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We propose an experimental protocol to study p-wave superfluidity in a spin-polarized cold Fermi gas tuned

by an s-wave Feshbach resonance. A crucial ingredient is to add a quasi-1D optical lattice and tune the fillings

of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p-wave

symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected π-phase

modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions,

density of states and spatial densities for a realistic experimental setup with a shallow trap. The π-phase p-wave

superfluid is reminiscent of the π-state in superconductor-ferromagnet heterostructures but differs in symmetry

and physical origin. The spatially-varying phases of the superfluid gap provide a novel approach to synthetic

magnetic fields for neutral atoms. It would represent another example of p-wave pairing, first discovered in

He-3 liquids.

Coexistence of singlet s-wave superconductivity with fer-

romagnetism is a long-standing issue in condensed matter

physics [1]. One of the most interesting phenomena is the so-

called π-phase achieved in artificially fabricated heterostruc-

tures of ferromagnetic and superconducting layers [2–5],

where the relative phase of the superconducting order param-

eter between neighboring superconducting layers is π. The

π-state offers new ways for studying the interplay between

superconductivity and magnetism and has potential applica-

tion for quantum computing in building up superconducting

qubits through the π phase shift [6, 7]. Different settings for

its realization have been discussed, such as in high Tc super-

conductors [8–10] and in spin-dependent optical lattices [11].

In this letter, first we show that an unconventional p-wave

π-phase superfluid state emerges in the experimental system

of a Fermi gas in a quasi-one dimensional optical lattice [12].

This π-phase superfluid would not only represent another in-

teresting example of a long-sought p-wave superfluid, but

would also be useful for creating synthetic magnetic fields for

neutral atoms. Then we propose experimental protocols for

observing this novel state by tuning the spin polarization. This

is reminiscent of the π-state in superconductor-ferromagnet

heterostructures [1]. However, the π phase shift of the su-

perfluid gap here arises from a different mechanism—the rel-

ative inversion of the single particle band structures (s- and

p-orbital bands) of the two spin components involved in the

pairing. As a result of this novel pairing mechanism, such a

π-phase superfluid state has a distinctive feature—a center-

of-mass (COM) p-wave symmetry, which distinguishes it

from other π-states in previous studies [1, 11]. We map out

the phase diagram as a function of controllable experimen-

tal parameters—atom density and spin polarization. There is

a large window for the predicted COM p-wave π-phase su-

perfluids in the phase diagram at low density and it occurs

at higher critical temperature in relative scales, enhancing its

potential for experimental realization. Note that in a realistic

experimental setup, an external trapping potential is required.

For this case, several striking experimental signatures are pre-

dicted: (1) a locally detectable momentum distribution [13]

through time-of-flight shows dramatic changes of its shape re-

sulting from the pairing between different parity orbitals (i.e.,

s and p orbitals); (2) distinctive features are found in the oc-

cupied local density of states (LDOS) such as the existence

of a finite gap and midgap peak, which can be detected via

spatially resolved radio frequency (rf) spectra [14, 15]; (3)

the phase boundary between the superfluid and normal states

can be determined by in-situ phase-contrast imaging of the

density distributions [12]. The orbital degrees of freedom

play an essential role here; recently the research of higher or-

bital bands in optical lattices has evolved rapidly [16]. For

p-band fermions with attractive interaction, the chiral center-

of-mass p-wave superfluidity in 2D [17], superfluids similar to

the Fulde-Ferrell-Larkin-Ovchinnikov [18] and an orbital hy-

bridized topological Fulde-Ferrell superfluid [19] were found

in theoretical studies. As we shall show with the model below,

the pairing composed of different parity orbital fermions will

lead to unexpected COM p-wave π-phase superfluids.

Effective model. Consider a Fermi gas with s-wave at-

traction composed of two hyperfine states, to be referred to

as spin ↑ and ↓, loaded in a strongly anisotropic 3D cu-

bic optical lattice. In particular, we consider the lattice po-

tential VOL =
∑

α=x,y,z

Vα sin2(kLrα) with lattice strengths

Vz = Vy ≫ Vx, where kL is the wavevector of the laser

fields. As shown in Fig. 1(a) and (b), the lowest two energy

levels are s and px orbital states. In the following, the px or-

bital state is simply referred to as the p orbital. Due to the

strong confinement of the lattice potential in the y and z di-

rections, the system is dynamically separated into an array of

quasi-one dimensional tubes. A key condition proposed here

is to have a strong spin imbalance [20–22] such that the spin ↑
and ↓ Fermi levels reside in the s and p orbital bands respec-

tively (e.g., Fig. 1(a) and (b)), in order to hybridize the spin

and orbital degrees of freedom. In Supplementary Sec. S3, a

possible experimental realization of our proposal is discussed
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in detail by taking 6Li atoms as a specific example.

In the tight binding regime, the system is described by a

multi-orbital Fermi Hubbard model

H = −ts
∑

r

C†
s↑(r)Cs↑(r+ ~ex) + tp

∑

r

C†
p↓(r)Cp↓(r+ ~ex)

− t′s
∑

r

[C†
s↑(r)Cs↑(r+ ~ey) + C†

s↑(r)Cs↑(r+ ~ez)]

− t′p
∑

r

[C†
p↓(r)Cp↓(r + ~ey) + C†

p↓(r)Cp↓(r+ ~ez)] + h.c.

− µ↑

∑

r

C†
s↑(r)Cs↑(r) − µ↓

∑

r

C†
p↓(r)Cp↓(r)

+ U
∑

r

C†
s↑(r)Cs↑(r)C

†
p↓(r)Cp↓(r), (1)

where ts and tp are the hopping amplitudes along the x di-

rection for the s and p band fermions, respectively, while t′s
and t′p are the hopping amplitude along the y and z directions.

All the hopping amplitudes as introduced in Eq. (1) are posi-

tive and the relative signs before them are fixed by the parity

symmetry of the s and p orbital wave functions. Cνσ(r) is a

fermionic annihilation operator for the spin σ component (↑
and ↓) fermion with the localized ν (s and p) orbital located

at the lattice site r, and µσ is the corresponding chemical po-

tential. The onsite interaction (last term in Eq. (1)) is of the

density-density type and arises from the interaction between

two hyperfine states, which is highly tunable through the s-

wave Feshbach resonance in the ultracold atomic gases. Here

we assume that the interaction strength is much smaller than

the band gap. Therefore, the s-band fully filled spin down

fermions are dynamically inert and are not included in the

Hamiltonian (Eq. (1)). In this work, we focus on the case

with attractive interaction where superfluidity is energetically

favorable.

Phase diagram at zero temperature. In order to study the

superfluidity in our system, we apply the mean-field approxi-

mation and assume the superfluid pairing is between different

parity orbitals, i.e., between |s ↑〉 and |p ↓〉 states, in a general

form ∆(r) = U〈Cp↓(r)Cs↑(r)〉 =
M
∑

m=1
∆m exp(iQm · r),

where M is an integer. A fully self-consistent mean field

calculation for the space-dependent order parameter is nu-

merically challenging. We restrict our discussion to two

forms of a variational ansatz, which are the Fulde-Ferrell

and Larkin-Ovchinnikov-like ansatz with the order parame-

ter ∆exp(iQ · r) and ∆cos(Q · r), respectively. This vari-

ational approach adopted here was previously justified by

density-matrix-renormalization-group methods [23]. Here we

choose Q pointing along the x direction, say Q = Q(1, 0, 0)
to fully gap the Fermi surface of this quasi-1D system.

From our calculation (see Supplementary Sec. S1), we find

that the free energy of the analogous LO states is always lower

than that of the FF like phases, except at Q = (π/a, 0, 0)
with a the lattice constant, where the FF and LO-like ansatz

are equivalent. So the ground state of the system is a COM

p-wave superfluid state with modulated pairing order param-
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FIG. 1: (a) and (b) The single-particle energy spectrum of the lattice

potential along kx axis in the units of recoil energy Er for the low-

est three bands through a plane wave expansion calculation, when

Vx = 5Er, Vy = Vz = 18Er . Here we propose to fill spin ↓
fermions to the p band and spin ↑ to the s band, as shown in (b)

and (a), respectively. (c) Zero temperature phase diagram as a func-

tion of lattice filling and polarization when tp/ts = 8, t′p/ts = 0.05,

t′s/ts = 0.05 and U/ts = −9. pπSF and pFFLO stand for dif-

ferent modulated COM p-wave superfluid states with the center-of-

mass momentum of Cooper pairs located at Q = (π/a, 0, 0) and

Q 6= (π/a, 0, 0), respectively. NG-I refers to a normal gas (without

pairing) where the |s ↑〉 band is fully filled while the |p ↓〉 band is

partially filled. NG-II is another kind of normal state where the |s ↑〉
band is partially filled while the |p ↓〉 band is nearly empty. The

grey area is forbidden due to the Fermi statistics constraint on the

lattice filling. The grey line stands for the empty state. (d) Synthetic

magnetic flux in a ladder system composed of two π-phase super-

fluid chains (see Supplementary Sec. S4). An effective anticlock-

wise π flux is generated for both spin ↑ and ↓ fermions. Here we

choose ts = tp = t̃, µν,σ = 0, and interchain tunnelings are absent

due to the large energy offset between neighboring sites along the

y-direction. The ‘±’ in front of t̃ are for spin ↓ and ↑, respectively.

eter ∝ cos(Q · r), which breaks the translational symmetry

spontaneously. Qualitatively, that is because the ±Q pairing

opens gaps on both sides of the Fermi surface, taking advan-

tage of the available phase space for pairing, while the FF

states only open a gap on one side. Since the dispersion of

the p band is inverted with respect to that of the s band, the

pairing occurs between fermions with center-of-mass momen-

tum Q ≃ kF↑ + kF↓, where kF↑ and kF↓ are the two rele-

vant Fermi momenta. When the occupation numbers of |s ↑〉
and |p ↓〉 states are equal, the π-phase superfluid state with

Q = (π/a, 0, 0) is the ground state of the system. In real

space, the pairing order parameter is a function of staggered

signs along the x direction and obeys ∆(r) = −∆(r + aex)
when combined with the periodicity ∆(r) = ∆(r + 2aex).
The π phase shift of the superfluid gap here arises from the rel-

atively inverted single particle band structures directly, unlike

in the conventional FFLO state [24]. The predicted π-phase

superfluid state is found to be quite robust. Even when the

occupation number difference between |s ↑〉 and |p ↓〉 states

is finite, the π-phase superfluid state is still the ground state.
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Particularly in the low density region ns + np ≪ 1, there is a

large window for this π-state.

When the polarization p =
ns↑−np↓

ns↑+np↓
is sufficiently large, the

COM momentum will become incommensurate with the un-

derlying lattice and this incommensurate COM p-wave state

will be referred to as pFFLO. As shown in Fig. 1(c), a phase

diagram as a function of atom density and polarization has

been obtained. It is worth noting that a large regime of param-

eters is found to exist in the phase diagram for the predicted

new p-wave pairing phases, making their experimental real-

ization simpler.

Characteristic signatures of p-wave π-phase superflu-

ids. The most distinctive feature of the predicted π-

state is that the pairing order parameters are spatially

modulated and have p-wave symmetry in the COM mo-

tion. This leads to several characteristic signatures. (A)

the single particle momentum distributions exhibit unique

properties in the following two aspects. The first one

is the shape of the density distribution in time-of-flight.

We calculate the spin-resolved density distribution in the

time-of-flight measurement assumed ballistic expansion as

〈ñνσ(x)〉t =
(

m
~t

)2 ∑

k̃y,k̃z

φ∗
ν(k̃)φν(k̃)〈C

†
νσ(k)Cνσ(k)〉,

where k̃ = mr/(~t) with t the time of flight, φν(k̃) is the

Fourier transform of the ν-orbital Wannier function φν(r),
and k = k̃ mod G is the momentum in the first BZ corre-

sponding to k̃ (G is the primitive reciprocal lattice vector).

Here the defined density distribution of spin down fermions

does not include the background fermions in |s ↓〉. Since

the interaction strength considered here is much smaller than

the band gap, fermions in |s ↓〉 are not involved in the pre-

dicted paired states. Therefore, the contribution from these

fermions to the momentum distributions can be eliminated by

subtracting off the density distribution of (0, k̃y , k̃z) from that

of other (k̃x, k̃y , k̃z), when choosing a certain k̃ (or equiva-

lently a fixed t). As shown in Fig. 2, the highest peak for p
band fermions is shifted from zero momentum resulting from

the non-trivial profile of the p-wave Wannier function super-

posed on the density distributions. The momentum distribu-

tion of superfluids at zero temperature becomes smooth, such

that there is no longer a sharp edge/drop as in the normal state

(Fig. 2). After a characteristic expansion time [25], these mo-

mentum distributions can be detected via a time-of-flight mea-

surement. The second aspect is a mirror-translational symme-

try of the axial density distributions of |s ↑〉 and |p ↓〉 fermions

for the π-phase superfluid state. Following the standard analy-

sis [12, 26], we define the axial density distribution in momen-

tum space as na
νσ(kx) =

1
(2π)2

∫

dkydkz〈C
†
νσ(k)Cνσ(k)〉 for

|s ↑〉 and |p ↓〉 fermions, respectively. We have analytically

proved the relation na
s↑(kx) = na

p↓(π/a − kx) (see Supple-

mentary Sec. S2). It is also confirmed in our numerics as

shown in Fig. 3(c). These signatures can be detected through

polarization phase contrast imaging [12].

(B) the COM p-wave superfluid state here has a spatially-

varying pairing order parameter. This leads to crucial differ-

ences in the Bogoliubov quasi-particle spectra. A finite energy
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FIG. 2: Prediction of spin-resolved density distribution in time-of-

flight, in (a) for |s ↑〉 fermions, while in (b) for |p ↓〉 fermions.

The dashed red and solid black lines show the density defined in the

main text along the k̃x-axis for superfluid and normal phases, re-

spectively. The dash-dot lines show the intensities of the Wannier

orbital functions ∝ |φν(k̃x)|
2 for comparison. Other parameters are

ns↑ = 0.5, np↓ = 0.5, tp/ts = 8, t′p/ts = 0.05, t′s/ts = 0.05
and U/2ts = −12 for superfluids or 0 for normal states. The time-

of-flight densities measure the momentum distributions of the corre-

sponding phases. The absence of sharp edges is a signature of the

superfluid phase at zero temperature, which lacks a Fermi surface

due to the opening of an energy gap.
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FIG. 3: Top row shows occupied density of states (DOS) ρs↑(E), (a)

showing the finite energy gap for the π-phase superfluid state and (b)

showing the midgap peak for pFFLO resulting from Andreev bound

states. Bottom row show the axial density distributions of |s ↑〉 and

|p ↓〉 fermions in momentum space for π-phase (c) and pFFLO (d).

The red and blue solid lines show na
s↑(kx) and na

p↓(kx), respectively,

while the blue dots show na
p↓(Q− kx). See main text for the defini-

tion of ρs↑(E) and na
νσ(k). Since there is a large polarization for the

pFFLO state in (b), which can be considered as an effective external

magnetic field, it leads to a shift of the density of states. Therefore,

the midgap peak in (b) is not at E = 0. In (a) and (c), we choose

ns↑ = 0.5 and np↓ = 0.5, while in (b) and (d), ns↑ = 0.52 and

np↓ = 0.45. Other parameters are the same as in Fig. 1.

gap is shown in the spin-resolved occupied density of states

(DOS) for the π-phase superfluids (Fig. 3(a)). Such spin-

resolved DOS is calculated as ρνσ(E) = 1
2

∑

n[|u
νσ
n |2δ(E −

ζn) + |vνσn |2δ(E + ζn)], where (uνσ
n , vνσn )T is the eigenvec-

tor corresponding to the eigenenergy ζn of the Hamiltonian

Eq. (1) under a mean-field approximation and the summation
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runs over all the eigenenergies. This finite gap in the DOS

gives direct evidence of superfluidity, as distinguished from

the pFFLO state, where a midgap peak exists in the DOS as

shown in Fig. 3(b). This midgap peak signifies the emergence

of Andreev bound states [27]. The energy gap and midgap

peak are found in the spin-resolved DOS for both |s ↑〉 and

|p ↓〉 fermions. For example, the DOS of |s ↑〉 fermions is

shown in Fig. 3. Such signatures in the DOS can be detected

via radio frequency (rf) spectroscopy [14, 28, 29], giving a

plausible experiment probe of the predicted p-wave superflu-

ids.

(C) the predicted COM p-wave superfluid arises directly

from a purely s-wave two-body attraction. This leads to a sig-

nificantly improved transition temperature compared to other

conventional relative p-wave superfluids [30, 31]. It is con-

firmed by our direct calculation of finite temperature phase

transitions for the model Hamiltonian in Eq. (1) (see Supple-

mentary Fig. S1). For instance, consider the lattice potential

in Fig. 1(a) with a = 532 nm. The mean-field superfluid tran-

sition temperature can reach nearly 60 nK when the s-wave

scattering length between 6Li atoms is as ≃ 326 a0 [32],

where a0 denotes the Bohr radius. Further increasing as, to

around 600 a0, the transition temperature rises to ∼ 200 nK,

or even higher. These mean-field superfluid transition tem-

peratures correspond to 0.03 TF and 0.11 TF , respectively, in

which µave =
µ↑+µ↓

2 is taken as the referenced Fermi energy

(hence Fermi temperature TF ).

Besides the striking experimental signatures of the pre-

dicted π-phase superfluids discussed above, the spatially-

varying phases of the superfluid gap can also be used to create

synthetic magnetic fields for neutral atoms as shown in Fig.

1(d) (see details in Supplementary Sec. S4). This scheme

is essentially different from previous studies such as rota-

tion [33–36] or Raman-assisted tunneling [37, 38], since here

the effective magnetic flux originates from interactions.

Experimental signatures in a trap. In the following, we will

discuss the effect of a harmonic trapping potential superposed

on the optical lattices. Assuming that the harmonic trapping

potential is sufficiently shallow compared to the lattice depth,

it is natural to apply the local density approximation (LDA)

and let the chemical potential vary as a function of the posi-

tion. Here we consider the trapping potential in the x direc-

tion. The normal phases (NG-I and NG-II) exist when either

the |s ↑〉 fermions fully fill the band or the |p ↓〉 band is empty.

Therefore, the detectable density profiles of these fermions

through in situ phase-contrast imaging [12] (e.g., Fig. 4) de-

termines the phase boundary between superfluid and normal

states. Figure 4 shows various shell structures found in our

calculation. When the polarization is small, the region in the

center of the trap is the π-phase superfluid. By increasing the

radius from the trap center, the |p ↓〉 band becomes empty and

the system evolves to a normal gas shell surrounding the su-

perfluid center. Upon increasing the spin polarization, in the

center region of the trap, the |s ↑〉 fermions fully fill the band

and the system is no longer a superfluid, but a normal gas.

By moving further away from the trap center, the |p ↓〉 band
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FIG. 4: (a)-(h) Shell structures with a background trapping potential.

The superfluid gap ∆ and density profile ns↑ and np↓ of |s ↑〉 and

|p ↓〉 fermions are shown as a function of the coordinate x, when

tp/ts = 8, t′p/ts = 0.05, t′s/ts = 0.05 and U/ts = −9. The

polarization P =
Ns↑−Np↓

Ns↑+Np↓
is fixed at 0.3 and 0.03 for the first

and second row, respectively. The frequency of the harmonic trap

is chosen to be 120 Hz. (j) The occupied local density of states

(LDOS) of the spin down fermions in a p-wave π-phase superfluid.

Other parameters are the same as in the second row. Here the spin-

resolved LDOS is defined as ρ′νσ(E, x) = 1

2

∑
n
[|uνσ

n (x)|2δ(E −

ζn(x)) + |vνσn (x)|2δ(E + ζn(x))], where (uνσ
n (x), vνσn (x))T is the

local eigenvector corresponding to the eigenenergy ζn(x) of the lo-

cally homogenous subsystem, when using the LDA.

gets empty, and the system becomes a normal gas again. In

between exists a pFFLO superfluid shell. Furthermore, since

the superfluid gap leads to crucial differences in the occupied

local density of states (LDOS) between superfluid and nor-

mal phases, it provides another plausible experiment probe,

measured using spatially resolved rf spectra [14, 15]. In the

presence of the trapping potential as done in many atomic ex-

periments, the inhomogeneity can be modeled using the LDA.

We have found that the π-phase and pFFLO superfluid shells

are characterized by the energy gap and midgap peak in the

LDOS, respectively. For example, Fig. 4(j) shows a finite gap

in the LDOS for the p-wave π-phase superfluid, distinguished

from the normal region. To summarize, measurements in the

spatial (density distribution) and energy (LDOS) space are

predicted to reveal characteristic signatures. Besides, the mo-

mentum distribution (e.g., Fig. 2) can be measured locally [13]

in the presence of a harmonic trap. It presents another possible

observation of the predicted superfluids in momentum space.

Conclusion. We propose that the pairing between different

parity orbital fermions can lead to a p-wave π-phase super-

fluid state. The origin of the π phase shift of the pairing order

is distinct from the previous studies of π-states. We show that
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the predicted π-phase here occurs in a broad range in the phase

diagram especially in the low density region. Increasing the

polarization, we find a phase transition from the π-phase state

to an incommensurate COM p-wave superfluid. Experimental

signatures of the predicted p-wave superfluid states are calcu-

lated in the momentum density distributions, density of states

and real space density profiles when considering a background

trap. These should be useful for future experiments to identify

these new forms of p-wave superfluid states.
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