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We provide an alternative approach to relativistic dynamics based on the Feshbach projection
technique. Instead of directly studying the Dirac equation, we derive a two-component equation
for the upper spinor. This approach allows one to investigate the underlying physics in a different
perspective. For particles with small mass such as the neutrino, the leading order equation has a
Hermitian effective Hamiltonian, implying there is no leakage between the upper and lower spinors.
In the weak relativistic regime, the leading order corresponds to a non-Hermitian correction to the
Pauli equation, which takes into account the non-zero possibility of finding the lower-spinor state
and offers a more precise description.
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I. INTRODUCTION

The Dirac equation [1] offers a quantum mechanical
description of the relativistic dynamics of any spin-1/2
particles, and is the first theory that merges these two
most important discoveries of modern physics. This el-
egant equation successfully predicts the existence of the
antimatter [2], offers a theoretical justification for the
introduction of electron spin and spin-orbit coupling [3]
and the fine-structure of the hydrogen-like atoms [3]. The
Dirac equation also predicts a quivering motion of free
relativistic quantum particles called Zitterbewegung [4–
6], which is attributed to the interference between the
positive and negative energy part of the spinor.
Recently, experimental advances allows for the imple-

mentation of various proposals to study the relativistic
quantum mechanics phenomena using ion traps [7, 8] as
quantum simulators for the Dirac equation, and Zitter-
bewegung [7, 9] as well as the Klein paradox [10, 11]
have been experimentally observed. While formally sim-
ple and elegant, the Dirac equation has some peculiar
properties. For example, one needs to change the idea of
bare vacuum to an infinite negative energy sea to inter-
pret the negative energy solution for the Dirac equation,
which may be quite a hurdle for many. It also employs
four components for a relativistic spin-1/2 particle, a big
departure from the two-component description people are
familiar with in the non-relativistic regime. It has been
hitherto unclear what a two-component description of the
relativistic dynamics would look like or if it is even possi-
ble. In this paper, we ask: can we give a reasonable two-
component description for the relativistic dynamics? In-
deed, it is often more easy to glean information from the
Dirac equation for two-component spinors under some
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special regime. One interesting regime is for particles
with small mass such as neutrinos. Neutrino mass has
been experimentally found to be extremely small and the-
oretically assumed to be zero [12]. There had been vari-
ous attempts at reducing the four-component spinors of
the Dirac equation to arrive at two- and one-component
descriptions using various techniques [4, 13–18]. Realis-
tically, it is of great importance to study the different-
order contribution of non-zero neutrino mass on the rel-
ativistic dynamics of the particle in an electromagnetic
field, which has been missing in the literature. On the
other hand, the Pauli equation is obtained by a heavily
approximated lower spinor in the non-relativistic limit.
The Pauli equation provides a good approximation for
the gyromagnetic ratio as well as an explanation for the
Stern-Gerlach experiment [1, 3]. However, for a spin-1/2
initially prepared in a state with no lower-spinor compo-
nent, the effective Hamiltonian in the Pauli equation is
Hermitian and produces a unitary evolution for the up-
per spinor. Therefore, the Pauli equation predicts that
there will be no possibility of finding the lower-spinor,
in contradiction to the prediction of the Dirac equation.
High order correction to the Pauli equation has also been
done using the Foldy-Wouthuysen (F-W) transform [17],
which eliminates the odd terms from the Hamiltonian
through a series of canonical transforms. It is noteworthy
that the F-W transform acts as a series of unitary trans-
formation, effectively changing the set of basis and get a
two-component equation in this ‘dressed basis’. Here, we
take a different approach and provide an alternative ap-
proach to give a non-Hermitian effective Hamiltonian for
the upper spinor component in the original, i.e. ‘bare’ ba-
sis. By using the Feshbach P-Q partition technique [19–
21] for the Dirac equation, we obtain a two-component
spinor equation, which may further be cast into a time-
convolutionless (TCL) form. Especially, two regimes are
investigated, one with small particle mass and the other
with weak relativistic effects. It is found that the lead-
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ing order equation for the small mass case takes a very
compact form and has a Hermitian effective Hamiltonian.
In the weak relativistic limit, the leading order equation
gives a non-Hermitian correction to the Pauli equation,
therefore more accurately predict the non-zero possibil-
ity of finding the lower-spinor state for an initial state
with no lower-spinor component and offers a much more
precise perspective.

II. FESHBACH P-Q PARTITION FOR THE TCL

DIRAC EQUATION

The Dirac equation merges quantum mechanics with
special relativity and has predicted many interesting phe-
nomena, such as spin-orbit coupling. Taking ~ = 1 and
assuming minimal coupling for the electromagnetic field,
we have

i∂tΨ =
(
βmc2 + eϕ+ cααα ·πππ

)
Ψ, (1)

where e is the charge carried by the particle, πππ = ppp−eAAA/c
and (ϕ,AAA) is the vector four-potential for the electro-
magnetic field. A widely used procedure is to partition
the state into upper and lower halves, corresponding to
normal particle and lower-spinor solutions with positive
energies. It can be very illustrative to study the equation
of motion for the upper component. For example, in the
non-relativistic approximation, the upper spinor domi-
nates and follows the Pauli equation. Since the effective
Hamiltonian of the Pauli equation is Hermitian, the up-
per spinor evolves unitarily. As a result, this approxima-
tion ignores the small but non-zero possibility of finding
the negative energy part, i.e., an lower-spinor state. Here
we want to derive a time convolution-less equation for the
upper spinor by using a systematic projection technique.

To do that, we first use a Feshbach P-Q partition tech-
nique [19–21]. Define the projectors

P ≡

(
1 0

0 0

)
, Q ≡ I − P =

(
0 0

0 1

)
, (2)

where 0 and 1 are both 2×2 matrices. the wave function
Ψ = [Ψ1,Ψ2,Ψ3,Ψ4]

T can the be partitioned as PΨ =
[Ψ1,Ψ2, 0, 0] and QΨ = [0, 0,Ψ3,Ψ4]

T , where T stands
for matrix transpose. Accordingly, the Hamiltonian can
be partitioned into 4 two-by-two matrices as

H =

(
h̃ R̃

W̃ D̃

)
, (3)

where h̃, R̃, W̃ , D̃ are non-zero matrix blocks corre-
sponding to h = PHP , R = PHQ, W = QHP and
D = QHQ. The exact integral-differential equation for
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FIG. 1. Density plot for the possibility of finding lower-spinor
state as a function of position x and time t with no electro-
magnetic field, m = c = 1, x0 = 10 and p0 = 0. Panel (a) is
obtained from the Dirac equation and panel (b) is obtained
from the TCL equations, Eqs. (8) and (9). A good agreement
between the two can be observed.

the upper spinor is then given by

i∂tP|ψ(t)〉 = eϕP|ψ(t)〉

− ic2
∫ t

0

ds {φ(t − s)σσσ · [−eA/c− e(t− s)∇ϕ]}σσσ · πππP|ψ(s)〉

− ic2
∫ t

0

dsφ(t− s)
[
πππ2 − eσσσ ·BBB/c

]
P|ψ(s)〉, (4)

where φ(t− s) = exp[i(2mc2− eϕ)(t− s)]. Depending on
the problem under consideration, we take the dominant
part of the Hamiltonian as H0 and work in the interac-
tion picture with respect to it, i.e., iψ̇ = HI(t)ψ, where

HI(t) = U †
0 (t)(H −H0)U0(t), ψ = U †

0 (t)Ψ, and U0(t) is
the propagator associated with H0. Applying the P-Q
partition, ans assuming we start with a particle state, we
can formally solve for Qψ(t) and get

∂tPψ(t) = −iPHI(t)Pψ(t)−

∫ t

0

dsC(t, s)Pψ(s), (5)
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FIG. 2. Density plot for the possibility of finding lower-spinor
state as a function of position x and time t with a static
potential eϕ = ax. Parameters used are m = c = 1, a = 0.1,
x0 = 10 and p0 = 0.2. Panel (a) is obtained from the Dirac
equation and panel (b) is obtained from the TCL equation,
which is shown to offer a good approximation of the exact
dynamics.

where C(t, s) = PHI(t)v(t, s)QHI(s) is the memory ker-

nel, v(t, s) = T̂{exp[−i
∫ t

s
QHI(τ)dτ ]} and T̂ is the time-

ordering operator. This is the exact Nakajima-Zwanzig
equation for the state vector Pψ.
We now cast the equation into a time-convolutionless

form by using a time local projection [22]. Writing the
formal solution for Qψ(t) as

[1− Σ(t)]Qψ(t) = Σ(t)Pψ(t),

where

Σ(t) = −i

∫ t

0

dsv(t, s)QHI(s)Pu
†(t, s)

and u(t, s) = T̂ exp[−i
∫ t

s
dτHI(τ)], we get

∂tPψ(t) = K(t)Pψ(t), (6)

where K = −i
{
PHI(t)P + PHI(t)[1 − Σ(t)]−1Σ(t)P

}
is

the TCL generator. The invertibility of the operator 1−

Σ(t) is ensured due to the fact that it is a perturbation
of the identity operator since limHI→0 Σ(t) = 0. We can
now expand [1 − Σ(t)]−1Σ(t) =

∑
k=1 Σ

k(t), up to any
order of HI .
As a first application, we consider a particle with very

small mass in a static field, such as the neutrino particle.
In this case, H0 = eϕ+cααα ·πππ, and HI(t) = mhI(t), where
hI(t) is mass independent. At the leading order of mass
m, we have

∂tPψ(t) = −imPhI(t)Pψ(t),

which, remarkably, has a Hermitian effective Hamilto-
nian, generating a unitary propagator. Therefore, for a
state initially prepared in the P-space, i.e., Qψ(0) = 0,
it will stay in the P-space up to the first order. Es-
pecially, in absence of external field, we explicitly have
∂tPψ(t) = −2imc2 cos2(c|ppp|t)Pψ(t) as a first-order ap-
proximate equation, where |ppp| denotes the norm of the
momentum ppp. The equation has a plane wave solution,

∫
dpcp(0)e

ipx−imc2t[1+sinc(2cpt)],

where cp(0) is the initial condition. Up to O(m2), this is
in agreement with the plane wave solution obtained by
directly solving the Dirac equation.
On the other hand, in the weak relativistic regime, we

have a dominant diagonal Hamiltonian which we take as
H0. In this case, we haveH0 = PHP+QHQ = h+D and
Hc = PHQ+QHP = R+W , where h, R, W, D corre-
spond to the blocks in Eq. (3). Here H0 ≫ Hc, so Hc can
be treated as a correction. In the interaction picture with

respect to Hc, we have HI(t) = U †
0 (t)HcU0(t), |ϕ(t)〉 =

U †
0 (t)|ψ(t)〉, U0 = T̂ exp[−i

∫
dsH0(s)] = gh ⊕ gD, where

gh and gD are the propagators associated with the h and
D blocks, respectively. Notice here Hc and therefore HI

has no diagonal elements. The lowest-order of Σ(t) is on
the order of HI with Σ(t) = −i

∫
dsQHI(s)P , and the

lowest-order P |ϕ〉 equation is on the order of H2
I and

∂tP|ϕ〉 = −iPHI(t)P|ϕ〉 − iPHI(t)
∑

k=1

Σk(t)P|ϕ〉

≈ −iPHI(t)Σ(t)P|ϕ〉

= −

∫
ds [PHI(t)Q] [QHI(s)P ]P|ϕ〉.

It can be readily shown that [PHI(t)Q] [QHI(s)P ] =
PHI(t)HI(s)P . Therefore, at the leading order, we have

∂tPψ(t) = −
[∫ t

0 dsPHI(t)HI(s)P
]
Pψ(t). Going back

to the original picture and rotating out a trivial global
phase exp

[
−imc2t

]
for the whole Hamiltonian, we have

∂tPΨ(t) =

[
−ieϕ− c2

∫ t

0

ds (σσσ · πππ) exp [−ieϕ(t− s)]

(σσσ ·πππ) exp [ieϕ(t− s)] exp
[
2imc2(t− s)

]
]
PΨ(t).

(7)
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Using [AAA,ϕ] = 0, [ppp, f(qqq)] = −i∇f(qqq) and the BCH for-
mula exp[A]B exp[−A] = B +

∑∞
m=1[mA,B]/m!, where

[mA,B] = [A, [m−1A,B]] and [1A,B] = [A,B], we can
simplify the equation and arrive at

∂tPΨ(t) = −i

[
eϕ+

(
πππ2

2m
−
eσσσ ·BBB

2mc

)(
1− exp(2imc2t)

)]
PΨ(t)

− i
[ e

4m2c2
[(∇ · ∇ϕ) + i(∇ϕ) · πππ + σσσ · (∇ϕ)× πππ]

[
1− exp(2imc2t)(1 − 2imc2t)

]]
PΨ(t). (8)
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FIG. 3. The expectation value of the position 〈x〉 as a function
of time, with the same parameter as those of Fig. 2. The solid
blue line is obtained exactly through the Dirac equation, the
dashed red line is obtained from the TCL equations, Eqs. (8)
and (9), and the dotted green line is calculated through the
conventional Pauli equation. It can be seen that the TCL
equation as a weak-relativistic approximation more or less
follows the exact dynamics, while the result from the Pauli
equation is not very accurate.

We recognize the first line of the Eq. (8) as a non-
Hermitian correction to the Pauli equation with an effec-
tive Hamiltonian Heff = eϕ+ πππ2/2m− eσσσ ·BBB/2mc since
the long time average of exp(2imc2t) = 0. The second
line is of order e/4m2c2 and is therefore a higher order
correction. The effective Hamiltonian TCL equation is
no longer Hermitian, and tracks the non-zero possibility
of finding the lower-spinor state up to the leading or-
der. Higher order equation can be obtained in the same
fashion by including higher order of Σk(t).

III. EXAMPLES

As an illustrative example, we first consider a free rel-
ativistic particle, under zero electromagnetic field. The
Dirac equation (Eq. (1)) and the TCL equation (Eq. (8))
are analytically solvable as planar waves. We choose a
Gaussian wave packet for the upper spinor as f(x) =
4

√
2/x0π exp[−x

2/x0 + ip0x], corresponding to a Gaus-
sian wave packet centered around p0 in the momentum
space. The lower spinor is initially set to zero. There-
fore, any non-zero QΨ(qqq, t) means a non-zero probability

of finding the lower-spinor at position qqq, which is ignored
by the Pauli equation. We can use 1 −

∫
dqqqPΨ(qqq, t) to

quantify the total possibility of finding the lower-spinor
at all positions at time t, but a more intricate formula
including the positional dependence can be used. To
get that, we use the corresponding Q part of Eq. (8),
Qψ(t) ≈ −i

[∫
dsQHI(s)P

]
Pψ(t). Going back to the

original picture, we have

QΨ(t) = −i
[(
2imc2σσσ · πππ − eσσσ · ∇ϕ

) (
1− exp[2imc2t]

)

−2imc2t exp[2imc2t]eσσσ · ∇ϕ
]
PΨ(t)/

(
4m2c3

)
. (9)

We can study the 1D equation without loss of generality.
In this case, the upper and lower spinor can be described
by 1 component each, and the eigenvector of the Dirac
Hamiltonian is

U+ =

√
λ+mc2

2λ

(
1

pc/(λ+mc2)

)
,

U− =

√
λ+mc2

2λ

(
−pc/(λ+mc2)

1

)
,

with eigenvalues ±λ, where λ =
√
p2c2 +m2c4. The

solution of the TCL equation is given by

PΨ =

∫
dp exp[ipx]cp(0)

× exp

[
p2

4m2c2
[
exp(2imc2t)− 2imc2t− 1

]]
,

where cp(0) is determined by a Fourier transform of the
initial state in the position space.
In Fig. 1 we plot |QΨ(x, t)|2 as a function of position

x and time t using the exact solution via the Dirac equa-
tion in panel (a) and via the TCL equation in panel (b),
choosing m = c = 1, x0 = 10 and p0 = 0. This initial
state has an overlap

∫∞

−∞
|cn(p)|

2dp ≈ 0.0209 with the

negative energy continuum, where cn(p) = 〈U−|ψp(0)〉
and |ψp(0)〉 is the initial state in momentum space ob-
tained from a Fourier transform. It can be observed that
the TCL equation can approximate the non-zero proba-
bility of finding the lower-spinor predicted by the Dirac
equation, a fact that’s completely ignored in the Pauli
equation. The slight difference between the upper and
lower panels of Fig. 1 is due to the fact that only the



5

leading term is calculated for the TCL equation, where
higher orders should be vanishingly small in the weak
relativistic regime. This TCL equation here is more ac-
curate than the conventional Pauli equation, where the
non-zero lower spinor component is ignored and gives
zero probability of finding the lower spinor states, i.e.
|Ψ3|

2 + |Ψ4|
2 = 0.

As a second example, we choose a linear static linear
field eϕ = ax and numerically solve the exact equation
and the TCL equation. Choosing m = c = 1, a = 0.1,
x0 = 10 and p0 = 0.2, |QΨ(x, t)|2 as a function of posi-
tion x and time t is shown in Fig. 2, where panel (a) is
obtained using the exact Dirac equation and panel (b) is
obtained via the TCL equations, where a good agreement
between the two is also observed. Therefore, the TCL
equation can give us a more precise two-component de-
scription for the relativistic particle than the Pauli equa-
tion. We also numerically calculate the expectation value
of the particle’s position as a function of time by means of
exact solution, TCL solution and the conventional Pauli
equation solution (see Fig. 3). The TCL equation as
a weak-relativistic approximation matches the exact dy-
namics better than the Pauli equation where the non-zero
lower spinor state is ignored.

IV. CONCLUSION

In conclusion, by using a Feshbach P-Q partition and a
time-local projection with the Dirac equation, we obtain

a two-component equation for the upper spinor, which
can be further be cast into a TCL form. This alterna-
tive approach allows for a different perspective to study
the relativistic dynamics for spin-1/2 particles. Both the
small mass regime and the weak relativistic regimes are
investigated. The leading order equation in the small
mass regime takes a compact form. Remarkably, the ef-
fective Hamiltonian for the upper spinor is Hermitian at
the leading order, predicting that the particle will stay
in the P space as a first order approximation. For the
weak relativistic regime, unlike the Pauli equation whose
effective Hamiltonian for the upper spinor is Hermitian,
the TCL equation obtained here is non-Hermitian and
correctly takes into account the non-zero probability of
finding the lower-spinor state.
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