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We study phase diagrams of one-dimensional bosons with contact interactions in the presence
of a lattice. We use the Worm algorithm in continuous space and focus on the incommensurate
superfluid-Mott-insulator transition. Our results are compared to those from the one-band Bose-
Hubbard model. When Wannier states are used to determine the Bose-Hubbard model parameters,
the comparison unveils an apparent breakdown of the one-band description for strong interactions,
even for the Mott insulating state with an average of one particle per site (n = 1) in deep lattices.
We introduce an inverse confined scattering analysis to obtain the ratio U/J , with which the Bose-
Hubbard model provides correct results for strong interactions, deep lattices, and n = 1.

a. Introduction. Simplified one-band (or few-bands)
effective lattice models such as the Fermi-Hubbard and
t-J models for strongly interacting fermions [1, 2] and the
Bose-Hubbard model for strongly interacting bosons [3,
4] have played a central role in our understanding of
the interplay between quantum fluctuations, interactions,
and lattice effects in a wide range of physical systems
ranging from solid state materials to optical lattices. Un-
fortunately, many-body interactions make it difficult to
establish the limits of applicability of such models, as well
as to explore how changes in the way effective parame-
ters are calculated extend their relevance. With those
questions in mind, here we study 1D systems of bosons
with contact interactions in the presence of a lattice.

Effective 1D Bose systems with contact interactions are
created in experiments with ultracold gases in deep two-
dimensional optical lattices [4–6]. An additional (weaker)
optical lattice has been used to drive superfluid-Mott-
insulator transitions [7–9]. Such transitions are best un-
derstood for weak contact interactions and deep lattices,
a regime that can be modeled using the one-band Bose-
Hubbard model [10, 11]. The phase diagram of this model
has been studied in great detail using a wide variety
of computational techniques [12–16]. It is well estab-
lished that the phase transition driven by changing the
site occupancies (incommensurate transition) belongs to
the mean-field universality class, while the one with con-
stant integer filling (commensurate transition) belongs to
(d+ 1)XY universality class [4].

Beyond the one-band approximation, it is known that
in 1D an arbitrarily weak lattice can lead to the forma-
tion of a Mott-insulating phase in the strong interaction
regime at integer fillings [8, 17]. This “pinning” tran-
sition is described by the (1+1) quantum sine-Gordon
model [4, 18], and has been studied very recently [9, 19].
Multiband effects have also been seen in collapse and re-
vival experiments in three dimensions, in which they were
recast into renormalized multi-body interactions [20, 21],
and in theoretical studies of quench dynamics [22–24].
Together with other effects such as density-induced tun-
neling, as well as long-range interactions and tunnel-
ing [25], these studies have highlighted the necessity to
go beyond the standard Bose-Hubbard model to describe

many experiments (for a recent review, see Ref. [26]).

In this letter, we focus on the incommensurate Mott
insulator transition in continuous space. To study it,
we use path integral quantum Monte Carlo simula-
tions (QMC) with worm updates [27–29], as detailed
in Ref. [30]. We compute phase diagrams obtained by
changing the lattice depth while keeping the contact in-
teraction strength constant. We consider systems with
fillings of up to two bosons per site. We show that for
strong contact interactions, even for deep lattices and
an average of one particle per site (n = 1), there are
significant deviations from the Bose-Hubbard model pre-
dictions for the phase diagram when the parameters of
that model are determined using Wannier functions. We
introduce an inverse confined scattering analysis that al-
lows one to restore the validity of the Bose-Hubbard
model for strong interactions, deep lattices, and n = 1.

b. Model Hamiltonian. We consider bosons with re-
pulsive contact interactions in the presence of an external
periodic potential Vext(x) = V0 sin2(kx):

H =

N∑
i=1

[
− ~2

2m

∂2

∂x2i
+ Vext(xi)

]
+g

N∑
i<j=1

δ(xi−xj) , (1)

where N is the number of particles, V0 is the lattice
depth, and k = 2π/λ, with λ being the lattice wavelength
(the lattice spacing is then a = λ/2). In the absence of
Vext(x), H reduces to the Lieb-Liniger model, which is
integrable via Bethe ansatz [31]. g is the strength of the
contact interactions, which is related to the effective 1D
scattering length a1D via g = −2~2/ma1D, and to the
Lieb-Liniger parameter γ via γ = mg/(~2ρ) [4]. In the
weak interaction and deep lattice limit, H can be mapped
onto the one-band Bose-Hubbard Hamiltonian

HBH = −J
∑
i

(
a†iai+1 + H.c.

)
+
U

2

∑
i

ni (ni − 1) , (2)

where J is the nearest neighbor tunneling amplitude
and U the the strength of the on-site repulsive in-
teraction [11]. In the shallow lattice limit, as men-
tioned before, H reduces to (1+1) sine-Gordon Hamilto-
nian [8, 18]. This model predicts that the pinning transi-
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tion occurs for γ > γc ≈ 3.5 [17]. Away from those limits,
exact results for phase diagrams can be obtained using
QMC in continuous space [27–29]. In cubic lattices, re-
lated phase diagrams have been reported in Refs. [32, 33].

c. Indicators. We have used two indicators to lo-
cate the transition between the superfluid and insulat-
ing phases. (i) The zero-momentum Matsubara Green’s
function. It requires the calculation of the momen-
tum space Green’s function G(p, τ) [34]. Since the
ground-state has zero total momentum, here we focus
on G(p = 0, τ). In the vicinity of the transition point,
within the Mott insulating phase, G(p = 0, τ) decays
exponentially with the imaginary time τ as τ → ±∞:
G(p = 0, τ) → Z±exp(∓ε±τ), where ε± is the single-
particle/hole excitation energy. In the grand canonical
ensemble, ε± is defined relative to the chemical potential
µ with ε± = |µ − µ±|, where µ± gives the upper/lower
boundary of the Mott lobe. To prove the robustness of
the method, we chose different chemical potentials µ and
obtained essentially the same phase boundary µ± [35].
We also simulated different system sizes with L/a =
24, 30, 42, 60 lattice sites, finding that for L/a & 42 finite-
size effects are negligible [35]. All results reported from
this approach are obtained from systems with L/a = 60.
(ii) The superfluid density ρs = mL 〈W 2〉 /(~2β) [27],
where 〈W 2〉 is the winding number estimator and L is the
system size. In the thermodynamic limit, ρs is nonzero
in the superfluid phase and vanishes in the Mott insulat-
ing phase. In finite systems, ρs satisfies a scaling relation
in the critical regime [36]: ρsL

ξ/ν = F (|µ − µc|L1/ν),
where the critical exponent ξ = ν(d + z − 2), d = 1 is
the dimension, and the correlation length and dynamical
critical exponents are ν = 1/2 and z = 2, respectively,
for the incommensurate transition. At the critical point,
ρsL

ξ/ν is independent of the system size. Thus, one can
obtain the transition point from the crossing of curves
for different system sizes [35].

To determine critical points, it is less computationally
demanding to use G(p = 0, τ) than the finite-size scaling
analysis of ρs. In the former approach one only needs
to do a calculation for a sufficiently large system size for
one value of µ close to the phase boundary to determine
µ+ or µ−, while in the latter multiple simulations with
different values of µ and L are needed to locate the cross-
ing point. We then use G(p = 0, τ) for constructing the
phase diagrams, while the scaling of ρs is mainly used to
check results of the former approach.

d. Phase diagrams. As mentioned before, we are in-
terested in the phase diagrams obtained by changing the
lattice depth while keeping a1D (and, hence, γ) constant,
as done in most optical lattice experiments [3, 4]. In
Fig. 1, we report the phase diagrams obtained for three
values of a1D, and for Mott insulating states with one
particle (n = 1, main panel) and two particles (n = 2,
inset) per lattice site. Note that, contrary to the usual
way in which phase diagrams are reported, in Fig. 1 we
plot the phase boundaries in terms of µ−µc0, where µc0 is
the critical chemical potential for the vacuum boundary
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FIG. 1. (Color online) Mott lobes for one particle (n = 1,
main panel) and two particles (n = 2, inset) per site. The
lobes are obtained at fixed effective 1D scattering length
a1D/a = −2.0, −1.0, −2/3 (for n = 1, γ = 1, 2, and 3, respec-
tively). The points are obtained from the zero-momentum
Green function (open symbols) and the scaling of the super-
fluid density (filled symbols). ER = ~2k2/(2m) is the recoil
energy and µc

0 is the chemical potential at the vacuum bound-
ary for each value of V0 (determined from the zero-momentum
Green function). Lines between symbols are to guide the eye.

as obtained in our simulations (it is independent of a1D).
This allows us to reduce a small chemical potential bias
introduced by the finite discretization ∆τ of imaginary
time in our QMC approach. Such a bias vanishes linearly
with ∆τ and, for the small but finite values of ∆τ used
in our simulations, it is negligible when chemical poten-
tial differences are reported [35]. In Fig. 1, open symbols
depict points obtained using G(p = 0, τ), while the four
filled symbols for a1D = −a depict points obtained with
the scaling of ρs. The latter can be seen to lead to re-
sults indistinguishable to those from G(p = 0, τ). Figure
1 shows that, as expected, the Mott lobes grow with in-
creasing γ. Also, the lower boundary of the n = 1 Mott
lobe becomes independent of γ for deep lattices. All Mott
lobes studied here have a finite extent because γ < γc.

e. Gap and the one-band Bose-Hubbard model. Hav-
ing determined the phase diagrams, we compare the pre-
dictions of the QMC simulations with those from the
one-band Bose-Hubbard model. In order to minimize the
number of parameters that need to be computed for the
comparison, we focus on the Mott gap: Eg = µ+−µ−. As
a first estimation, U and J are calculated within the one-
band approximation using maximally localized Wannier
states [37, 38]. The Bose-Hubbard phase diagram [15]
is then translated into the parameters in the continuum.
The results for n = 1 and n = 2 are presented in the
main panels of Fig. 2(a) and 2(b), respectively, and are
compared to the QMC results derived from Fig. 1.

For a1D/a = −2.0 and n = 1 (γ = 1), the gap pre-
dicted by both approaches is nearly indistinguishable for
all lattice depths. The same is expected to be true for
even smaller values of a1D, so we focus on higher fillings
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FIG. 2. (Color online) Mott gaps at fillings n = 1 (a) and n = 2 (b) vs ER/V0 for a1D/a = −2.0, −1.0, −2/3. The open
symbols depict the results from QMC simulations. The dashed lines depict the Hubbard model prediction [15] translated into the
continuum using U and J as obtained from maximally localized Wannier functions [37, 38]. Filled symbols depict the Hubbard
model prediction [15] translated into the continuum using U/J from the two-particle scattering analysis explained in the text,
and U obtained from the exact solution of two interacting bosons in a harmonic trap. Inset in (a): comparison between U/J
as obtained from the Wannier functions (dashed lines) and from the two-particle scattering analysis (filled symbols, consistent
with those in the main panel). Open circles for V0/ER = 0 show the no-lattice asymptotic limit from scattering theory.

and higher values of a1D. For n = 2 and a1D/a = −2.0
(γ = 1/2), already a small deviation can be seen between
the gap obtained from QMC and the Hubbard model pre-
diction. Striking differences, on the other hand, can be
seen for γ = 2 and 3, particularly for the deepest lat-
tices and n = 2. Counter-intuitively, in Fig. 2(a), the
gap predicted by the Hubbard model becomes increas-
ingly larger than the exact one as the lattice depth is
increased (the one-band prediction worsens as the lattice
depth is increased). This suggests that, with increasing
V0, the one-band approximation leads to an increasing
overestimation of U/J , and, hence, of the gap (we will
come back to this point later). Hence, our results show
that, for γ & 1, the closest agreement between the exact
solution and the Hubbard model prediction is obtained
for the weakest lattices, for which the one-band approxi-
mation is most uncontrolled.

f. Inverse confined scattering analysis. When using
Wannier functions, the fact that one neglects the effect
of interactions is what leads to the overestimation of U/J
inferred from Fig. 2. In order to account for interactions
in the calculation of U/J , so that the values of U/J are
the appropriate ones in the limit of deep lattices, we use
an inverse scattering approach. The idea is to obtain U/J
by comparing the exact low-energy scattering amplitude
from the Bose-Hubbard model (aBH) and that of the con-
tinuum model (aCM) in Eq. (1). Our approach is different
from the one followed in Refs. [39, 40], where scattering
analyses were carried out for Feshbach resonances.

As in Refs. [41, 42], we define the 1D analog of the
three-dimensional scattering length a3D. For a transla-
tional invariant system, the scattering wavefunction for

two bosons with total momentum zero can be written as
(in the principal domain x1 > x2)

ψ(2)(x1, x2) = eiθ(q)φq(x1)φ−q(x2) + c.c. , (3)

where φq(x) is the plane-wave eigenfunction with positive
momentum q and energy ε(q). For any non-vanishing
interaction, the scattering phase θ(q) is finite and goes
asymptotically to zero as momentum q approaches zero.
The scattering length a1D characterizes the first nontriv-
ial term in the Taylor expansion of the scattering phase
in powers of the momentum q,

a1D = − lim
q→0+

θ(q)/q . (4)

This definition gives the effective scattering length a1D
of the Lieb-Liniger model, which was introduced pre-
viously. Discretizing the Lieb-Liniger Hamiltonian one
obtains the Bose-Hubbard model and its corresponding
scattering length aBH = −4Ja/U [43].

When an external lattice is added, the propagating
part of the two-body wavefunction has the same form as
Eq. (3), but with φq(x) being a Bloch-state eigenfunction
and ε(q) being its corresponding eigenenergy. For q differ-
ent from half-integer multiples of the lattice wavevector
k, φq(x) and φ−q(x) can be shown to be linearly inde-
pendent. In addition to the propagating part, there is
also a localized part of the two-body wavefunction. It
has a total energy 2ε(q) but complex one-body energies
ζ(η) and ζ(−η) ≡ ζ(η)?, where ζ(η) = ε(q) + iη with
η > 0. For each ζ(η), one can find two linearly inde-
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pendent Bloch eigenstates of the one-body Hamiltonian,
H0 = −~2/(2m)(∂2/∂x2) + Vext(x), labeled as χ[k(η), x]
and χ[−k(η), x] ≡ χ[k(η),−x]. They are related by a
mirror reflection, where k(η) is a Bloch momentum and
χ[k(η), x] is a Bloch state corresponding to it. The (bo-
son) symmetric localized part of the two-body wavefunc-
tion has the form (in the principal domain x1 > x2)

χ(2)(x1, x2, η) = χ[k(η), x1]χ[k(−η), x2] + c.c. . (5)

In general, there are two possible choices of the Bloch
momentum k(η) for each energy. For simplicity, we re-
quire that the imaginary part Im[k(η)] > 0 for η > 0 [44].
We assume that the Bloch vector of the center-of-mass
motion vanishes, and, as a result, the two-body scat-
tering state is a periodic function of the center-of-mass
coordinate. This leads, in turn, to the requirement that
the real part of the corresponding Bloch momentum be a
half-integer of k, i.e., Re[k(ηl)] = lk/2 for l > 0. The full
two-body scattering state can then be written as a com-
bination of the propagating and localized components,

Ψ(2)(x1, x2) = ψ(2)(x1, x2) +

∞∑
l=1

Al χ
(2)(x1, x2, ηl) . (6)

Ψ(2)(x1, x2) is an eigenstate of the two-body Hamil-
tonian with a real eigenvalue outside of the interac-
tion line x1 = x2. Next, we introduce the relative
r = x1 − x2 and center-of-mass R = (x1 + x2)/2 co-
ordinates, and define ψ+(R, r) ≡ φq(R + r

2 )φ−q(R − r
2 ),

of which we need ψ+(R) ≡ limq→0+ ψ+(R, r)
∣∣
r=0

, and

ψ′+(R) ≡ limq→0+ ∂rψ+(R, r)
∣∣
r=0

. The jump boundary

condition [35] imposes the following relationship between
aCM and the coefficients Al of the expansion (6),

ψ+(R)aCM = lim
q→0+

ψ′+(R)

iq
a1D

−
∞∑
l=1

[
χ
(2)
l (R) + a1Dχ

′(2)
l (R)

]
Ãl ,

(7)

where χ
(2)
l (R) = limq→0+ χ

(2)(R + r
2 , R −

r
2 , ηl)

∣∣
r=0

,

χ
′(2)
l (R) = limq→0+ ∂rχ

(2)(R + r
2 , R −

r
2 , ηl)

∣∣
r=0

, and

Ãl = limq→0+ iAl/(2q). Since all functions of R in Eq. (7)
have at least a periodicity of π/k (and are even), a way
to solve that equation numerically is using Fourier ex-
pansions. For a given number lmax of terms in the sum
in Eq. (6), one needs to keep the same number of terms
in the Fourier expansion of all the functions. As a result,
one obtains an inhomogeneous (lmax +1)×(lmax +1) sys-
tem of linear algebraic equations, the solution of which
gives aCM(lmax). We then extrapolate the results to
lmax →∞ to obtain aCM (see Ref. [35] for more details).

In the inset in Fig. 2(a), we compare U/J as obtained
from the scattering and Wannier analyses for the same
values of a1D/a as in the main panels, as well as for
a1D/a = −4. For weak interactions (a1D/a . −2) and

deep enough lattices (V0/ER & 5), one can see that the
results from both approaches are nearly indistinguish-
able. On the other hand, for a1D/a > −2 one can
see that the Wannier analysis increasingly overestimates
U/J as the lattice depth and a1D are increased. This
can be intuitively understood because interactions make
the wavefunction of two particles in a site increasingly
rigid to deformation as the lattice depth is increased. In
that strongly interacting regime, the Wannier function
calculations are not reliable even for deep lattices. As
expected, independently of the value of a1D, U/J from
the inverse scattering analysis strongly deviates from the
Wannier predictions for weak lattices. In the limit of van-
ishing lattice depth, the former predicts U/J = −4a/a1D.

In the main panels of Fig. 2, we show the Bose-
Hubbard model predictions for the phase diagram trans-
lated into the continuum using the scattering analysis
results for U/J , and U obtained using the ground-state
wavefunction of two interacting bosons in a harmonic
trap [35, 45]. For n = 1 [Fig. 2(a)] and γ = 1, there
is almost no visible difference with the Wannier results.
On the other hand, for γ = 2 and deep enough lattices,
the Hubbard model with the improved values of U/J and
U correctly predicts the value of the gap. For the deepest
lattices for γ = 3, we find a small deviation between the
gap predicted by QMC and by the Bose-Hubbard model.
Its most likely origin is the failure of the harmonic poten-
tial to correctly predict U . Further studies are needed to
find more accurate ways to determine U . For n = 2 and
a1D/a & −2, the Bose-Hubbard results are clearly inad-
equate independently of how U/J and U are calculated.

In conclusion, our ab initio calculation of the phase di-
agram of 1D bosons in an optical lattice shows that, for
n . 1, the one-band Bose-Hubbard model remains use-
ful as an effective theory far into the multiband regime –
provided that its parameters are properly renormalized to
account for the contributions of the excited bands. Here,
the renormalized parameters are obtained from an inverse
confined scattering analysis. For n & 2 and γ > 1/2, our
results highlight the need for a more refined effective the-
ory than the traditional one-band Hubbard model. Hav-
ing found experimentally relevant regimes [9, 46] in which
the traditional Bose-Hubbard model fails, our study is
a first step in the needed exploration of beyond Bose-
Hubbard model physics in 1D lattices in the presence of
strong interactions and/or high fillings.
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