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The goal of this paper is to elucidate the theoretical underpinnings of the metastable electronic
state approach (MESA) and demonstrate its utility for the evaluation of the nonlinear optical re-
sponse of noble-gas atoms with emphasis on the application of the method to the propagation of
multicolor optical fields in large-scale, spatially resolved simulations. More specifically, single-active-
electron models of various atoms are employed to calculate their nonlinear properties both within
the adiabatic approximation, involving a single metastable state and beyond, capturing inertial
effects and wavelength-dependent ionization. Simulations for excitation pulses at different center
wavelengths as well as ionization in two-color pulses are presented and compared with numerical
solutions of the time-dependent Schrödinger equation. Illustrative examples of the numerical simu-
lation of high-power pulse propagation incorporating MESA data are also presented, and showcase
the successful application to optical filamentation in the mid-infrared region.

I. INTRODUCTION

As the field of nonlinear optics continues to ex-
plore ever deeper into extreme optical pulse propaga-
tion regimes, there arises the computational challenge of
dealing with ever-increasing high intensities and complex
waveforms with concomitant ultra-broadband spectra. In
tandem, as the optical waveforms become more complex
there is the need to improve the material modeling to
properly reflect the salient physics of the light-matter
interaction on the time and space scales being probed.
Furthermore, for large-scale nonlinear propagation sim-
ulations with full spatial and temporal resolution, the
challenge is to find computationally economic material
models that are microscopically founded, accurate, and
do not compromise the underlying physics involved. A
number of approaches have been proposed including the
first-principle integration of the Maxwell and Schrödinger
equations into a single simulated system [1, 2], Kramers-
Henneberger atoms [3], and Freeman resonances [4], to
name a few. We have advanced the metastable electronic
state approach (MESA) [5] for which preliminary results
have been very promising in terms of both accuracy and
computational economy for several model systems [6, 7].
The metastable states that are at the center of the ap-

proach discussed in this paper are the Stark resonances
in a homogeneous external field that tend to the zero-
field bound states. The name is meant to suggest that
we concentrate on those states that have relatively long
lifetimes. Of course, it has been long recognized in many
different fields that resonant states are of great utility as
a basis for extracting the properties of physical systems
and this despite the fact that they are not elements of
the Hilbert space assigned to a quantum system. The
Stark resonances in particular have been used previously
to describe ionization in strong fields, both for atoms and
molecules (see e.g. [8–10]). In MESA, we take this fur-
ther, recognizing that among the Stark resonances the
metastable ones can be used to describe the full non-

linear optical response due to an applied field, thereby

including not only nonlinear ionization losses but also
the concomitant nonlinear refraction. Since the long-
lived resonances are slaved to the time-dependent exter-
nal field, one can extract the transient nonlinear optical
response as required in the area of ultrafast nonlinear op-
tics. For such applications, the importance of Stark res-
onances lies in that they uniquely capture the behavior
of the system in the no-man’s land where neither bound
nor free electronic states dominate the nonlinear opti-
cal response, and that they enable a practically useful

method that is computationally effective enough that it
can be coupled to large-scale, spatially resolved simula-
tions bridging scales from quantum to macroscopic.

The overall goal of the present paper is to elucidate the
theoretical underpinnings of MESA and demonstrate its
utility for the evaluation of the nonlinear optical response
of noble-gas atoms, with emphasis on the application of
the method to nonlinear pulse propagation in large-scale,
spatially resolved simulations. MESA stems from the
concept of using the metastable states of the atom in
the presence of the instantaneous applied electric field
as a basis for the portion of the electron wave function
that remains correlated with the parent ion: The quasi-
static assumption is appropriate here as we are concerned
with the off-resonant case in which the photon energies
are well removed from the ionization energy. Indeed, us-
ing only a single metastable state, this approach already
predicts the nonlinear Kerr coefficient of several noble-
gas atoms within 20-50% accuracy [6]: This indicates
that in comparison with the conventional unperturbed
electronic states, the metastable states “encode” a lot
of useful physical information. Ultimately the goal is to
compare the predictions from MESA against experiment,
but for the present paper we employ numerical solutions
of the time-dependent Schrödinger equation (TDSE), us-
ing the single-active electron potentials alluded to above,
as a measurement of the quality of the MESA data.

The purpose of this paper is two-fold: First, we pro-
vide the interested reader with the background and data
that is needed to implement the light-matter interaction
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models within the single-state MESA framework for a
variety of noble-gas atoms (He, Ne, Ar, Kr, Xe); Single-
state MESA considers only the lowest metastable state
that connects to the atomic ground state at zero electric
field. In particular, we provide a tabulation of all neces-
sary quantities extracted from the single-active-electron
models, and discuss issues relevant for the software imple-
mentation. Illustrative simulations demonstrate the util-
ity of the method for modeling optical filamentation. The
second purpose is to develop corrections to the simplest
single-state MESA and gauge their effect as a function of
wavelength. Under the quasi-static or adiabatic approx-
imation employed, single-state MESA yields a nonlinear
optical response that depends only on the instantaneous
value of the electric field strength F (t), meaning that the
nonlinear response is color blind and does not depend on
the time history of the electric field. Thus single-state
MESA is suitable in the long-wavelength regime, how-
ever the post-adiabatic corrections become relevant for
shorter wavelengths and introduce an inertial component
to the nonlinear response. Here we develop and quantify
post-adiabatic corrections that take approximate account
of higher-order metastable states, and describe a scheme
that greatly improves the comparison of the nonlinear
optical response obtained from the TDSE solutions, par-
ticularly for shorter wavelengths.

The remainder of this paper is organized as follows:
We start with a description of the expansion of the elec-
tronic wave function in terms of metastable states, also
known as Stark resonant states, followed by the adi-
abatic single-state MESA approximation and then the
post-adiabatic corrections. Next we elaborate how to ex-
tract the nonlinear polarization and ionization fraction,
along with providing the data pertaining to the single-
active electron potentials for the various noble-gas atoms.
The post-adiabatic corrections are then assessed in terms
of the ionized fraction in comparison to the correspond-
ing TDSE solutions for both single- and two-color pulses,
and good agreement is found for a range of intensities and
wavelengths. In order to provide a sense of the relevance
of the post-adiabatic corrections, we present compara-
tive simulations in which we model femtosecond optical
filamentation in several noble gases for near-infrared and
mid-infrared high-power pulses. We conclude by pointing
out new directions suggested by our investigations.

II. STARK RESONANT STATE EXPANSION

For completeness, we begin with a recapitulation of the
MESA [5]. Consider a Hamiltonian for a single-active-
electron model of an atom exposed to a time-dependent
electric field F (t) (optical pulse) polarized along x (in
atomic units):

H(t) = −
1

2
∆+ V (~r )− F (t)x . (1)

Here we depart from the standard Hermitian quantum
mechanics. The spatial axis pointing in the direction of
the field is redefined as a contour in the complex plane
that follows the real axis in the inner domain, close to
the nucleus, and deviates in the upper and lower half-
planes for positive and negative large x, respectively.
This change is a version of the exterior complex scal-
ing (e.g. [11] ). It makes the system open, by giving the
domain boundaries that absorb the outgoing waves.
Seeking the solution of the Schödinger equation

i∂tψ(t) = H(t)ψ(t) , (2)

the wavefunction is split into two parts, as

ψ(t) = ψR(t) + ψF (t) =
∑

k

ck(t)ψk(F (t)) + ψF (t) , (3)

where ψk(F (t)) is the k-th metastable state driven by the
external field, so that at all times t it is an eigenvector
of the time-dependent Hamiltonian,

H(t)ψk(F (t)) = Ek(F (t))ψk(F (t)) . (4)

Here Ek(F (t)) stands for the complex-valued energy
eigenvalue corresponding to ψk. Note that imposing
the outgoing boundary conditions shifts the eigenvalues
into the lower half of the complex plane, where the imag-
inary parts reflect the lifetimes and can be interpreted as
the ionization rates.
In the MESA framework, it is assumed that ψF (t) is a

strongly de-localized wavefunction that evolves without
much interaction with the parent ion, while the resonant-
state expansion is only used for the portion of the wave-
function that is a mixture of bound and continuum states
that interact with the ion. The coupling between ψF and
ψR is only taken into account indirectly, by assuming that
the norm of ψF grows as that of ψR decays, as it has been
done in TDSE based modeling [1]. Akin to strong-field
approximation, ψF is treated as subject to only the exter-
nal field. To calculate the induced current it is therefore
sufficient to know the norm ‖ψF ‖

2. In such an approx-
imation it is only needed to determine the metastable
state expansion coefficients ck(t), and deduce the norm
‖ψF ‖

2 from it.
We assume that before F (t) attains non-zero values the

system is in the ground-state, and the corresponding res-
onance state ψ0 continues to dominate the wavefunction
of the system at later times.
Inserting the resonant-state series into the Schrödinger

equation gives

i∂t

[

ck(t)ψk(F (t))
]

+ i∂tψF (t) = (5)

i
∑

k

[

c′k(t)ψk(F (t))+ck(t)F
′(t)∂Fψk(F (t))

]

+i∂tψF (t) =

=
∑

k

ck(t)Ek(F (t))ψk(F (t)) + H(t)ψF (t) .
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In order to find the evolution equations for the expansion
coefficients, we need to use projection methods to obtain
the component corresponding to a single ψk.
Since the resonant states are not integrable, the con-

ventional scalar product can not be used. However, re-
lated to the contour C, which defines the exterior com-
plex scaled domain, is a c-product [11, 12] defined by the
contour integral

〈ψi|ψj〉 =

∫

C

ψi(z)ψj(z)dz , (6)

in which the integration contour follows the real x-axis
in the vicinity of the atom, and deviates into the upper
(lower) complex plane asymptotically for positive (nega-
tive) values of x [13]. Metastable states are orthogonal
with respect to this c-product, and are assumed to be
orthonormal at all times:

〈ψi|ψj〉 = 〈ψi|ψi〉δij = δij . (7)

Projecting into the subspace of the n-th Stark resonant
state (|ψn(F (t))〉 = |ψn〉) gives the evolution equation

ic′n(t)〈ψn|ψn〉+ i
∑

k

ck(t)F
′(t)〈ψn|∂Fψk(F (t))〉 =

cn(t)En(F (t))〈ψn|ψn〉+ 〈ψn|(H(t)−i∂t)|ψF (t)〉 . (8)

The last term represents the coupling to the “freely-
propagating” component of the wavefunction, which we
neglect on the assumption that the coupling between the
different resonant states is more important.
While the above assumption does not hold in general

and there is no rigorous criterion to decide when it does,
numerical solutions of TDSE indicate that in the spe-
cific situations treated here it is a good approximation.
Specifically, if the evolution starts in the ground state,
and if the ionization remains weak, one can calculate a
projection onto a field-dependent resonance state to show
that it makes up for nearly all of the total wavefunction.
This makes us confident that under such conditions the
last term in (8) could be neglected. Naturally, this as-
sumption can only be tested indirectly with the help of
comparison against numerically exact solutions, and this
is one of the main points of this work.
Another tacit assumption is about incoming waves

which are always present in an expansion into energy
eigenstates. Rather then including them explicitly in our
expansion, we assume they contribute to ψF . Because
the latter must be sufficiently de-localized for our ap-
proximation to work, we need to require the same from
the incoming part of the wavefunction. Since we never
calculate it explicitly, this assumption, too, can only be
checked indirectly.
Figure 1 illustrates that the time-dependent (i.e.

slaved to the instantaneous field) metastable ground-
state ψ0(F (t)) dominates the total wavefunction. Here
we have simulated an Argon atom exposed to a λ =
3000nm, 35fs pulsed field with a peak amplitude of
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FIG. 1. Color online. A TDSE simulation illustrating
the dominant contribution of the time-dependent metastable
ground-state ψ0(F (t)) to the total wavefunction. Higher-
energy resonances show up in the fast but small oscillations
in the thin red curve. This simulation (see text for details)
was for Argon exposed to a 35fs pulse at 3000nm wavelength.

0.05a.u. During the evolution, which started in the
ground state, we evaluated the c-norm of the full wave-
function and the projection of the wavefunction onto
ψ0(F (t)), which is the leading coefficient in the resonant-
state expansion, c0(t) = 〈ψ0(F (t))|ψ(t)〉.

The left panel in Fig. 1 shows how the c-norm of the
full wavefunction decreases due to ionization. After the
excitation pulse abates, the final deviation from unity,
indicated by an arrow in the figure, can be interpreted as
the ionization yield. Also shown in the same figure is the
absolute value of the projection of the total wavefunction
onto ψ0, i.e. |c0(t)| = |〈ψ0(F (t))|ψ(t)〉|. It is evident
that the full wavefunction is completely dominated by
this metastable state, because the deviations between the
two curves are significantly smaller than unity or even the
ionization yield.

Panel b) in Fig. 1 is a visualization of the
time-dependent fraction of the metastable state,
|c0(t)|/||ψ(t)||, on a finer scale. It shows that more than
99.76% of the total wavefunction is in fact ψ0(F (t))!
Thus, not only the neglected last term in Eqn.(8) must be
small, but also the rest of the resonant-state expansion
is small in comparison with the dominant contribution
of the metastable ground state. Observations like these
give us confidence that the above assumptions are indeed
good approximations at least in certain regimes.

Returning to our derivations, and adopting these as-
sumptions then yields the following system of ODE’s for
the amplitudes cn(t):

c′n(t) = −icn(t)En(F (t))−
∑

k

ck(t)F
′(t)〈ψn|∂Fψk(F (t))〉

(9)
Retaining a single term in the above amounts to an adia-
batic approximation in which the decay of the metastable
ground state ψ0 depends only on the instantaneous value
E0(F (t)) [5]. Here the aim is to account for the effects
related to the higher-energy Stark resonances in an ap-
proximate manner.
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A. Post-adiabatic correction of the ionization rate

The temporal evolution of the resonant state
amplitudes is controlled by the coupling terms
〈ψn|∂Fψk(F (t))〉, which can be calculated explicitly in
certain exactly solvable models [13]. Such results indicate
that the coupling strength increases with the energy, and
it is therefore not advisable to truncate the above sys-
tem. Instead, we account for all states ψk albeit only
approximately.
Integrating the ODE for cn(t), n > 0, one obtains

cn(t) = −
∑

k

∫ t

0

dt′e−iIn(t
′,t)ck(t

′)F ′(t′)Unk(t
′) , (10)

where we introduced the following notation:

In(t
′, t) =

∫ t

t′
En(F (u))du (11)

Unk(t
′) = 〈ψn|∂Fψk(F (t

′))〉 . (12)

For n > 0 we will only keep the dominant term that
represents the population transfer from the metastable
ground-state,

cn(t) ≈ −

∫ t

0

dt′e−iIn(t′,t)c0(t
′)F ′(t′)Un0(t

′) . (13)

This approximation is motivated by the fact that the
decay of states ψn>0 is much faster than that of ψk=0,
and their population is therefore mostly generated from
c0(t

′). Inserting the approximate expression for cn(t) into
the equation governing c0(t) we have

c′0(t) = −ic0(t)E0(F (t))+ (14)

∑

n6=0

∫ t

0

dt′e−iIn(t′,t)c0(t
′)F ′(t′)Un0(t

′)F ′(t)U0n(t) .

We expect small t− t′(= τ) to contribute the most to the
above integral, since F (t′) changes slowly on the atomic
time scale, so the following approximations can be made

c0(t
′) ≈ c0(t)e

−iI0(t,t
′) = c0(t)e

+iI0(t
′,t) (15)

Un0(t
′) = 〈ψn|∂Fψ0(F (t

′))〉 ≈ Un0(t) (16)

In(t, t
′) ≈ En(F (t))(t− t′) . (17)

Rewriting c0(t) with these approximations we arrive at

c′0(t) = −iER(t)c0(t) (18)

where the correction shows up as a time-dependent,
renormalized complex energy of the ground-state reso-
nance,

ER(t) = E0(F (t)) + iF ′(t)

∫ t

0

dt′F ′(t′)M(F (t), t− t′)

(19)

whose memory kernel is

M(F (t), τ) =
∑

n6=0

Un0(t)U0n(t)e
−i[En(F (t))−E0(F (t))]τ .

(20)

This result is still impractical, as it requires the knowl-
edge of the coupling elements Un0 which are difficult to
evaluate numerically in realistic models of atoms. More-
over, it is not obvious whether the sum could be mean-
ingfully truncated after a small number of terms.

B. Further memory-function approximations

The next step is to find out more about this memory
kernel, beginning with its value at zero delay τ = 0:

M(F (t), 0) =
∑

n6=0

Un0(t)U0n(t) (21)

=
∑

n6=0

〈ψn|∂Fψ0(F (t))〉〈ψ0|∂Fψn(F (t))〉 .

Because the c-product is symmetric, and the resonant
states are normalized to unity at all times, it is such

〈ψ0|∂Fψn(F (t))〉 = −〈∂Fψ0(F (t))|ψn〉 , (22)

and therefore the memory function can be equivalently
written as

M(F (t),0)=−
∑

n6=0

〈∂Fψ0(F (t))|ψn〉〈ψn|∂Fψ0(F (t))〉 (23)

At this point we apply a transformation akin to sum rules
for dipole moments, and reduce the memory function to
an expression that only requires the knowledge of the
metastable ground state.
To proceed, we need to ask if a wavefunction evolved

from the initial ground state under an excitation with
an arbitrary pulse can be decomposed into resonances.
This is a question of completeness, and in particular for
Stark resonances it is rather complex and far from fully
understood. Rigorous results are rare and only available
for a few simple systems, such as Gamow resonances in
a compact 1D potential [14]. For Stark resonances we
have recently shown that the resonant state expansion
in a 1D system with the Dirac-delta potential is conver-
gent [15], but the series only represents the given function
in a half-space. Mathematically similar results are avail-
able for leaky modes in optical cavities [16, 17], where the
convergence occurs inside the cavity but not outside. We
have recently obtained an exact (as of yet unpublished)
result showing the completeness of Stark resonances for a
general 1D Hamiltonian with a compact-support poten-
tial. The above discussion provides motivation to invoke
an ”approximate completeness relation” written as

1 = |ψ0〉〈ψ0|+
∑

n6=0

|ψn〉〈ψn|+ · · · (24)
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Together with the property

〈∂Fψ0|ψ0〉 = 〈ψ0|∂Fψ0〉 = 0 (25)

the elimination of
∑

n6=0 |ψn〉〈ψn| leads to a reduction
solely dependent on the ground-state resonance

M(F, 0) = −〈∂Fψ0(F )|∂Fψ0(F )〉 . (26)

This quantity can be obtained numerically and tabulated
for a particular atom. So we have an estimate of the
memory function for zero delay. For later times, the
memory kernel must be further approximated. We choose
to utilize a simple Debye-type functional form parame-
terized by an effective energy Eeff

M(F (t), τ) = M(F (t), 0)e−iEeff(F (t))τ . (27)

Thus we arrive at an expression for the time-dependent,
renormalized metastable energy, represented as a con-
volution with the memory kernel that includes non-
perturbative dependence on the field intensity, but is ap-
proximately translation-invariant in time

ER(t)=E0(F (t))+ iF
′(t)

∫ t

0

dt′F ′(t′)M(F (t), 0)eiEeff(t
′−t)

(28)
Eeff(t) will be most affected by the energy gap between
the metastable ground state and higher excited states,
causing it to be on the atomic scale and therefore much
faster than the field F (t′). Calculating the asymptotic
contribution to the memory function integral then gives

ER(t) = E0(F (t)) +
(F ′(t))2

Eeff(F (t))
M(F (t), 0) . (29)

This form of the post-adiabatic correction was shown to
work reasonably well in simple model systems [5]. How-
ever, given the number of approximations adopted in
the above derivations, it is necessary to test this result
against numerically exact solutions for the same atom
models used to obtain all MESA-related characteristics.
This is done in the following sections.

III. NONLINEAR POLARIZATION AND

IONIZATION

In the approximation outlined in the previous sections,
the MESA method requires several quantities to char-
acterize a particular atom. The first is the generalized
dipole moment induced by the external field,

D(F ) = 〈ψ0(F )|x|ψ0(F )〉 , (30)

and specifically its nonlinear component with respect to
field strength F

DNL(F ) = D(F )− lim
s→0

D(sF )

s
. (31)

Note that the nonlinear dipole moment is a complex-
valued quantity, from which MESA utilizes the real part.
The imaginary part can be ignored which follows from
the formal resonant-state expansion where the imaginary
contributions from different expansion components must
mutually cancel. (Note that the imaginary part does,
however, carry potentially useful information because it
is related to the ionization rate.)

The other quantities needed are the imaginary part
of the metastable ground-state energy, E0(F ), the post-
adiabatic correctionM(F (t), 0), and the correction effec-
tive parameter Eeff , which together govern the temporal
evolution of the ionized fraction ρ(t) of atoms through
the renormalized ER(F ) as in

∂tρ(t) = 2Im{ER(F (t))}(1 − ρ(t)) + . . . (32)

where the ellipsis represents other potential ionization
channels such as avalanche and possibly recombination
processes. Having calculated the ionized fraction, we use
it to evaluate the current induced by the driving field by
integrating

∂tJ(t) = eρ(t)E(t) + . . . . (33)

Above, electron collisions can be included as in the con-
ventional model with the help of an effective damping
parameter. The ionized fraction also affects (albeit only
weakly) the nonlinear polarization which is obtained as

PNL(F ) = Na(1− ρ(t))DNL(F (t)) . (34)

The structure of the light-matter interaction model is
thus analogous to that of the conventional model used
in filamentation, and the two are nearly identical from
the standpoint of computational complexity. However,
the way the MESA description is parameterized is both
more consistent and robust, as it includes interactions
between the pure Kerr effect and ensures a proper relative
weight between the nonlinear polarization PNL and the
de-focusing effects of the induced current J .

We have tabulated quantities DNL(F ), E0(F ), and
M(F, 0) for the single-active-electron (SAE) models of
He, Ne, Ar, Kr and Xe atoms. In these calculations we
utilized SAE potentials specified in Refs. [18–20], and
used the FEAST eigenvalue solver [21] to obtain the
metastable wavefunctions. To enable interested readers
to implement and use the MESA light-matter interaction
description in pulse propagation simulation, the Supple-
mentary material includes these data sets.

The remaining MESA-related characteristics of a given
atom model is Eeff . Being built upon several approxima-
tions, this effective parameter needs to be adjusted and
tested with the help of time-domain Schrödinger equation
(TDSE) simulations utilizing the same SAE-potentials.
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IV. ASSESSMENT OF POST-ADIABATIC

CORRECTIONS

The most important manifestation of post-adiabatic
corrections in MESA-based models is in the wavelength
dependence of the ionization yield from atoms exposed to
excitation with different color pulses. The physical mech-
anism underlying such departures from the adiabatic (or
nearly wavelength-independent) behavior is that elec-
tronic states with higher energies become heavily damped
under the influence of the external field than the ground-
state Stark resonance. When the external field changes
with time, it introduces a coupling between different res-
onant states, and this occurs even if field-free selection
rules forbid the transitions. This coupling results in the
the excitation into higher lying states, and subsequently
causes additional ionization. Roughly speaking, higher-
energy states open additional ionization channels. This
mechanism is closely related to that put forward recently
for tunneling from the excited electronic states [22].

A. Ionization in femtosecond pulses

Here we use TDSE simulations with pulsed excitation
and compare the simulated ionization fractions to their
MESA-based counterparts. In order to select a value of
the parameter Eeff for each species, we used the results
for longer wavelength, λ = 3µm, for which one expects
the correction to be relatively small. We adjusted Eeff

such that the corrected ionization rate is close to, but not
greater than the numerically measured rate from TDSE.
The rationale for not fitting the two sets of results is that
we expect the correction to decrease the gap between
the model and the numerically exact result, but not to
capture the deviation in its entirety.
The duration and the intensity of the excitation pulse

was chosen to drive the model atoms into a regime typi-
cal for optical filamentation, where the ionized fractions
range from 10−4 to 10−2. The pulse duration was kept
as 40 fs, and the intensity was adjusted between different
species so that the yield fell into and around this range.
The TDSE simulations were performed on grids

800×400 (along z- and radial dimensions, respectively)
for He, Ne, Ar, Kr and Xe. To improve the accuracy
while keeping the computational complexity as low as
reasonable, we used inhomogeneous grids with grid spac-
ings ranging from ∼ 0.02 a.u. in the center to about 0.2
a.u. at large distances from it. These calculations utilized
the complex-scaled computational domains which act as
transparent boundary conditions [23] for outgoing waves,
and used five-point discretization schemes. This allowed
us to use relatively small computational domains, z ∼ 60
a.u. It is important that the TDSE simulation repre-
sents exactly the same open (i.e. norm non-conserving)
system as the one used to extract all MESA-related quan-
tities and post-adiabatic corrections. This way we are in
the position to study the role of the MESA-related ap-

proximations where the TDSE results can be taken as a
“numerically exact” target solution.

The results of the MESA-TDSE comparisons are
shown in Fig. 2. The solid lines show the uncorrected
MESA result which represents the long-wavelength,
or adiabatic limit. The other dashed lines are ob-
tained with the inclusion of the post-adiabatic cor-
rections with a fixed parameter Eeff , using Eeff =
0.17, 0.14, 0.12, 0.11, 0.10 for He, Ne, Ar, Kr, and Xe, re-
spectively.

Note that these values are lower than one could expect
based on a gap between the ground and excited state(s).
This indicates that a physical significance should not be
attached to the precise value of Eeff , rather it should
be regarded as a fitting parameter for an effective model
born out of a sequence of approximations. In particu-
lar the assumption that the memory function exhibits a
simple exponential decay with the time delay may be an
oversimplification. Nevertheless, it is shown next that the
results obtained with this model are very encouraging.

Previous results with simplified and exactly solvable
models [5] suggest that the post-adiabatic correction
should significantly reduce the gap between the MESA-
based ionization yield and its counterpart obtained from
the TDSE simulations. This is indeed what Fig. 2 shows,
here for more realistic model atoms. At longer wave-
lengths, the correction essentially captures the target ion-
ization yield, and at shorter wavelength it improves the
result significantly. The comparison of our results for dif-
ferent species indicates that the correction works more
accurately in lighter atoms. Also, the relative accuracy
improves at higher intensities of the excitation pulse.

In the simulation of optical filamentation, which is the
main intended application of the MESA, the interplay
between the nonlinearity and pulse propagation effects
leads to the well-known intensity clamping [24]. This
suggests that one way to judge the accuracy of the post-
adiabaticaly corrected MESA is to examine the differ-
ence in the clamped intensity inside a filament. We will
look closer at this issue in the following section, but a
rough answer can be seen in Fig. 2; it is the horizontal
distance between a symbol and the MESA curve corre-
sponding to the given wavelength (indicated by an arrow
in Fig.2c). This suggests that in the NIR region around
800 nm wavelength, the error should be twenty to thirty
percent, and the accuracy further improves with increas-
ing wavelength.

It may also be useful to visualize how and when during

the cycle the post-adiabatic correction increases the ion-
ization rate. The enhancement is illustrated as a function
of the phase within an optical cycle in Fig. 3, which shows
the ionization rate normalized to the maximum rate in
Ar, driven by an oscillatory field with the amplitude of
F0 = 0.05a.u. The depicted behavior is very similar to
that obtained for a non-adiabatic tunnel ionization model
(cf. fig.2 in [25]), with the yield increasing most when the
field changes fastest. The figure also makes evident that
the magnitude of the correction grows quickly with de-
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creasing wavelength.
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FIG. 2. Color online. Ionization fraction in noble-gas atoms
exposed to excitation by a 40 fs duration pulse with differ-
ent central wavelengths of 0.8µm 1.5µm 3.0µm (shown as,
from top to bottom: black, blue and red lines and symbols).
Solid lines correspond to the uncorrected single-state MESA,
dashed lines show results with included post-adiabatic correc-
tions, and symbols show TDSE simulation results.
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FIG. 3. Color online. The effect of the post-adiabatic cor-
rection on the ionization yield, within one half-cycle of the
field with an amplitude of 0.05a.u, for Argon. The different
curves are obtained with shorter excitation wavelengths and
the solid black line represents the adiabatic approximation.
The way the ionization is enhanced during times of fastest
change of the driving field is very similar to the behavior in
the post-adiabatic tunneling model of ref. [25].

B. Ionization in two-color pulses

For an additional test, we next investigate the ioniza-
tion yield in two-color pulses. The following illustration
is motivated by the recently proposed sub-cycle engineer-
ing of optical filaments [26–28] which uses a fundamental
“pump” augmented by a weak third-harmonic seed pulse.
By controlling the relative phase between the pump and
the third-harmonic seed, the ionization yield can be sig-
nificantly enhanced. This behavior is already qualita-
tively captured by the MESA in its adiabatic limit, i.e.
when using a single resonant state. We shall show that
the inclusion of post-adiabatic corrections can further im-
prove the accuracy.
Figure 4 shows a comparison between the corrected

MESA and TDSE simulations of ionization yields in Ar-
gon atom exposed to two color pulses . The 35 fs wave-
form consists of a strong fundamental with central wave-
lengths of λp = 3, 2.4, 1.5µm and 0.8µm (panels from
top to bottom), and a weak seed at λs = λp/3. As the
relative phase of the third harmonic pulse is varied be-
tween φ = 0 and φ = π (depicted as curves from top
down), the resulting ionization yield can change signifi-
cantly, even for seed pulses that are very weak. In the
present illustration we have used the seed to pump en-
ergy fraction of 15% or 1% as indicated in the figure.
The reason a smaller seed energy is used with the 800
nm pump is that for higher seed energies the ionization
becomes dominated by the 266 nm wavelength, and the
ionization fraction increases to tens of percent which is
too far beyond the values typical for optical filamenta-
tion. These simulations were executed for Argon and
included the post-adiabatic correction with Eeff = 0.12.
The corresponding TDSE results are depicted as symbols
for select pump pulse intensities.
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It is evident from the top panel in Fig. 4 that the agree-
ment between the MESA approximation and the TDSE
“target” solution(s) is excellent at λp = 3µm. The or-
ange dotted lines, only included for φ = π for a better
readability, indicate the uncorrected yields. As one can
see, while the post-adiabatic correction is relatively small
as expected for longer wavelengths, its inclusion makes
the model quantitatively accurate.
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FIG. 4. Color online. Ionization yield in a two-color
pulse. The relative phase φ between the pump and its third-
harmonic seed carrying 15% or 1% of the energy can be used
to control the achieved ionization levels. The MESA model
results (lines) are compared to the TDSE simulations shown
as symbols.

The accuracy remains very good for λp = 2.4µm and
λp = 1.5µm (middle panels), with the corrections be-

ing more important as the fundamental wavelength de-
creases. Note that in these cases the third harmonic
is already close to the edge or inside of the visible re-
gion and, at least for the high-frequency component, one
should not expect MESA to be very accurate. Yet, the
post-adiabatic corrections eliminate most of the gap be-
tween the target solutions and the uncorrected, single-
state MESA result.
Finally, for λp = 0.8µm (bottom panel) the agree-

ment deteriorates. Here we are approaching the short-
wavelength end of the MESA’s applicability domain.
Nevertheless, the post-adiabatic correction clearly im-
proves the outcome, and the model ionization dynamics
are still qualitatively correct, exhibiting a deep periodic
dependence of the ionization rate on the seed pulse phase.
(Similar to the previous example, the expected error in
a pulse propagation simulation would show up as an in-
crease in the achieved light intensity by a factor of about
30%)
To conclude this section, our comparison with the nu-

merically exact results for the very same model(s) used to
obtain the data sets that support the MESA model show
that the inclusion of the post-adiabatic corrections going
beyond the single-state approach represents a computa-
tionally inexpensive way to both improve the accuracy
and widen the applicability of the method. This is a sig-
nificant step up from the conventional model, especially
for the excitation waveforms that can not be character-
ized as single-color.

V. SIMULATION OF OPTICAL FILAMENTS

The metastable electronic state approach was de-
signed for numerical simulation of light-matter interac-
tions where atomic gases are exposed to different exci-
tation fields at different locations, for which the optical
filamentation is a prime example. In this section, we
demonstrate that the MESA as described above can be
used for the simulation of optical filamentation in no-
ble gases across the wavelength region ranging from the
NIR to MIR. Furthermore, we compare the simulations
with and without the inclusion of the post-adiabatic cor-
rections. This gives us information about how impor-
tant the corrections are at different wavelengths. Specif-
ically, we simulate the optical filamentation at 800 nm
and 2.4µm wavelengths. The former represents a regime
where MESA provides only a qualitative picture, while
the latter is where it is in fact most suitable and a
preferred alternative to the conventional filamentation
model.
We choose to simulate a single filament with a modest

pulse energy, so that we can explore a regime which is
now or will soon be accessible to the experiments in the
MIR range. All simulations employed a Gaussian pulse
with 40 fs duration, and the peak intensity was adjusted
such that the maximal power corresponding to 3Pc for
pulses with λ = 800nm and to 2Pc for λ = 2.4µm, where
the critical power for self-focusing was calculated from
the nonlinear index values taken from Ref. [29].
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FIG. 5. Color online. Optical filament simulation using
MESA based light-matter interaction model. Full lines repre-
sent the results obtained with a full model, while the dashed
lines are for simulations without the post-adiabatic correc-
tions. The vertical lines mark the position of the linear focus,
and the expected self-focusing collapse distance obtained from
the experimental values of the nonlinear index [29].

In all cases except He and Ne, the assumed gas pres-
sure is equal to 1 atm. For He and Ne, we increased
the pressure to 10 atm. This better corresponds to the
conditions that are likely to be employed in, for exam-
ple, high-harmonic generation experiments [30]. Addi-
tionally, it makes it possible to observe the filamentation
with a pulse energy that is more realistic from the stand-
point of what sources are currently available.

In all cases, the initial beam of 3mm 1/e2-radius was
focused with an f = 2m lens. This geometry was cho-
sen deliberately because in general the dynamics in the
mid-infrared optical filaments is different from that at
800nm [31]. The focused beam geometry increases the
intensity reached with the MIR pulses, and thus allows us
to study them in the regime in which the post-adiabatic
corrections play a more important role than they other-
wise would in a loosely focused beams.

We have used the gUPPEcore [32, 33] simulator with
a light-matter interaction plugin which implements the
MESA framework as outlined in previous sections, and
which utilized the data set included in the Supplement.
The linear medium properties were described in terms
of tabulated frequency-dependent susceptibility based on
Sellmeier formulas taken from Ref. [34] (and from refrac-

tiveindex.info for Ne).

The simulation results are summarized in Fig. 5. For
each simulation run, we have evaluated the expected
self-focusing collapse distance using the nonlinear index
from [29]. Since the n2 values have been shown to be es-
sentially independent of wavelength between the NIR and
MIR regions [35], the expected collapse distance, shown
by a dashed vertical line in the figure, provides a useful
test. We have previously evaluated the nonlinear index
within the MESA and found it to be in the expected
range for different gases [6]. Here we can see that this
alternative and perhaps more practical measure of non-
linearity offered by the collapse distance is also well re-
produced by our models.

The comparative simulations for different central wave-
lengths elucidate the role the post-adiabatic corrections
play in the filamentation modeling. First, for λ =
800 nm, i.e. at the edge of the applicable region of the
present light-matter interaction framework, one can see
that without the correction included, the resulting maxi-
mal intensity is overshot by about 20-30%, in agreement
with the estimate based on the data in Fig. 2c. Otherwise
the overall filament properties, such a length, and differ-
ences in the behavior found in different gases are quali-
tatively unchanged. We take this as an indication that
even for this shorter wavelength, our approach provides
a viable and more robust alternative to the conventional
model used in optical filamentation.

At the longer wavelength, the MESA becomes more
accurate, even without including the post-adiabatic cor-
rection. This is evident from the simulation data which
shows that the maximal intensity is quite close with and
without the corrections. In fact, throughout the leading
portion of the filament they are extremely close, again in
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agreement with what Fig. 2c also suggests. At later times
or longer propagation distances we do see that the uncor-
rected results exhibit intensity spikes that are damped in
the full model. This is especially evident in case of Ar and
Kr, while the effect is much less pronounced in Helium,
Xenon and is especially weak in Neon. The behavior can
be related to the supercontinuum (data not shown) gen-
erated in the filament.

The fact that the post-adiabatic corrections can some-
times show up even in longer-wavelength optical fila-
ments is an interesting observation which shows that the
mid-infrared filaments are specific in what role is played
by the high-frequency portion of their spectrum. Here
we have evidence that the supercontinuum actually con-
tributes to the ionization in a way that manifests as a
slightly lower clamped intensity in the filament. This ob-
servation is in line with the ideas put forward in Ref. [28].
We can see that the impact of the secondary radiation be-
comes more important for MIR pulses. This is because
in general in the MIR wavelength range the interplay
between the nonlinearity and chromatic dispersion will
almost always produce broad-band spectra in which the
harmonic components may be only a couple of orders of
magnitude weaker than the fundamental. As the high-
frequency components are often localized on axis, they
can significantly contribute to the strong-field ionization,
which in turn affects the whole pulse propagation.

VI. SUMMARY AND CONCLUSIONS

In summary, this paper has provided the theoretical
background and data sets necessary to implement MESA
for modeling the nonlinear optical response and strong-
field ionization for a variety of noble gases. In particular,
single-active-electron models were employed for He, Ne,
Ar, Kr, and Xe atoms to tabulate the nonlinear dipole
moment and ionization rate as functions of the applied
external field. These MESA data sets have been incor-
porated into a nonlinear light-matter interaction module
for unidirectional pulse propagation simulations, both in
the adiabatic approximation and beyond. Simulations in-
volving excitation pulses at different center wavelengths
as well as ionization in two-color pulses were presented
and the MESA results were found to compare well with
numerical solutions of the time-dependent Schrödinger
equation. Illustrative examples of the numerical sim-
ulation of high-power pulse propagation incorporating
MESA data were presented and showcase the successful
application to optical filamentation in the MIR region.

A general finding of this study is that MESA is most
appropriate in the MIR regime, where the optical field
time-dependence can be considered slow in compari-

son to atomic time-scales. To relax this assumption at
shorter wavelengths higher-order metastable states were
included, thereby accounting for post-adiabatic effects
and associated inertial component of the nonlinear opti-
cal response. Here we approximately incorporated these
higher-order states by assuming a completeness relation,
thus allowing us to express the post-adiabatic corrections
in terms of the lowest state. The post adiabatic correc-
tions were validated in the NIR to MIR regions by com-
paring the predicted ionization rates against the TDSE
solutions, the accuracy increasing with wavelength. With
reference to the pulse propagation simulations in Fig. 5
for 800 nm (left column), it must be remarked that the
single-state MESA predictions already provide an excel-
lent qualitative picture, within 20− 30% of the corrected
results. Since the single-state MESA is no more computa-
tionally intensive than the standard filamentation model,
it provides a physically superior approach given its mi-
croscopic foundation.
Our comparative pulse propagation simulations re-

vealed an interesting effect that deserves mention: The
secondary radiation generated for a MIR optical filament
can be strong enough to affect the overall ionization rate,
which in turn can significantly modify the filament prop-
agation characteristics. This is in contrast to the physical
picture in the 800 nm and visible regions for which the
secondary radiation may be treated as weak, and well
described within a first-Born approximation [36], so that
feedback onto the filament propagation characteristics is
weak. A detailed examination of these effects in the MIR
will be the subject of a future paper.
Finally, while our main goal was to demonstrate the

utility of MESA as a simulation tool, our results point
to new avenues for future research. In particular, our
study shows that while the post-adiabatic corrections are
non-negligible they are also not overwhelming, so it is
reasonable to expect that the TDSE simulations could
be used to quantify and parameterize the dependence
on the history of the system directly. This could help
to eliminate or reduce the sequence of approximations
needed in our derivations. Furthermore, the qualitative
similarities between the parameterized nonlinear optical
response for the variety of noble gas atoms considered
strongly suggests the possibility that all MESA-related
quantities could be obtained from experiments. Measure-
ments could be used to accurately calibrate the scales of
the pre-calculated, model-based MESA responses, while
taking advantage of the fact that MESA describes both
nonlinearity and ionization within a single framework.
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