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We smoothly tune the dimensionality of pancake-shaped °Li Fermi gas clouds from quasi-two-
dimensional to two-dimensional (2D) to measure radio-frequency spectra and cloud profiles in both
regimes. In the quasi-2D case, where Er/hv. ~ 1, with Er the Fermi energy and hv. the har-
monic oscillator energy in the tightly confined direction, we confirm that the radio-frequency spectra
strongly disagree with 2D-mean field theory. Then we tune to the 2D regime, Er << hv., where
the measured radio frequency spectra are in very good agreement with 2D-mean field theory. Nev-
ertheless, the measured cloud profiles strongly disagree, confirming predictions that a beyond mean
field approach is required throughout the 2D to quasi-2D crossover.

PACS numbers: 03.75.Ss

Quasi-two-dimensional (quasi-2D) geometries play im-
portant roles in high-temperature superconductors [1],
layered organic superconductors [2], and semiconductor
interfaces [3]. In high-transition temperature copper ox-
ide and organic superconductors, electrons are confined
in a quasi-two-dimensional configuration, creating com-
plex, strongly interacting many-body systems, for which
the phase diagrams are not well understood [4]. En-
hancement of the critical temperature 7T for the quasi-2D
regime, as compared to true 2D regime, has been pre-
dicted for thin films in parallel magnetic fields [5] and for
quasi-2D Fermi gases containing atoms in excited states
of the tightly confined direction [6], where T, may ex-
ceed the 3D value. Ultracold atomic Fermi gases in 2D
and quasi-2D geometries provide model systems, which
have been the subject of numerous predictions [6-19] and
experiments [20-32].

In 2D systems, the dimer binding energy Ejp > 0 sets
the natural scale of length for scattering interactions [33],
but a many-body treatment is required for Er > Ej, as
the inter-atom spacing is then smaller than the dimer
size. 2D-BCS mean field theory (MFT) [7] provides an el-
egant treatment of this problem, but MFT is expected to
fail in 2D systems, as noted by Randeria and Taylor [34]
and shown by many recent predictions [15, 16, 18, 35-38].
For quasi-2D systems, the effect of the third dimension
on the equation of state and pairing energies is not yet
understood [6, 19].

Radio frequency spectra obtained with Ep/hv, << 1,
in the nearly 2D regime [24, 25|, reveal that the absorp-
tion threshold is close to E}, a 2D-BCS (Bardeen-Cooper-
Schrieffer) mean field prediction [7] that one would not
have expected to be quantitatively valid in 2D [34]. Al-
though one might expect similar 2D-behavior for a quasi-
2D gas with Ep/hv, ~ 1, the measured spectra are in
strong disagreement with BCS mean field theory [22], as
are the measured thermodynamic properties [21, 28-32],
which require a beyond mean field treatment. However,
there has been no experimental study of the thermody-
namic properties in the nearly 2D regime.

In this Letter, we study a two-component °Li Fermi
gas in a new trap geometry that is smoothly tunable from

FIG. 1. The radial confinement of a focused CO» laser beam
(blue) controls the dimensionality of pancake-shaped clouds
(red) in a standing-wave optical lattice. The dimensionality
of each cloud is determined by the ratio of the radial Fermi
energy Er to the energy level spacing hv, in the tightly con-
fined z-direction of each pancake site. Increasing the CO2
laser intensity tunes the cloud from two-dimensional, where
Er/hv. << 1, to quasi-2D, where Ep/hv. ~ 1.

2D to quasi-2D, enabling measurements of both radio fre-
quency spectra and radial cloud profiles under identical
conditions for each regime. For the quasi-2D gas, we
find that the spectra are inconsistent with 2D-BCS the-
ory. For the 2D gas, we find that the spectra can be fit
by 2D-BCS mean field theory, consistent with previous
work [24, 25]. In contrast to the spectra, we find that
the radii for 2D clouds are much smaller than those pre-
dicted by 2D-BCS mean field theory, which yields ideal
gas density profiles [12]. Our results show that there is
no transition between 2D and quasi-2D systems and that
beyond mean field descriptions are required in both cases.

Our experiments, Fig. 1, employ two 1064 nm beams,
intersecting at an angle of 44.5°, creating an array
of pancake-shaped optical traps separated by 0.746 pm,
which tightly confine atoms along the z-axis. Superposed
on this periodic array is a focused CO4 laser beam that
provides radial confinement, which controls w, , the ra-
dial harmonic oscillator frequency of a noninteracting
atom in the trap. The interaction strength of a bal-
anced (50-50) mixture of atoms in the two lowest hy-
perfine components (denoted 1,2) of °Li is tuned using
the broad Feshbach resonance at 832.2 G [39, 40]. By
varying the COs laser intensity, we smoothly change w,
from 27 x 0.36 kHz to 27 x 2.15 kHz, which determines



the ideal 2D gas radial Fermi energy, Er = hw VN,
where N ~ 2000 is the total number of atoms in one
site. The interaction strength is characterized by the pa-
rameter Ep/FEpyi2, where Epo is the binding energy of
a 1 — 2 dimer in the pancake trap [22]. We choose the
dimensionality of each pancake-shaped site by tuning the
ratio of Er to the harmonic oscillator energy level spac-
ing hv, = 24/s Er in the tightly confined z-direction,
with recoil energy Fr = h x 14.9 kHz and s Er the lat-
tice depth. Using the Kapitza-Dirac effect, we find s = 15
and hv, = hx116 kHz. The cloud is 2D for Er/hv, << 1
and quasi-2D for Ep/hv, ~ 1.

To probe the pairing energy, we use radio-frequency
excitation of the transition from the atomic hyperfine
state 2 to a higher lying, initially empty hyperfine state
3. We record the number of atoms remaining in state 2 as
a function of the excitation frequency relative to the bare
atom hyperfine transition frequency, 14, i.e., Avgr =
vRF — 1. We measure 13, using a high temperature, low
density 1 — 2 mixture, which agrees with measurements
for a noninteracting cloud containing atoms only in state
2. We then observe the rf spectra in low temperature
mixtures, which exhibit a shifted pairing peak, as shown
in Fig. 2 for B = 1005 G and in Fig. 3 for B = 834 G.

We consider first the measurements in the 2D regime,
the upper spectra in Fig. 2 and Fig. 3. In our experi-
ments, where Er > FEjp12, we expect many-body physics
to be important, as the interparticle spacing is then com-
parable to or smaller than the dimer size. For the 2D
regime, we can try to apply 2D-BCS theory for a true
2D system [12]. In this case, the 2D-BCS prediction
for a 2 — 3 transition with a noninteracting final state
(Epyis << Epi2) is hAvgp = Epia, precisely the dimer
pairing energy, as noted previously [22, 25]. However, in
our experiments Fjp13 is not negligible, so we determine
the 2D spectrum including the In(Ejp13/ Fp12)-dependence
arising from final state interactions [22, 41]. We deter-
mine the dimer binding energies in the finite-depth opti-
cal lattice using the method of Ref. [42]. The calculated
2D spectra are convolved with a Lorentzian of width w
(FWHM). We believe that the linewidth w arises from
the short lifetime of the excited state 3 in the 1-2 mix-
ture, as we were not limited by spectroscopic resolution
with our pulse duration of 30 ms. For the 2D data, we
measure w = 1.3 kHz at 1005 G and w = 4.3 kHz at 834
G, using the observable atomic 2 — 3 resonance. For
the quasi-2D data, the corresponding widths of 4 kHz
and 12 kHz are found by fitting, as we could not mea-
sure the spectrum of the atomic resonance contribution.
For the upper (2D) spectra in Fig. 2 and in Fig. 3, where
Er/hv, = 0.16 and 0.13, respectively, we find that dimer
spectra, as predicted by 2D- BCS theory, are in very good
agreement with the data, as shown by the calculated red
curves.

Now we examine the measurements in the quasi-2D
regime, shown as the lower spectra in Fig. 2 and Fig. 3,
where Er /hv, > 0.67. Here, we find that 2D-BCS theory
does not fit the data. Recently, zero temperature 2D-

BCS theory has been extended to include higher axial
states [19], which one expects would contribute in the
quasi-2D regime. The predictions show that in the quasi-
2D regime, the pairing resonances should be significantly
shifted upward in frequency as observed, but quantitative
agreement is not obtained [43].

We also consider a 2D-Fermi-polaron model, where
spin-down atoms act as impurities dressed by particle-
hole clouds in a sea of spin-up atoms. We extend this
picture by assuming that the polarons are fermionic and
weakly interacting, so that the model is applicable even
for a 50-50 mixture of both spin states. This heuristic
model predicts several features of our previous data in
the quasi-2D regime [22, 29] and is consistent with more
detailed treatments based on the Bethe-Goldstone equa-
tion [44, 45], which describes two-body interactions in a
many-body system. In the spectra, the model predicts a
resonance for hAvrp = Ep13 — Ep12, where the energy of
each state is given by

Ep =y(q)er (1)

Here, ep = wh? n/m is the local Fermi energy, m is the
atom mass, and n is the total density for the 50-50 mix-

ture. An approximate form for the dimensionless factor
y(q) is [44, 45],

—2

y(q) = m7

(2)
where ¢ = €p/Ep. This analytic result interpolates be-
tween the molecular regime (neglecting the molecular
mean field) at magnetic fields well below the Feshbach
resonance and agrees with the Fermi polaron approxima-
tion [22] and recent QMC predictions [46] for ep/E}, > 3.
The dashed-green curves in the spectra of Fig. 2 and
Fig. 3 show the predictions using Eq. 2, with

2mpdpn(p)
a0 [ I+ @0 By — By — By i )

where the 2D-density n(p) is determined from fits to the
measured column density profiles. As the density de-
creases, the local Fermi energy decreases from its maxi-
mum value, producing a downward sweeping broad spec-
trum, consistent with the data. We see that the 2D-
polaron spectrum based on Eq. 2 predicts resonances in
reasonable agreement with the quasi-2D data.

In previous studies of quasi-2D spin-imbalanced and
spin-balanced clouds [29], we have measured both the
cloud radii and the pressure for Fr/hv, = 1.5. There, we
find that the 2D-polaron model gives a reasonable fit for
the measured radii and pressure, while 2D-BCS theory
for a balanced gas predicts an ideal gas pressure and ideal
gas cloud profiles [12, 29], in strong disagreement with
the measurements. Recently, Fischer and Parish [6] have
extended finite temperature 2D-BCS theory to include
higher axial states, which are expected to contribute to
the thermodynamics in the quasi-2D regime. In this case,
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FIG. 2. Radio-frequency spectra at B = 1005 G with

v, = 116 kHz. Top: 2D regime with Ep/hv, = 0.16,
Eblz/hl/z = 0.0447 EF/Eblz = 3.577 and Eblg/hl/z = 0.016.
Bottom: Quasi-2D regime with Er/hv, = 0.75, Eyi2/hv. =
0.044, Er/Ep2 = 17.1, and Epiz/hv. = 0.016. The frac-
tion of atoms remaining in hyperfine state 2 is measured as a
function of radio-frequency relative to the bare atom 2 — 3
resonance frequency. The solid-red (dashed-green) curves de-
note the dimer (polaron) prediction with no free parameters
(top) and fitted width w = 4 kHz (bottom).

the predicted pressure decreases below the ideal gas pres-
sure with increasing Er /hv., but it is well above the 2D-
polaron prediction [29], which agrees with measurements
in the quasi-2D regime [21, 29].

Our measured spectra for the 2D regime appear to
agree with 2D-BCS mean field theory, which predicts
dimer spectra, consistent with the 2D spectra obtained
in Refs. [24, 25]. To examine the 2D-BCS predictions fur-
ther, we use an in-situ phase-contrast method to image
the dense clouds in the 2D regime with Ep/hv, < 0.18.
From the atom number and peak column density [29], we
obtain the cloud radii shown in Fig. 4.

Over the measured range of Er/E), we see that the
cloud radii are well below the ideal gas limit R/Rpp = 1,
where Rrp = \/2Ep/mw? is the Thomas-Fermi radius.
In contrast, 2D-BCS theory for a true 2D system predicts
ideal gas Thomas-Fermi profiles [12, 29], R/Rrpr =1, in
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FIG. 3. Radio-frequency spectra at B = 834 G with v, = 116
kHz. Top: 2D regime with Er/hv, = 0.125, Ep12/hv. = 0.20,
Er/Eyi2 = 0.62, and Ep13/hv. = 0.032. Bottom: Quasi-2D
regime with Er/hv. = 0.67, Ep2/hv. = 0.20, Er/Ep2 =
3.32, and FEp13/hv, = 0.032. The fraction of atoms remain-
ing in hyperfine state 2 is measured as a function of radio-
frequency relative to the bare atom 2 — 3 resonance fre-
quency. The solid-red (dashed-green) curves denote the dimer
(polaron) prediction with no free parameters (top) and fitted
width w = 12 kHz (bottom).

strong disagreement with the data.

Now we consider the 2D-polaron model prediction,
shown as the the lower side of the blue band in Fig. 4.
The cloud radii are determined from the local chem-
ical potential p = 9f/0n, which is determined from
the approximate free energy density for the balanced
gas [29, 45],

f=5erL+y(@). (4)

For the spin-balanced 1-2 mixture, using Eq. 2, we obtain
the cloud radii in units of the ideal gas Thomas-Fermi

radius [29],
R _ Ep12
o) + 282 5
R £(0) + Vo (5)

where f1(0) is the chemical potential at the center of the



cloud in units of Epr, which is self-consistently deter-
mined [47]. For large values of n = In(\/2EFr/Ep12) ~
In(kpasp), expansion of Eq. 5 to lowest order in 1/n
leads to R/Rrp ~ 1 — 1/(4n), the density profile of a
Fermi liquid [48] in a harmonic trap. Here, kp is the
Fermi momentum and azp is the 2D scattering length.
We plot the Fermi liquid result as the dashed curve in
Fig. 4.

For these experiments, we are not able to cool the cloud
as efficiently as in our previous studies in a CO4 laser lat-
tice, where we obtained T'/Tr < 0.2. We estimate the ef-
fect of finite temperature by using ideal gas temperature
scaling for the zero temperature radii. For T'/Tr = 0.2,
we obtain the upper side of the blue band in Fig. 4.
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FIG. 4. Cloud radii versus Er/Ep,, where Ep is the ra-
dial Fermi energy for an ideal gas, Rrp is the Thomas-
Fermi radius, and FEp12 is the 2D dimer binding energy of
a 1 — 2 atom pair. The blue band shows 2D-polaron model
prediction at 7" = 0 (lower side) and 7//Tr = 0.2 (upper
side). The solid line at R/Rrr = 1 is the 2D-BCS predic-
tion. The dashed curve is the Fermi liquid limit, R/Rrr =~
1-0.5/In(2EF /Ep12). Note that the statistical error bars are
comparable to the point size.

In conclusion, we have measured the pairing energy
and cloud radii for nearly 2D and quasi-2D Fermi gases.
Our results clearly confirm theoretical predictions that a
beyond mean field description is required throughout the
2D to quasi-2D crossover.
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