
̂−|q〉 =

√

1 + ε− q(q + ε)eip|q〉 (A1)

Here p is the conjugate momentum for q, and in q-space it

can be represented as p = −iε ∂∂q . Many users [21–23] of the

Villain representation employ the small ε limit to say that the

square root factors in the ̂± expressions are approximately

equal and that the commutators between q and p are negligi-

ble. Using these approximations, they find that

̂x =
1

2
(̂+ + ̂−) =

√

1 + q2 cos p. (A2)

These small ε approximations ignore many subtleties, most

centering around how big p is. Eq. A2 is true only to zeroeth

order in ε, but because the derivative operator has an operator

norm that is proportional to ε−1, there is a relevant term to

second order in p. However, this expression is incorrect at all

higher orders of ε and in fact includes terms linear in p that
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are not included here. One of the most misleading errors is

that the true expression for ̂x contains no terms with higher

order of p than p2.

Below, we go through a more formal derivation of ̂x’s ex-

pansion using the underlying matrices and proceed with a de-

scription of how the discrete Villain transformation can be

used in the setting of the barrier tunneling problem.

1. Discrete j-operators

We remind the reader that ε = 2/n = 1/J , and we start

by examining ̂x in the eigenbasis of ̂z given by |q〉 where

q = εm ∈ [−1,+1] for m ∈ {−J,−J + 1, . . . , J}. Our goal

will be to determine how ̂x acts on a general state |ψ〉:

̂x|ψ〉 =
∑

q

̂xψq|q〉 (A3)

We introduce three new operators which will simplify the

representation of the raising and lowering operators ̂±:

P̂ =
∑

q∈[−1,1−ε]
|q + ε〉〈q| and M̂ =

∑

q∈[−1+ε,1]

|q − ε〉〈q|

(A4)

q̂ =
∑

q

q|q〉〈q|.

Since q̂ is diagonal, functions of the operator are diagonal

themselves, and the first two operators extract just raising and

lowering of indices without any prefactors. Therefore, we can

represent ̂x as

̂x =
1

2
(̂+ + ̂−) (A5)

=
1

2

(

√

(1 − q̂)(1 + q̂ + ε)P̂ +
√

(1 + q̂)(1 − q̂ + ε)M̂
)

.

Our eventual goal is to take a continuum limit of q and then

represent ̂x in terms of the continuous q and its derivatives.

We can create a dictionary for the matrices that lead to deriva-

tives in the limit that 〈q|ψ〉 = ψq → ψ(q):

∂ψ

∂q
= lim
ε→0

ψ(q + ε)− ψ(q − ε)

2ε

= lim
ε→0

ψq+ε − ψq−ε
2ε

= lim
ε→0

(Â~ψ)q, (A6)

∂2ψ

∂q2
= lim
ε→0

ψ(q + ε)− 2ψ(q) + ψ(q − ε)

ε2

= lim
ε→0

ψq+ε − 2ψq + ψq−ε
ε2

= lim
ε→0

(B̂ ~ψ)q. (A7)

Here we have defined two new operators that correspond to

the discrete versions of our first and second derivatives:

εÂ =
P̂ − M̂

2
and ε2B̂ = P̂ − 2Î + M̂. (A8)

Throughout this appendix, we refer to the relative sizes of op-

erators using their matrix norm. The definition of the ma-

trix norm we are using is the maximum absolute value of any

eigenvalue of the operator. Therefore, the norm of Â is pro-

portional to ε−1, and the norm of B̂ is proportional to ε−2.

We come back to revisit this concept later in the context of

our specific eigenstates.

Based on the definitions in Eq. A8, we can rewrite P̂ and

M̂ in terms of Î , Â, and B̂:

P̂ = Î + εÂ+
ε2

2
B̂ and M̂ = Î − εÂ+

ε2

2
B̂. (A9)

Notice that in the continuous form of the Villain representa-

tion, Eq. A1, the operators, P̂ and M̂ , correspond to e∓ip, but

in Eq. A9 we see that the operators only correspond to the

first two terms in the Taylor expansion of the exponentials.

In addition, the matrix norms of Â and B̂ further complicate

the issue, making it deceptively appear that the later terms in

the series are smaller when in fact every term in this series is

roughly equivalent in size, relative to ε.
We use the expansions in Eq. A9 with Eq. A5 to obtain a

discrete form of the Villain representation. It should be noted

that the following expression is exact and includes no approx-

imations yet

̂x =
1

2

(

√

(1− q̂)(1 + q̂ + ε)

[

Î + εÂ+
ε2

2
B̂

]

+
√

(1 + q̂)(1− q̂ + ε)

[

Î − εÂ+
ε2

2
B̂

])

(A10)

Next, we begin taking the large spin limit by expanding the

square root prefactors in orders of ε

√

(1∓ q̂)(1 ± q̂ + ε) =
√

1− q̂2 + ε
1∓ q̂

2
√

1− q̂2
+O(ε2)

(A11)

Combining Eq. A10 and Eq. A11 results in a discrete form of

the Villain representation for ̂x:

̂x =
1

2

([

2
√

1− q̂2 +
ε

√

1− q̂2

]

− ε2
q̂

√

1− q̂2
Â

+ ε2

(

√

1− q̂2 +
ε

2
√

1− q̂2

)

B̂ +O(ε2)

)

.

(A12)

Here we have kept terms that are at most proportional to ε,

remembering that the norms of Â and B̂ are proportional to

ε−1 and ε−2 respectively. The expression in Eq. A12 can be

thought of as a more accurate version of Eq. A2, and up to

zeroth order in ε, Eq. A12 and Eq. A2 agree.

Some knowledge of the specific eigenstates can restrict the

form of Eq. A12 even more, allowing us to consider the maxi-

mum eigenvalue of Â and B̂ relevant to the low energy eigen-

vectors of our problem, rather than the maximum eigenvalues

obtainable for a general problem.
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There are a few key things to note about Eq. A12 in rela-

tion to Eq. A2. First, we only have terms up to the second

derivative, even including all orders in ε. Second, this form

of the operator makes no assumptions about the specific form

of the Hamiltonian or its energy states. If, as we do in the

next section, we make assumptions about the energy states of

the barrier tunneling problem, we can further approximate the

expression for ̂x into a simpler form.

2. Hamiltonian and Eigenstate-based Approximations

Eq. A12 can be used with the barrier tunneling Hamilto-

nian:

εĤ = −(1− s)̂x + ŝz + sr(̂z) + ∆ (A13)

The operator ̂z is equivalent to q̂, and ̂x can be replaced

using Eq. A12, interpreting ~ψ as an eigenstate with eigenen-

ergy E, so that the Schrödinger equation becomes

εE|ψ〉 =
(

sq̂ + sr(q̂) + ∆− (1 − s)

[

√

1− q̂2 +
ε

2
√

1− q̂2

]

+(1− s)
ε2

2

q̂
√

1− q̂2
Â

−(1− s)
ε2

2

(

√

1− q̂2 +
ε

2
√

1− q̂2

)

B̂ +O(ε2)

)

|ψ〉.

(A14)

Eq. 12 is a continuum limit version of this equation, where q

is treated as a continuous variable so that q̂ → q, ~ψ → ψ(q),

Â→ ∂ψ
∂q , and B̂ → ∂2ψ

∂q2 .

Next, we define the operator x̂ = q̂ + 1
2 and call the di-

agonal entries of this operator x = q + 1
2 . The advantage of

this variable, x, is that it is small in the vicinity of q = − 1
2

where the tunneling event occurs. Since the critical tunneling

moment and minimum spectral gap occur at s∗ = 1
2 (
√
3− 1),

the rest of this appendix will set s = s∗.

Nex, we look more closely at x̂ and its relationship to |ψ〉.
The low energy eigenvectors, |ψ〉, are essentially zero for most

of their entries except right around the location of the primary

bump in the distribution. The reasoning behind this comes

from the fact that for the low-lying energy states, their energy

is lower than the potential energy function for the entire range

of x, except in an extremely narrow range around the barrier,

leading to exponential suppression of the wave functions out-

side this region. For the no barrier case, the ground state and

first excited state both have width O(
√
ε) and are centered

around x = 0 with exponential suppression farther away from

x = 0.

Since the widths of the ground state and first excited state

(O(
√
ε)) are larger than the width of the barrier (O(ε1−α)),

the range of x over which the components of |ψ〉 are non-

zero is O(
√
ε). Therefore, focusing on the diagonal terms in

the Schrödinger equation that do not include Â or B̂, we can

expand these to order ε by treating ‖x̂|ψ〉‖ ∈ O(
√
ε) since for

the non-zero components of |ψ〉, the typical x values will be

of order
√
ε. We also use an arbitrary constant ∆ to cancel out

the constant terms in the expansion, physically ensuring that

the bottom of the potential well is at zero energy:

(

s∗q̂ +∆− (1− s∗)

[

√

1− q̂2 +
ε

2
√

1− q̂2

])

|ψ〉 =
(

2

3
(
√
3− 1)x̂2

)

|ψ〉+O(ε3/2), (A15)

where ∆ = − (
√
3−1)
24 (24 + 12ε).

Next, we focus on the derivative terms of Eq. A14 that in-

clude Â and B̂. We expect the size of the derivative to be

governed by the inverse of the length scale over which the

eigenvector components change. In the unperturbed case, we

expect the eigenvector (which is a binomial distribution) com-

ponents to change on a length scale of
√
ε which would mean

that Â scales like 1/
√
ε and B̂ scales like 1/ε. Note that these

would then correspond to the norms ‖Â|ψ〉‖ and ‖B̂|ψ〉‖ not

‖Â‖ and ‖B̂‖ which as we discussed in the last section can be

much larger. This scaling behavior requires our restriction to

the low-lying energy states.

In the perturbed case, we expect the shortest length scale

in the problem to be governed by the exponential decay in-

side the barrier. In the prototypical barrier tunneling prob-

lem of plane waves tunneling through a square barrier, the

Schrödinger equation inside the barrier, which will have ex-

tent −ξ < y < ξ, will be of the form

d2ϕ

dy2
=

2

~2
(V0 − E)ϕ(y) = k2ϕ(y). (A16)

The simple Schrödinger equation in Eq. A16 can be trans-

formed into our problem by taking ~ → ε, setting the width

of the barrier ξ to be proportional to ε1−α, setting the height

of the barrier, V0, to be proportional to ε1−β , and making the

energy, E , much smaller than V0 in the small ε limit. If we

compare this to our expression in Eq. A14, we see that at the

very least there is still a factor of ε2 in the ratio between the

potential barrier r(q) and the second derivative term B̂. This

is a rough comparison, but we can use it to inform what the

exponential decay inside the barrier looks like.

Specifically, Eq. A16 is solved by e±ky , where in our case

k is proportional to ε−
1

2
− β

2 , assuming that V0 ≫ E , which

is a good assumption in our problem. Therefore, the length

scale over which the wavefunction changes inside the barrier

is proportional to ε
1

2
+ β

2 . This means that we can claim our

derivative, and therefore Â, scales like ε−
1

2
− β

2 , and similarly

B̂ scales like ε−1−β . Alternatively, the derivatives are propor-

tional to k and k2 for Â and B̂ respectively.

One other thing to note is that if we are looking at a deriva-

tive that scales like ε
1

2
+ β

2 , it will only have this extreme scal-

ing in the region close to the edge of the barrier, which means

that x ∈ O(ε1−α) when we care about derivatives that are this

large. Thus in keeping track of the order, we need to remem-

ber that higher order terms in x will be even more exacerbated

in this region of the barrier.
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The next two equations focus on just the lowest order terms

that include Â and B̂. Using the approximations stated in

the last few paragraphs, the lowest order term containing Â
becomes

(1 − s∗)ε2
q̂

2
√

1− q̂2
Â =

− 1

2

(√
3− 1

)

ε2Â+O(ε
5

2
−α− β

2 ) = O(ε
3

2
−β

2 ), (A17)

while for B̂ the term becomes

− (1− s∗)
ε2

2

(

√

1− q̂2 +
ε

2
√

1− q̂2

)

B̂ =

− 3

8

(√
3− 1

)

ε2B̂ +O(ε2−α−β) = O(ε1−β) (A18)

Our condition for whether a term is discounted as too small

or not depends on whether it is larger than the energy term.

Our unperturbed energies are constant with ε, but notice that

E is multiplied by ε in the Schrödinger equation. Thus, we ex-

pect this energy term to be proportional to ε with some poly-

nomially or exponentially small corrections. Therefore, if a

term is higher order than linear in ε, we discard it since it is

smaller than the energy term which is what we care about.

We assume β < 1, in which case, the Â terms are all small.

For the B̂ terms, we see that we need 1 < 2− α− β in order

for the next highest term to contribute, so we need to restrict

ourselves to α+ β < 1. The only remaining thing to consider

is how much the r(q̂) term will contribute. The height of the

barrier scales like ε1−β in this setup, so as long as β > 0,

the barrier term remains relevant as well. With all of these

approximations, the Schrödinger equation becomes

εE ~ψ =

(

s∗r

(

x̂− 1

2

)

+
2

3
(
√
3− 1)x̂2

−3

8

(√
3− 1

)

ε2B̂ +O
(

max{ε2−α−β, ε 3

2
− β

2 }
)

)

~ψ

(A19)

Eq. A19 is the final form of our approximated Schrödinger

equation in the discrete setting. The continuum limit allows

us to treat this as a differential equation which can be solved

exactly, so the final step is to take the continuum limit. This

limit takes x to a continuous variable in the small ε limit, tak-

ing B̂ → ∂2

∂x2 , x̂ → x, and |ψ〉 → ψ(x). Doing this gives the

differential equation

εEψ(x) =

(

s∗r

(

x− 1

2

)

+
2

3
(
√
3− 1)x2

−3

8

(√
3− 1

)

ε2
∂2

∂x2

+O
(

max{ε2−α−β, ε 3

2
− β

2 }
))

ψ(x) (A20)

This can be solved using the parabolic cylinder equations

as shown in in the main text of the paper.


