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We propose a non-perturbative approach to calculate bound state energies and wave functions for 

quantum field theoretical models.  It is based on the direct diagonalization of the corresponding 

quantum field theoretical Hamiltonian in an effectively truncated and discretized Hilbert space.  We 

illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial 

dimension and show where it agrees with the traditional method based on the potential picture and 

where it deviates due to recoil and radiative corrections.  This method permits us also to obtain 

some first insight into the spatial characteristics of the distribution of the fermions in the ground 

state, such as the bremsstrahlung-induced widening. 
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 To obtain bound state energies and wave functions for general quantum field theoretical 

interactions with arbitrary coupling strengths is still a fundamental challenge [1].  There is presently 

no unique procedure for calculating these energies as poles of the S-matrix directly from quantum 

field theory.  The usual Rayleigh-Schrödinger perturbation theory is inapplicable as the radius of 

convergence of such a power series expansion is zero.  This difficulty is illustrated by the 

non-perturbative Z2-scaling of the hydrogenic bound states with the nuclear charge Z, or by the fact 

that many potentials do not even support bound states unless the interaction strength exceeds a 

non-zero threshold value.  In these cases the binding energy is not even a differentiable function of 

the coupling strength, which would be required for perturbation theory to be applicable. 

 The most promising method to obtain bound state energies from quantum field theory is the 

Bethe-Salpeter equation [2,3], which can lead to a description of the interaction in terms of an 

approximate quantum mechanical potential energy function to describe the dynamics.  It is difficult 

to improve phenomenological treatments of potentials as there are no systematic ways to include 

various dynamical contributions.  While for instance in quantum electrodynamics (QED) or nuclear 

physics many models provide an excellent match with experimental data, there are still conceptual 

deficiencies to construct effective many-body forces. 

 The computational method that we propose here is based on the construction of the Hamiltonian 

from the quantum field theoretical Lagrangian density and its matrix representation for a suitable 

set of discretized basis states.  The energy eigenstates of the Hamiltonian without any 

fermion-boson coupling can be used as a basis to diagonalize the matrix numerically.  While the 

required numerical convergence can be controlled rather efficiently by an optimized selection of the 

basis states, the key limitation of this method is dictated by the available computer memory, which 

naturally restricts the maximum dimension of the Hilbert space. 

 We illustrate this approach for a model test theory where two types of fermions (of mass M 

each) are coupled with each other via mediating bosons (of mass m).  Their (1+1)-dimensional 

interaction is given by the energy V = λ ∫ dx [ Ψb
†(x) γ0 Ψb(x) + Ψd

†(x) γ0 Ψd(x)] φ(x), where the 

parameter λ is the coupling strength, Ψb and Ψd are the two-component Dirac field operators for the 

fermions and φ denotes the scalar boson operator.  For the special case of m=0 this model could also 

be used to study simplified QED interactions, where the “photon” has spin zero.  The three field 

operators can be expanded in terms of annihilation and creation operators that fulfill the usual 

anti-commutator and commutator relationships [b(p), b†(p’)]+ = [d(p), d†(p’)]+ = [a(p), a†(p’)]– = 
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δ(p-p').  For couplings λ that are not exceedingly large, fermionic pair-creation processes are not 

important.  The terms in the Hamiltonian that would couple the first fermion to its own antiparticle 

are proportional to b†(p+k) B†(p) [a†(-2p-k)+a(2p+k)] and b(p+k) B(p)[a†(2p+k)+a(-2p-k)].  Here 

the anti-particle operators B and B† fulfill the anticommutator relationships [b(p), B†(p’)]+ = 0 and 

[B(p), B†(p’)]+  = δ(p-p').  Similar terms characterize also the second fermion.  As very energetic 

bosons are required in these interactions and the corresponding coupling function decreases rapidly 

with the boson momentum, we therefore neglect anti-fermions.   This leads to the Hamiltonian of 

the form H = H0 + V with 

  

  H0  =  ∫ dp e(p) [b†(p)b(p) + d†(p)d(p)] + ∫ dk ω(k) a†(k)a(k)   (1a) 

  V  =  λ ∫ dp ∫ dk Γ(p,k) [b†(p+k)b(p) + d†(p+k)d(p)] [a(k) + a†(-k)]       (1b) 

 

The coupling function Γ(p,k) ≡ [e(p+k)e(p)+M2c4-p(p+k)c2]1/2 [8πω(k)e(p+k)e(p)]-1/2 is the 

result of the scalar product among the Dirac spinors and acts as a natural cut-off function as it 

decreases with increasing fermion momenta p and boson momenta k.  In atomic units (c=137.036 

a.u.) the free energies of the fermions and bosons are given by e(p) ≡ (M2c4+c2p2)1/2 and ω(k) ≡ 

(m2c4+c2k2)1/2, respectively.  

 This model Yukawa-like Hamiltonian has a long tradition and has been proposed to 

approximate the strong nuclear force between protons and neutrons due to the mesons.  It can also 

predict the time-evolution of two spatially nearby fermions [4].  While the omission of the 

interaction with the fermionic anti-particles removes the relativistic invariance of H, it leads to the 

conservation of the two particle number operators ∫ dp b†(p)b(p) and ∫ dp d†(p)d(p), in addition to 

the total momentum operator ∫ dp p [b†(p)b(p) + d†(p)d(p) + a†(p)a(p)], which also commutes with 

H.  As the result of these invariances a suitable basis can be chosen in which the matrix for H is 

block-diagonal, which reduces the required computer memory significantly.  

 In order to represent the operator H by a matrix, the creation and annihilation operators need to 

be expressed on a spatial grid of total length L.  This discretization should not be confused with 

lattice gauge theory.  Unless we are interested in describing a system with a spatial constraint (such 

as in cavity QED), the finite parameter L is purely computational and could be viewed as a spatial 
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regulator.  In order to preserve the operator algebra, we have defined the dimensionless discretized 

operators bp ≡ (2π/L)1/2 b(p), which satisfy [bp, bp’
†]+ = [dp, dp’

†]+ = [ap,ap’
†]– = δp,p’.  As basis 

states for the Hamiltonian matrix we have chosen the single fermion states |p〉 ≡ bp
† |0〉 and |p;k〉 ≡ 

bp
†ak

† |0〉 and for the two-fermion sector the states |p,q〉 ≡ bp
†dq

†|0〉 and |p,q;k〉 ≡ bp
†dq

†ak
† |0〉, 

where |0〉 denotes the vacuum state.  For the range of coupling strengths λ discussed in this paper it 

turns out that the restriction to the one-boson exchange case [5,6] is sufficient.  For example, for our 

largest coupling strength (λ=9000 a.u.) the ground state energy is changed by less than 0.37% if the 

two-boson states are included.  Taking a higher number of bosons into account is feasible but would 

increase the required computer memory.   

 The matrix elements for the Hamiltonian in the chosen basis for the zero and one-boson sector 

are given by  

 

      〈 p,q | H | p’,q’〉       =  e(p) δp,p’ + e(q) δq,q’  (2a) 

      〈 p,q;k| H | p’,q’;k’〉  =  e(p) δp,p’ + e(q) δq,q’ + ω(k) δk,k’  (2b) 

      〈 p,q| H | p’,q’;k’〉     =  λ (2π/L)1/2 [Γ(p’,k’)  δp,p’+k’ δq,q’ + Γ(q’,k’)  δq,q’+k’ δp,p’] (2c) 

 

where the λ (2π/L)1/2 acts as an effective “charged renormalized” coupling constant used in the 

simulations. 

 In order to guarantee that the spectrum of the single-fermion sector remains invariant under the 

interaction V and the fermion mass remains M for all orders in λ, we have added an appropriate 

(finite) λ-dependent counter-term to the original Hamiltonian.  It can be determined as a function of 

the annihilation and creation operators directly from the (numerical) energy spectrum of the 

single-fermion sector [7].  In the special case of a relativistically invariant Hamiltonian, this 

counter-term would reduce to a simpler form, where a single λ-dependent bare mass parameter 

M(λ) ensures the mass-renormalization and the invariance of the physical mass M with λ.   

 We propose here to compute the (positive) binding energy Eg(λ) from the difference between 

the (renormalized) lowest energy of the two-fermion sector and 2 Mc2.  Alternatively, it could also 

be defined as |E2(λ) – 2E1(λ)|, where E1(λ) and E2(λ) are the ground states of the single- and 

two-fermion sectors of the original Hamiltonian.  This second procedure would also remove the 
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need for energy renormalization as any energy shifts in E1 and E2 are naturally cancelled out.  

While both definitions seem to give similar binding energies, it remains an open question to us, 

which of the two definitions matches actual experimental data better. 

 In Figure 1 we display the binding energy Eg(λ) between the two fermions as a function of a 

wide range of the coupling strength λ.  We choose here M=1 a.u. and m=0.1 a.u., which leads to a 

similar mass ratio as the one for real nucleons and pi-mesons (about 939/139).  For a coupling 

strength around λ=9000 a.u. the binding energy to rest mass ratio computed from our model is 

comparable to the real ratio for the three-dimensional deuteron, which has a binding energy of 

Eg=2.2 MeV.   

 

 

Figure 1.  The bound state energy Eg(λ) for two fermions as a function of the coupling 
constant λ.  The discrete markers show the predictions according to several approximate 
theories as discussed in the text.  The parameters λ2F, λBsum are for L=30 a.u. and λ1F is 
larger than the displayed range.  The number of maximum momentum states for the 
fermions and bosons (Pmax=200 2π/L corresponding to 22454 states in the Hilbert space) 
was chosen large enough to have converged data. 
 

 In order to better visualize the different scaling of the energy with the coupling strength λ, we 

have used doubly logarithmic axis notations.  There are (at least) two distinct regions where the 

nearly straight-line behavior suggests a simple power-law scaling of Eg in λ.  In the very weak 

coupling regime the binding energy grows quadratically with λ.  Here the spatial extension of the 

corresponding weakly coupled bound state is comparable to the computational box length L and as 
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a result the binding energy itself depends on L, as the second curve for L=15 a.u. (dashed line) 

shows deviations from L= 30 a.u.   With increasing L, the size of this λ2-region (in terms of λ) 

decreases and it vanishes for infinitely extended systems, L  →∞. 

 The physically more interesting region is the one for larger coupling strength λ where the 

ground state is so deeply bound that its spatial extension is much less than L and the energy 

becomes independent of L.  Here the binding energy grows with a power in λ higher than quadratic 

and the results for L=15 a.u. and L=30 a.u. merge. 

 As the energies are converged numerically they should agree in principle with the predictions of 

the exact scattering operator and therefore be equivalent to the summation of the Feynman 

diagrams to all orders in the relevant Hilbert space.  However, the computational approach can be 

used in regions where traditional methods (Feynman-Dyson expansions, etc.) are difficult to apply 

and non-perturbative approaches are necessary. 

 In the second part of this work the validity domains of approximate theories such as the 

Rayleigh-Schrödinger perturbation theory in V (Eq. 1) and the effective potential picture are 

established.   

 As the operators are available as finite matrices, it is possible to compute the perturbative 

predictions for the energy Eg to nearly arbitrary orders in λ.  In this finite dimensional Hilbert 

space we need to construct the corresponding matrices for the interaction potential V and the 

truncated resolvent G in the unperturbed basis.  It is related to the usual resolvent G(H0,z) ≡ 

1/(z-H0), but evaluated at the unperturbed energy z=ω(0) and acts only on the 

complementary space, such that G |ω(0)
〉 = 0, where H0 |ω(0)

〉 = ω(0) |ω(0)
〉.  The expansion 

coefficients in the energy Eg (λ) = Σn=0
 ω(n) λn can then be obtained iteratively from the 

usual scheme of the Raleigh-Schrödinger perturbation theory [8,9] as 

 

                                  ω(n)  =   〈ω(0)| V |ω(n-1)
〉   (3a)  

                        |ω(n)
〉  =  G V|ω(n-1)

〉 – Σj=1
j=n-1  ω(j) G |ω(n-j)

〉   (3b) 

 

 The squares (crosses) in Figure 1 denote the perturbative predictions up to 4th (150th) order for 

Eg(λ).  It is interesting to note that while the Hamiltonian is the same for the single- and 
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two-fermion sectors, the radii of convergence as well as their scaling with the spatial regulator L are 

quite different.  The power series expansion in the two-fermion sector for Eg(λ) in λ is convergent 

for  λ<λ2F (with λ2F ≈ 6.3 ×103  L-1/2) while the corresponding radius for the one-fermion sector 

does not even depend on the spatial cut-off L and is given by λ1F ( ≈ 2.9 ×104 a.u., outside the plot 

range of Fig. 1).  In the limited region of convergence (λ<λ2F), perturbation theory predicts the true 

binding energy Eg(λ) accurately.  For example, for λ=600 a.u. the error of 150th order perturbation 

theory is less than 3×10-7 % compared to the exact value.  

 For larger couplings λ2F<λ<λBsum, we enter a very interesting intermediate regime that is 

independent of the regulator L, but the perturbative expansion diverges.  This is consistent with the 

expectation that bound states are intrinsically non-perturbative for any dynamics that are spatially 

not constrained (L=∞).  However, quite surprisingly, the terms can still be summed up if the normal 

Borel procedure for infinite sums [10,11] is generalized to a finite number of terms with diverging 

trend.  This shows that, contrary to common belief, the information contained in a (diverging) 

perturbation theory can still be used to predict bound state energies.  However, this is possible only 

for a finite L [12], as each individual expansion coefficient approaches infinity for L→∞.  The 

numerically obtained predictions by this summation technique are indicated by the open circles in 

Fig. 1.  For example, while for λ = 1380 a.u. the sum of the first 150 perturbative terms Eg(λ) = 

Σn=0
150 ω(n) λn amounts to 6.9 ×108 a.u. (reflecting the diverging nature of its partial sums), 

applying the Borel-like technique predicts Eg(λ) = 6.575 ×10-2 a.u., which differs from the exact 

numerical energy by less than 0.45%.   

 Another approximate approach frequently used to obtain binding energies is based on a 

quantum mechanical potential energy V(r) that can be constructed from an effective Hamiltonian 

Hd.  Here the Hamiltonian Hd is constructed in such a way that it leads to the same scattering 

operator up to O(λ2) in the relevant subspace as the one for H.  It can be obtained from a general 

Ansatz for the interaction energy that obeys all required symmetries as a multiple integral over 

hexa-linear products of the fermionic and bosonic annihilation and creation operators with 

unknown expansion coefficients.  By comparing the scattering operators to the same order, these 

coefficients can be determined.  It also turns out that the first-order term in λ vanishes.  For the 

specific system in Eq. (1) this procedure would lead to the effective Hamiltonian [13,14] as  
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         Hd = H0 + λ2 ∫ dp ∫ dp’ ∫ dk S(p,p’,k) b†(p+k) b(p) d†(p’-k) d(p) a(k) a†(k)                  (4) 

 

where the coupling function is given by S(p,p’,k) ≡ 2Γ(p,k) Γ(p’,-k) /(E p’+k – Ep’ – ωk).  In order to 

relate Hd to an effective single-particle quantum mechanical problem, we have to assume that the 

recoil of the bosons on the fermions is negligible.  We can then approximate the energy e(p) 

→Mc2+p2/(2M), the coupling function Γ(p,k) → [4π ω(k)]-1/2 and therefore S(p,p’,k) → – [2π 

ω(k)2]-1.  In the two-fermion sector for zero total momentum, the resulting Hamiltonian matrix 

takes the form 〈-pi,pi| Hd |-pj,pj〉 = pi
2/M δ(pi-pj) + W(pi–pj), where W(k)≡ – γ2/[2πω(k)2].  This 

matrix is mathematically identical to the one for a quantum mechanical Hamiltonian Hqm = p2/ 

(2Mred) + V(r) for an effective particle with reduced mass Mred≡M/2 in an attractive (Yukawa-like) 

binding potential V(r) = (2π)-1/2∫ dk exp(ikr) W(k) = – λ2/(2mc3) exp(-m c |r|).  Solving the 

Schrödinger equation for the ground state energy Eqm (λ) we find that Eqm(λ) for small λ grows 

quadratically  (finite L) or quartically (L=∞). 

 The quantum mechanical ground state energies Eqm(λ) are indicated in Fig. 1 by the solid 

circles.  For interactions up to λ=3000 a.u., the omission of the fermion-boson recoil and other 

potentially relevant processes (used to derive Hd) seems to be justified.  In fact, for the entire 

displayed range 0<λ<9000 a.u. recoil would only decrease the binding energy by at most 0.17%.  

As the effective Hamiltonian [and therefore V(r)] was constructed from only the lowest-order term 

in the Feynman-Dyson expansion, it cannot take higher order radiative processes such as the 

Bremstrahlung or other non-photon number conserving mechanisms into account.  The figure 

shows that these radiative corrections become rather relevant for λ>3500 a.u. where they begin to 

lower the binding energy.  For λ=9000 a.u. (corresponding to the real deuteron system), the 

higher-order processes lower the energy [predicted by V(r)] by 37%.  It is in this regime where the 

proposed computational approach will be most valuable to provide us with new insights into the 

various dominant contributions to the binding energy and to guide the construction of effective 

many-body forces. 

 In addition to providing us with data about the binding energy, the computational approach can 

be used to study for the first time the spatial distribution of the particles in the bound state beyond 

the potential picture. 
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Figure 2.  The spatial distribution of the two fermions in the ground state as a function of 
the relative coordinate r.  For comparison, the dotted line is the quantum mechanical 
ground state obtained from the Schrödinger equation for the Yukawa potential V(r). 
[Parameters as in Fig. 1]  

 

 The spatial probability distribution of the fermions can be obtained from the expectation value 

〈b†(r)b(r)d†(r=0)d(r=0)〉, where the position-dependent operators are obtained from the Fourier 

transform of the corresponding momentum creation and annihilation operators.  In Figure 2 we 

display this distribution together with the quantum mechanical ground state probability |Ψg(r)|2, 

obtained from the Schrödinger equation [p2/ (2Mred) + V(r) ]Ψg(r) = EgΨg(r).  For small λ the match 

is fairly good, which is unexpected as the Hamiltonians H and Hd are only unitarily equivalent and 

thus do not necessarily guarantee identical wave functions.   

 Again, a direct comparison of the two states shows that the omission of the fermions’ recoil is 

insignificant for the spatial distribution.  However, for larger λ the quantum mechanical Yukawa 

potential-based description fails to account for the wider spatial distribution of quantum field 

theory.  Higher-order radiative processes apparently lead to a decrease in localization.  This 

increase of the average separation between the two fermions in the ground state is also consistent 

with the decreased binding energy as discussed in Fig. 1.   

 In addition to predicting the spatial distribution of the two fermions, we can also examine the 

joint boson-fermion spatial distribution in the ground state |g〉 of the single-fermion sector given by 

the expectation value ρf,b(x,y) ≡ 〈g| b†(x)b(x) a†(y)a(y) |g〉.  Due to the overall translation 

invariance under a shift s, ρf,b(x+s,y+s) = ρf,b(x,y), this distribution is only a function of the relative 
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coordinate r = x-y.  Even though this distribution is for virtual bosons, it might still provide us with 

a possible connection to the classical force field that surrounds each fermion.  If the fermion-boson 

mass ratio M/m is very large, ρf,b(x,y) falls off monotonically on the scale given by the Compton 

wavelength of the boson.  This is similar to spatial decay of the (Yukawa) force field associated 

with the potential picture discussed above.  We will defer it to future studies to examine if there is a 

more quantitative relationship between these quantum field theoretical densities of the bosons and 

the force fields predicted from quantum mechanics.  We can speculate that these bosonic spatial 

distributions might also guide a better construction of effective force-fields. 

 In order for the proposed approach to become an effective tool for future investigations (for 

example in QED), several challenges have to be addressed.  As mentioned above, the main 

bottleneck of this tool is the restriction of the accessible Hilbert space due to the available computer 

memory.  However, it should be possible to optimize the set of basis states, as we need to describe 

only specific energy regions within the spectrum, such as bound states.  While for our illustrative 

model system the fermion sectors were decoupled, in a real QED system the number of electrons 

and positrons are not conserved and for example, bound state energy corrections due to the vacuum 

polarization could be studied by the current approach. 

 In summary, we have proposed a computational method to determine the bound state energies 

and wave functions for general quantum field theoretical interactions between fermions and bosons.  

For systems that are computationally accessible (meaning that the data do not depend on the spatial 

and momentum regularization or any truncation to the Hilbert space) this approach is in principle 

exact.  This was illustrated for a Yukawa-like system and demonstrated how it can be used to 

evaluate the accuracy of approximate methods, including perturbation theory (in its converging and 

diverging regimes) or methods that can lead to quantum mechanical potentials.  For example, 

Bremsstrahlung as the leading radiative correction to the potential picture decreases the binding 

energy and widens the spatial distribution of the two fermions in the ground state.   
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