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During the last several decades the so-called Keldysh-Faisal-Reiss (KFR) or strong-filed approx-
imation (SFA) has been highly usefulness for the analysis of atomic and molecular processes in
intense laser fields. However, it is well known that SFA does not account for the final-state Coulomb
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Over the past several decades the well-known strong-
field approximation in the form of the so-called Keldysh-
Faisal-Reiss or strong field approximation (KFR/SFA)
[1–3] has provided much fruitful insights into the highly
non-perturbative processes which occur during the inter-
action of intense laser fields with atoms and molecules.
However, it is also well-known that SFA, based as it
is on the plane-wave Volkov wavefunction, which is the
wavefunction of a free electron interacting with a laser
field, does not account for the Coulomb interaction in
the final state. The latter interaction due to its long
range, however, is unavoidable for the ubiquitous ioniza-
tion and related processes in strong laser fields. Conse-
quently, besides full numerical simulations of the time-
dependent Schroedinger equation (if and when feasible)
many attempts were made in the past to account for the
Coulomb effect within the SFA using various heuristic

corrections. Early examples of them are Coulomb cor-
rections to the strong-field electron-detachment models
[4–6], and Coulomb correction via WKB-like approxima-
tions [7, 8], or using semi-classical and/or “quantum tra-
jectory” approach [9–11]. Another early work [12] em-
ployed the so-called Coulomb-Volkov state (that was de-
fined a long-time ago [13]) in an ad hoc one-step model
of strong-field ionization. Later on a similar model us-
ing an “adiabatic” version of the same was used [14].
More recently, a semi-analytic R-matrix approach [15]
and an approach employing mixed ansätze with phase
corrections and an inhomogeneous differential equation
[16] have been introduced to account for the Coulomb
effect. However, till now, no strong-field S-matrix expan-
sion has been found that, unlike the usual SFA, can ac-
count for the final-state Coulomb interaction in the laser
field, systematically to all orders. The purpose of this
paper is to solve this long standing problem and give a
complete Coulomb-Volkov S-matrix series that accounts
for the same in all orders, explicitly.

The rest of the work is organised as follows: first, we
determine (a) the exact Coulomb-Volkov Hamiltonian,

(b) find the complete set of linearly independent time-
dependent solutions of the corresponding Schroedinger
equation, (c) construct the exact Coulomb-Volkov prop-
agator (or Green’s function) and, (d) identify the rest-
interaction associated with the final state. Then, the
above analytical information are used to derive the com-
plete Coulomb-Volkov S-matrix series of interest. We
also consider the limiting case in the absence of the
Coulomb interaction. The final S-matrix expansions are
given in the commonly used “velocity” and “length”
gauges. We conclude with a few additional observations
on the results obtained.
The Schroedinger equation of the interacting atom+

laser field is

(ih̄
∂

∂t
−H(t))|Ψ(t)〉 = 0 (1)

where H(t) is the total Hamiltonian of the system,

H(t) = Ha + Vi(t) (2)

For the sake of concreteness, we assume an effective one
electron atomic system interacting with a laser field and
take

Ha = (
pop

2

2m
−
Ze2

r
+ Vs.r.(r)) (3)

where Z is the core charge and Vs.r.(r) is a short-range
potential that goes to zero for asymptotically large r

faster than the Coulomb potential −Ze2

r . The laser-atom
interaction is taken in the “velocity gauge” (i.e. the mini-
mal coupling radiation gauge in “dipole” approximation)

Vi(t) = (−
e

mc
A(t) · pop +

e2A2(t)

2mc2
) (4)

where A(t) is the vector potential of the laser field, and
pop ≡ −ih̄∇.
For the final state, we intend to take account of the

laser and the long-range Coulomb interaction explic-
itly. This can be done employing the so-called Coulomb-
Volkov state. This was originally defined heuristically in



2

[13] by taking the stationary Coulomb-wave, φp(r), and
augmenting it with the time-dependent Volkov-phase:

Φp(r, t) = φp(r)e
− i

h̄

∫

t
( p2

2m− e
c
A(t)·p+

e2A2(t)

2mc2
)dt′ (5)

where [18],

φp(r) =
1

L
3
2

e
π
2 ηpΓ(1 + iηp)e

i
h̄
~p·~r

× 1F1(−iηp, 1,−i(pr + p · r)) (6)

(ηp ≡ Zh̄
a0p

, a0 = h̄2

me2 ) are the “in-going” continuum

eigenstates of energy Ep = p2

2m , of the Coulomb Hamilto-
nian

HCou = Ha − Vs.r.(r)

= (
p2
op

2m
−
Ze2

r
). (7)

Note that the ansatz (5) does not fully satisfy the
Schroedinger equation (1) of the interacting system.
We may, therefore, ask: what is the Hamiltonian or,
the Schroedinger equation of which the Coulomb-Volkov
state, Eq. (5), is an exact solution? Essentially it is
the lack of this information that had so far hindered the
development of a systematic S-matrix theory based on
the Coulomb-Volkov state. To overcome this hindrance
here we shall first determine the Coulomb-Volkov Hamil-
tonian (to be denoted HCV below) and the complete
set of linearly independent solutions of the associated
Schroedinger equation. This will allow us to construct
the exact Coulomb-Volkov propagator, GCV , and iden-
tify the corresponding rest-interaction in the final state,
VCV (t). Once they are known, we can use them di-
rectly in a convenient form of the total wavefunction
Ψi(t) evolving from a given initial state φi(t). We use
a formal expression of Ψi(t) that was first obtained in
connection with the so-called intense-field many-body S-
matrix theory or IMST (e.g. review [17], sec. 3) and
write it here as:

|Ψi(t)〉 = |φi(t)〉+

∫

dt1GCV (t, t1)Vi(t1)|φi(t1)〉

+

∫

dt2dt1GCV (t, t2)VCV (t2)

× G(t2, t1)Vi(t1)|φi(t1)〉 (8)

where the propagator G(t, t′) satisfies the equation

G(t, t′) = GCV (t, t
′) +

∫

GCV (t, t1)VCV (t1)G(t1, t
′)dt1

(9)

The final state Coulomb-Volkov propagator GCV (t, t
′) is

to be found, once HCV (t) is known, from the solution of
the inhomogeneous equation

(ih̄
∂

∂t
−HCV (t))GCV (t, t

′) = δ(t− t′) (10)

To determine the Hamiltonian HCV (t) we first introduce
a vector operator defined by

hop ≡
∑

s

|φs〉s〈φs| (11)

where, Σs(· · ·) ≡ ( L
2π )

3
∫

d3s(· · ·), and |φs〉 stands for the
Coulomb continuum waves with momentum s (cf. Eq.
(6)). Next, we consider the exponential operator

T (hop) = eia(t)·hop (12)

where a(t) = e
mc

∫ t
A(t′)dt′. By expanding the exponen-

tial as a power series and using the projection operator
nature of the individual terms, it can be reduced to the
simple form

T (hop) = 1−
∑

s

|φs〉(1 − eia(t)·s)〈φs| (13)

With the help of the operator hop, we can write down
the Coulomb-Volkov Hamiltonian HCV (t):

HCV (t) =
p2
op

2m
−
Ze2

r
+
e2A2(t)

2mc2
−

e

mc
A(t) · hop(14)

The corresponding Schroedinger equation is

ih̄
∂

∂t
Φj(t) = (

p2
op

2m
−
Ze2

r
+
e2A2(t)

2mc2
−

e

mc
A(t) · hop)

× Φj(t) (15)

The complete set of linearly independent solutions of Eq.
(15) is

|Φj(t)〉 = e−
i
h̄

∫

t
(Ej+

e2A2(t′)

2mc2
)dt′+ i

h̄
a(t)·hop |φj〉 (16)

where j ≡ p, stands for the momentum p of the Coulomb
wave state |φp〉 and j ≡ D stands for the discrete indices
of the bound states |φD〉 of the Coulomb potential.
To establish that Eq.(16) indeed satisfies Eq. (15), let

us first consider the case {j ≡ p} and use Eq. (13) to
calculate,

e
i
h̄
a(t)·hop |φp〉 = T (hop)|φp〉

= |φp〉 −
∑

s

|φs〉(1− e
i
h̄
a(t)·s)〈φs|φp〉

= |φp〉 − |φp〉(1− e
i
h̄
a(t)·p)

= e
i
h̄
a(t)·p|φp〉 (17)

Also we have

−
e

mc
A(t) · hop|φp〉 = −

e

mc
A(t) · p|φp〉 (18)

Thus, substituting Eq. (16) in Eq. (15) for the contin-
uum case we get on the left hand side

l.h.s. = e−
i
h̄
(
∫

t
(Ep+

e2A2(t′)

2mc2
)dt′−a(t)·p)

× (Ep +
e2A2(t)

2mc2
− ȧ(t) · p)|φp〉 (19)
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and on the right hand side

r.h.s. = e−
i
h̄
(
∫

t
(Ep+

e2A2(t′)

2mc2
)dt′−a(t)·p)

× ((
pop

2

2m
−
Ze2

r
) +

e2A2(t′)

2mc2
−

e

mc
A(t) · p)|φp〉

(20)

Noting that ȧ(t) = e
mcA(t) and (

pop
2

2m − Ze2

r )|φp〉 =

Ep|φp〉, where, Ep = p2

2m , one easily sees that the l.h.s =
r.h.s and hence the given solution is exactly fulfilled. In
a similar way it is seen that,

T (hop)|φD〉 = |φD〉 −
∑

s

|φs〉(1− e
i
h̄
a(t)·s)〈φs|φD〉

= |φD〉+ 0 (21)

and,

−
e

mc
A(t) · hop|φD〉 = −

e

mc
A(t) ·

∑

s

|φp〉s〈φs|φD〉

= 0 (22)

since, the overlap integrals between the continuum and
the discrete eigenstates of the Coulomb Hamiltonian van-
ish by orthogonality, 〈φs|φD〉 = 0. Hence, substituting
Eq. (16) in Eq.(15) in the discrete case we get

l.h.s. = e−
i
h̄

∫

t
(ED+ e2A2(t′)

2mc2
dt′+0)

× (ED +
e2A2(t)

2mc2
+ 0)|φD〉 (23)

and

r.h.s. = e−
i
h̄
(
∫

t
(ED+

e2A2(t′)

2mc2
)dt′+0)

× ((
pop

2

2m
−
Ze2

r
) +

e2A2(t′)

2mc2
+ 0)|φD〉 (24)

Also, (
p2

op

2m − Ze2

r )|φD〉 = ED|φD〉, where ED ≡ Enlm =

− Z2e2

2n2a0 are the ((l,m)-degenerate) eigen-energies of the
Coulomb system. Hence, clearly, the l.h.s = r.h.s in
the discrete case as well, and the verification is com-
plete. Thus, the complete set of solutions of the CV-
Schroedinger equation defined by (15) is given by Eq.(16)
or, more simply, by

Φj(p,D)(r, t) = φj(p,D)(r)

× e−
i
h̄

∫

t
( p2

2m+
A(t′)2

2mc2
−( e

c
A(t′)·p)δp,j)dt

′

(25)

where for the continuum states |φp〉 are given by the
Coulomb waves (6) and, for the discrete states |φD〉, one
has the well known bound states of the hydrogenic atom
[18],

φD≡(nlm)(r) = NnlRnl(r)Ylm(θ, φ)

Rnl(r) = (2κnr)
le−κnr

1F1(−n+ l+ 1, 2l+ 2, 2κnr)

Nnl =
(2κn)

3/2

Γ(2l + 2)

√

Γ(n+ l + 1)

2nΓ(n− l)
(26)

where κn = Z
na0

=
√

−2mED

h̄2 . Having thus found the

explicit form of both HCV (t), Eq. (14), and the complete
set of solutions (25) of the Coulomb-Volkov Schroedinger
equation (15), we can explicitly construct the solution of
the Coulomb-Volkov propagator equation (10):

GCV (t, t
′) = −

i

h̄
θ(t− t′)

× {
∑

p

|φp〉e
− i

h̄

∫

t

t′

(p−
e
c
A(t′′)2

2m dt′′
〈φp|

+
∑

nlm

|φnlm〉e
− i

h̄

∫

t

t′
(Enl+

e2A2(t′′)

2mc2
)dt′′

〈φnlm|}

(27)

Also, the final-state rest-interaction can be obtained self-
consistently:

VCV (t) ≡ H(t)−HCV (t)

= (−
e

mc
A(t) · (pop − hop) + Vs.r.(r)) (28)

To determine the S-matrix amplitude of interest, we now
substitute the initial and the final rest-interactions, Vi,
and VCV (Eqs. (4) and (28), respectively) as well as
the final-state Coulomb-Volkov propagator (27), in the
expression for the full wavefunction (8) and, project on
to the Coulomb-Volkov state 〈Φp(t)| of momentum p.
Thus, we get

Sfi = 〈Φp(t)|Ψ(t)〉

= 〈Φp(t)|φi(t)〉+

∫

dt1〈Φp(t1)|Vi(t1)|φi(t1)〉

+

∫

dt2dt1〈Φp(t2)|VCV (t2)G(t2, t1)Vi(t1)|φi(t1)〉

(29)

To complete the derivation we expand, by iteration,
the full propagator G(t, t′) appearing in between the ini-
tial and the final interactions in Eq. (29), in terms of the
Volkov propagatorGV ol and the intermediate interaction
V0(t), as follows:

G(t, t′) = GV ol(t, t
′) +

∫

dt1GV ol(t, t1)V0(t1)G(t1, t
′)

= GV ol(t, t
′) +

∫

dt1GV ol(t, t1)V0(t1)GV ol(t1, t
′)

+

∫

dt2dt1GV ol(t, t2)V0(t2)GV ol(t2, t1)V0(t1)

× GV ol(t1, t
′) + · · · (30)

where (e.g. [17])

GV ol(t, t
′) = −

i

h̄
θ(t− t′)

∑

p

1

L3
|p〉e

− i
h̄

∫

t

t′

p2τ
2mdτ

〈p| (31)

and

V0(t) ≡ H(t)−HV ol(t)

= (−
Ze2

r
+ Vs.r(r)) (32)
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Finally, collecting the resulting terms from Eq. (29)
explicitly, we arrive at the desired all-order Coulomb-
Volkov S-matrix series:

Sfi =

∞
∑

n=0

S
(n)
fi (33)

S
(0)
fi = 〈Φp(r, tf )|φi(r, ti)〉 (34)

S
(1)
fi = −

i

h̄

∫

dt1〈Φp(r1, t1)|

× (−
e

mc
A(t1) · pop +

e2A2(t1)

2mc2
)|φi(r1, t1)〉

(35)

S
(2)
fi = −

i

h̄

∫

dt2dt1〈Φp(r2, t2)|

× (−
e

mc
A(t2) · (pop − hop) + Vs.r.(r2))

× GV ol(r2, t2; r1, t1)

× (−
e

c
A(t1) · pop +

e2A2(t1)

2mc2
)|φi(r1, t1)〉 (36)

and, for the general n-th order amplitude we get:

S
(n)
fi = −

i

h̄

∫

dtndtn−1 · · · dt1〈Φp(rn, tn)|

× (−
e

mc
A(tn) · (pop − hop) + Vs.r.(rn))

× GV ol(rn, tn; rn−1, tn−1)(−
Ze2

rn−1
+ Vs.r.(rn−1))

× · · · ×

× GV ol(r2, t2; r1, t1)(−
e

mc
A(t1) · pop +

e2A2(t1)

2mc2
)

× |φi(r1, t1)〉 (37)

n = 3, 4, · · ·∞. The angle brackets above stand for the
integration with respect to the space coordinates, and
the symbol

∫

stands for all time integrations in the same
range, from the initial time ti to the final time tf . We
note that the Heaviside-functions of the propagators au-
tomatically control the appropriate intermediate time in-
tervals.
It should be noted that the S-matrix series de-

rived above, like most other well-known (perturba-
tive/iterative) S-matrix series, is not proven by us to
be convergent or otherwise. This, therefore, is an open
mathematical question for the future. At present it
should be understood as a systematic tool of theoreti-
cal investigation in strong-field physics in the same way
as most other S-matrix series e.g. the various “Born se-
ries” of collision physics (in nuclear, atomic or molec-
ular physics) or the usual SFA (in strong-field physics)
have been used for decades usefully (in the absence of a
proof of their convergence) i.e. by testing case by case

against experimental data and/or alternative theoretical
results (if and when available). One may surmise that
the most well-known perturbative/iterative S-matrix se-
ries perhaps constitute (as they tend to behave like) a
class of “asymptotic series” that can provide good esti-
mates of the series sum from a finite number of terms,
even when they may not be convergent in the standard
sense (cf. Pade’, Borel, or Shank’s generalised summa-
tion of asymptotic series, e.g. [19]).
We next point out briefly how the method presented

above can be extended, if desired, to take into account
the combined effect of the Coulomb and the short-range
potentials in the final state directly, rather than treating
the Vs.r.(r) in successive terms of the series, as above.
This also automatically ensures any desired orthogonal-
ity between the initial and final states. This extension
requires a predetermined effectively complete orthogo-
nal set of (bound and continuum) eigenstates of the un-

perturbed target atom (e.g. from an atomic “structure”
calculation). To be specific we consider again an active
one-electron atom modelled by a spherically symmetric
atomic potential Vat(r). The bound states, φnlm(r), are
then be of the general form

φnlm(r) = Rnl(r)Ylm(θ, φ) (38)

The continuum state φp(r) of momentum p (orthogonal
to the bound states) can be constructed as follows:

φp(r) = 4π
∑

lm

(i)le−iδl(p)Rpl(r)Ylm(θ, φ)Y ∗
lm(θp, φp)

(39)

where δl(p) is the lth partial wave total phase-shift (sum
of Coulomb and short-range) defined by the asymptotic
form of the radial waves,

r → ∞, Rpl(r) →
sin (kr − lπ/2 + ηpln(2pr) + δl(p))

kr
(40)

The operator hop is then defined by the same Eq. (11) as
before except that, φp(r) is now given by Eq. (39). The
reference Hamiltonian also takes the same form as Eq.
(14) except that, the Coulomb potential −Z

r is replaced
by the full potential Vat(r). The associated reference
propagator also has the same form as Eq. (27) before,
except that the radial bound states Rnl(r) and the radial
continuum momentum states of momentum p, are now
defined by Eq. (38) and Eq. (39), respectively. With the
help of the above quantities, the desired S-matrix series
can be constructed exactly in the same way as before
and the final result takes the same form as the CV S-
matrix series, Eqs. (33)-(37), with the interaction terms
appearing in them replaced simply as follow:

(−
e

mc
A(tn) · (pop − hop) + Vs.r.(rn))

→ −
e

mc
A(tn) · (pop − hop) (41)
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and

(−
Ze2

rn−1
+ Vs.r.(rn−1)) → Vat(rn−1) (42)

We next consider the interesting limiting case of the
S-matrix series for a system without the long-range
Coulomb interaction (e.g. interaction of the outer elec-
tron with the neutral core of a negative ion). This is
easily found by simply putting Z = 0 in the CV series,
Eqs. (33)-(37), and noting that now the Coulomb wave
〈φp| simplifies to the plane wave 〈p|, and, hence, the
Coulomb-Volkov state Φp(t) (Eq. (5)) reduces to the
plane wave Volkov state 〈ψp|, and V0, defined in Eq. (32),
reduces to Vs.r.. Also, the final-state rest-interaction sim-
plifies to the short range potential Vs.r. only, since in this
limit

〈φp|(−
e

mc
A(t) · (pop − hop) + Vs.r.)

→ (−
e

mc
A(t) · (p− p)〈p|+ 〈p|Vs.r.

= 〈p|Vs.r. (43)

Hence, the Coulomb-Volkov S-matrix series, Eq. (33),
goes over to the reduced series:

S
[Z≡0]
fi = 〈ψp(tf )|φi(ti)〉

+ (−
i

h̄
)

∫

dt1〈ψp(r1, t1)|Vi(r1, t1)|φi(r1, t1)〉

+ (−
i

h̄
)

∫

dt2dt1〈ψp(r2, t2)|Vs.r.(r2)

× GV ol(r2, t2; r1, t1)Vi(r1, t1)|φi(r1, t1)〉

· · · · · ·

+ (−
i

h̄
)

∫

dtndtn−1 · · · dt1〈ψp(rn, tn)|

× Vs.r.(rn)GV ol(rn, tn; rn−1, tn−1)

× Vs.r.(rn−1)

× · · · ×GV ol(r2, t2; r1, t1)

× Vi(r1, t1)|φi(r1, t1)〉 (44)

n = 3, 4, · · ·∞. We point out that (44) has the same form
as the usual SFA but its potential dependence is through
Vs.r. only. This is self-consistent with the absence of the
Coulomb interaction also in the final state.
In this work, for the sake of concreteness, we have ex-

plicitly derived our main result – Eq. (33)-(37) – in the
so-called “velocity” gauge. In an exactly analogous man-
ner, or by a gauge transformation, one can obtain the
corresponding result in the “length” gauge. We may,
therefore, simply quote the final result of the Coulomb-
Volkov S-matrix series in the “length” gauge (indicated
by the superscript L) below:

S
(L)
fi =

∞
∑

n=0

S
(L;n)
fi (45)

S
(L;0)
fi = 〈Φ(L)

p (r, tf )|φi(r, ti)〉 (46)

S
(L;1)
fi = −

i

h̄

∫

dt1〈Φ
(L)
p (r1, t1)(−eF(t1) · r1)|φi(r1, t1)〉

(47)

S
(L;2)
fi = −

i

h̄

∫

dt2dt1〈Φ
(L)
p (r1, t1)|

× (−
e

mc
A(t2) · (pop +

eA(t2)

c
− h(L)

op ) + Vs.r.(r2))

× G
(L)
V ol(r2, t2; r1, t1)(−eF(t1) · r1)|φi(r1, t1)〉 (48)

and, for the general nth order, n = 3, 4, · · ·∞,

S
(L;n)
fi = −

i

h̄

∫

dtndtn−1 · · · dt1〈Φ
(L)
p (rn, tn)|

× (−
e

mc
A(tn) · (pop +

eA(t2)

c
− h(L)

op ) + Vs.r.(rn))

× G
(L)
V ol(rn, tn; rn−1, tn−1)(−

Ze2

rn−1
+ Vs.r.(rn−1))

× · · · ×

× G
(L)
V ol(r2, t2; r1, t1)(−eF(t1) · r1)|φi(r1, t1)〉 (49)

Before concluding, a few additional observations are
in order:
(a) The first order term in the present S-matrix se-
ries (Eq. (35) or Eq. (47)) reproduces the heuristic
expression introduced a long time ago (e.g. [12]) and
justifies it as a lowest order contribution. It is worth
noting here that for very short interaction times the
contribution of the first order term alone gives good
agreement for ionization rates and angular distributions
of the ejected electrons as shown for H atom in [20]
by comparison with the exact numerical simulation (in
length gauge), for laser pulses lasting less than two cycles.

(b) Beginning with the second order term the present
theory opens up the possibility of systematic investiga-
tions of the role of final-state Coulomb interaction in
“re-scattering” processes in a wide range of strong-field
phenomena including the observation of low and very low
energy structures [21–23], or the so-called zero-energy
structure (ZES) [24]. Despite recent progress in their
understanding (cf. e.g. [25–28]) they remain to be
fully understood. Thus, for example, the specific role
played by the asymptotically long-range (Coulomb) and
the short-range atomic potentials in their formation,
their actual numbers, the “threshold law” of strong-field
ionization process etc. are apparently yet to be fully
understood.

(c) We point out that the terms of the S-matrix series

(33), for example, the amplitudes S
(1)
if and S

(2)
if , can be

evaluated efficiently by a combination of stationary phase
method and/or numerical integration, provided the co-
ordinates dependent integrals with the Coulomb-Volkov
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state can be evaluated analytically. They are of the form

M
(1)
p,i =

∫

φ(−)∗
p (r)(−

e

mc
A(t) · pop)e

−κrd3r (50)

where η(p) ≡ Zh̄
pa0 , a0 = h̄2/me2. and

M
(2)
p,k =

∫

φ(−)∗
p (r)(−

e

mc
A(t) · (pop − hop)e

ik·rd3r

= (−
e

mc
A(t) · (k− p))

∫

φ(−)∗
p (r)eik·rd3r

(51)

The coordinate integrals in the 3rd and higher order
terms can also be obtained by parametric differentia-
tion from them. We give the necessary analytical re-
sults for the two prototypical integrals, evaluated ana-
lytically by Nordsieck’s method [29], explicitly below (in
a.u., |e| = m = h̄ = αc = 1):

I1 =

∫

e−is·r
1F1(iηs, 1, i(sr + s · r))(ǫ · pop)e

−κrd3r

= 8πκ(1 + iηs)(ǫ · s)
(κ− is)(2+iηs)

(κ+ is)(2−iηs)
(52)

I2 = limλ→0

∫

e−is·r
1F1(iηs, 1, i(sr + s · r)

× ǫ · (pop − hop)e
ik·re−λrd3r

= (ǫ · q)×
8πsηs

q2(q2 + 2q · s)
(

q2

q2 + 2q · s
)iηs (53)

where, q ≡ k − s, ηs = Z
s , and ǫ stands for the unit

polarisation vector. The additional integration over the
intermediate momentum k can be performed e.g. by the
stationary phase method (or otherwise), and the first
time-integration can be done either analytically or by
the stationary phase method, while the additional time-
integration can be done e.g. numerically. (Calculations
are in currently in progress for a problem of much cur-
rent interest namely, threshold behavior of ionization in
intense long-wavelength laser fields. They are envisaged
to be reported in a subsequent paper.)

(d) The explicit expression of the Coulomb-Volkov
propagator derived here (Eq. (27)) suggests that the the-
ory can be used also to investigate the role of strong-field
excitation processes involving the discrete states, either
as a final state or as intermediate/doorway states or
both. For example, the theory could be used to analyse
the mechanisms of “frustrated ionization” observed
some time ago [30] for near-infrared wavelengths and of
“ionization reduction” (e.g [23]) observed more recently
for mid-infrared wavelengths, at very low electron energy.

(e) Finally, we point out that the (differential) proba-
bility of ionization, d3Pfi(p), by an ultra-short pulse of

duration τd = tf − ti, can be obtained directly from the
absolute square of the S-matrix amplitude:

d3Pfi(p) = |Sfi|
2d3p (54)

For a long pulse (with an effectively constant amplitude),
on the other hand, it is useful to Fourier transform the
periodic part of the S-matrix amplitude and rewrite it as:

Sfi = −
i

h̄

∞
∑

n=−∞

∫ tf

ti

dte
i
h̄
( p2

2m+Up+|Ei|−nh̄ω)tT
(n)
fi (p)

(55)
In this case the quantity of interest is the ionization
rate (or, the probability of ionization per unit interaction
time) which can be then determined from the generalised
Fermi golden rule, in terms of the Fourier components

T
(n)
fi (p):

d3Rfi(p) =
∞
∑

n=n0

∑

p

2π

h̄
|T

(n)
fi (p)|2

× δ(
p2

2m
+ Up + |Ei| − nh̄ω)d3p (56)

where n0 = [
p2

2m+Up+|Ei|)

h̄ω ]int. + 1, |Ei| is the initial bind-

ing energy, Up = e2F 2

4mω2 is the ponderomotive energy, F is
the peak field strength and ω is the laser frequency.
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