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The four standard quantum optics models such as Rabi, Dicke, Jaynes-Cummings ( JC ) and
Tavis-Cummings (TC) model were proposed by the old generation of great physicists many decades
ago. Despite their relative simple forms and many previous theoretical works, their physics at a
finite N , especially inside the superradiant regime, remain unknown. In this work, by using the
strong coupling expansion and exact diagonization (ED), we study the Z2/U(1) Dicke model with
independent rotating wave (RW) coupling g and counter-rotating wave (CRW) coupling g′ at a
finite N . This model includes the four standard quantum optics models as its various special limits.
We show that in the super-radiant phase, the system’s energy levels are grouped into doublets with
even and odd parity. Any anisotropy β = g′/g 6= 1 leads to the oscillation of parities in both the
ground and excited doublets as the atom-photon coupling strength increases. The oscillations will
be pushed to the infinite coupling strength in the isotropic Z2 limit β = 1. We find nearly perfect
agreements between the strong coupling expansion and the ED in the super-radiant regime when β
is not too small. We also compute the photon correlation functions, squeezing spectrum, number
correlation functions which can be measured by various standard optical techniques.

I. INTRODUCTION

There are several well known quantum optics mod-
els to study atom-photon interactions[1, 2]. In the Rabi
model[3], a single photon mode interacts with a two level
atom with equal rotating wave (RW) and counter rotat-
ing wave (CRW) strength. When the coupling strength
is well below the transition frequency, the CRW term
is effectively much smaller than that of RW, so it was
dropped in the Jaynes-Cummings ( JC ) model [4]. Then
the Rabi and JC model were extended respectively to the
Dicke model [5] and the Tavis-Cummings (TC) model [6]
with an assembly of N two-level atoms. Despite their rel-
ative simple forms and many previous theoretical works
[10–15], their solutions at a finite N , especially inside the
superradiant regime, remain unknown. Here, we address
this outstanding problem. It is convenient to classify the
four well known quantum optics models from a simple
symmetry point of view: the TC and Dicke model as the
U(1) and Z2 Dicke model [7–9] respectively, while JC and
Rabi model are just as the N = 1 version of the two.

Due to recent tremendous advances in technologies,
ultra-strong couplings in cavity QED systems were
achieved in at least two experimental systems (1) a BEC
atoms inside an ultrahigh-finesse optical cavity [16–20]
and (2) superconducting qubits inside a microwave cir-
cuit cavity [21–23, 25] or quantum dots inside a semi-
conductor microcavity [24]. In general, in such a ultra-
strong coupling regime, the system is described well by
Eq.1 dubbed as the U(1)/Z2 Dicke model [8, 26, 27] which
includes the four standard quantum optics models as its
various special limits. Despite many previous theoretical

works on its various special limits [10–15], their solutions
at a finite N , especially inside the superradiant regime,
remain unknown. Here, we address this outstanding
problem. Specifically, we study the U(1)/Z2 Dicke model
Eq.1 at any finite N and any ratio 0 ≤ g′/g = β ≤ 1 be-
tween the Rotating wave (RW) term g and the counter
rotating wave (CRW) term g′ by the strong coupling ex-
pansion [28] and exact diagonization (ED) [8, 12, 29]. We
show that in the super-radiant phase, the system’s en-
ergy levels are grouped into doublets with the even and
odd parities, respectively. Any anisotropy β 6= 1 leads
to the oscillation of parities in the ground and excited
doublet states in superradiant phase as the g increases.
In the Z2 limit β = 1, all the oscillations are pushed
to g = ∞. We find nearly perfect agreements between
the strong coupling expansion and the ED in the super-
radiant regime when β is not too small. We compute
the photon correlation functions, squeezing spectrum and
number correlation functions which can be detected by
fluorescence spectrum, phase sensitive homodyne detec-
tion and Hanbury-Brown-Twiss (HBT) type of experi-
ments respectively [1, 2, 30]. Experimental realizations
are discussed. New perspectives are outlined.

II. STRONG COUPLING EXPANSION

In the strong coupling limit, it is more convenient to
start from the Z2 limit with β = 1, then treat 1 − β as
a small parameter, one can rewrite the U(1)/Z2 Dicke
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model [8] in its dual Z2/U(1) presentation:

HZ2/U(1) = ωaa
†a+ ωbJz +

g(1 + β)√
N

(a† + a)Jx

− g(1− β)√
N

(a† − a)iJy (1)

where ωa, ωb are the cavity photon frequency and the en-
ergy difference of the two atomic levels respectively, the
g and g′ = βg, 0 ≤ β ≤ 1 are the atom-photon rotat-
ing wave (RW) and the counter-rotating wave (CRW)
coupling respectively. If β = 0, Eq.1 reduces to the
U(1) Dicke model [7–9] with the U(1) symmetry a →
aeiθ, σ− → σ−eiθ leading to the conserved quantity
P = a†a+ Jz . The CRW g′ term breaks the U(1) to the
Z2 symmetry a → −a, σ− → −σ− with the conserved

parity operator Π = eiπ(a
†a+Jz). If β = 1, it becomes the

Z2 Dicke model [12, 13, 31].
After performing a rotation around the Jy axis by π/2,

one can write H = H0 + V where H0 = ωa[a
†a+G(a† +

a)Jz], G = g(1+β)

ωa

√
N

and the perturbation V = −ωb

2 [J+(1+

λ(a† − a)) + J−(1 − λ(a† − a))] where λ = g(1−β)

ωb

√
N

is a

dimensionless parameter of order 1 when 1 − β is small
in the large g limit. In principle, the strong coupling
expansion is performed in the large g limit G ≫ 1, but
with a small 1− β such that λ is of order 1. In practice,
as compared to ED, the method works well also when g

is not too close to gc =
√
ωaωb

1+β and β is not too close to

the U(1) limit β = 0.
Define A = a + GJz, then H0 = ωa[A

†A − (GJz)
2]

[29]. Because [A, Jz] = 0, we denote the simul-
taneous eigenstates of A and Jz as |l〉m|jm〉,m =
−j, · · · , j, l = 0, 1, · · · . The eigenstates satisfy Jz |jm〉 =
m~|jm〉, A†

mAm|l〉m = l|l〉m where Am = a+Gm, |l〉m =

D†(gm)|l〉 = D(−gm)|l〉 where D(α) = eαa−α∗a†

, gm =
mG and |l〉 is just the l-photon Fock state. Partic-
ularly, the ground state |0〉m = D(−gm)|0〉 is a pho-
ton coherent state. The zeroth order eigen-energies are
H0|l〉m|jm〉 = E0

l,m|jm〉, E0
l,m = ωa(l − g2m). Using the

parity operator Π = eiπ(a
†a−Jx), one can show that

Π|l〉m|jm〉 = (−1)l|l〉−m|j,−m〉. Because the parity is
a conserved quantity at any finite N , one can group all
the eigenstates into even or odd under the parity operator

Π = eiπ(a
†a−Jx):

|e〉 = 1√
2
[|l〉m|j,m〉+ (−1)l|l〉−m|j,−m〉]

|o〉 = 1√
2
[|l〉m|j,m〉 − (−1)l|l〉−m|j,−m〉] (2)

The ground state is a doublet at |l = 0〉±j|j,±j〉.
In the large g limit, the excited states can be grouped
into two sectors: (1) The atomic sector with the eigen-
states |l > 0〉±j|j,±j〉 with the energies lωa. The
first excited state l = 1 with the energy ωa is the
remanent of the pseudo-Goldstone mode in the U(1)
regime [8]. (2) The optical sector with the eigenstates

|l〉m|j,m〉, |m| < j. The first excited state has the energy

ωo = E0
l,m=j−1−E0

l,m=j = ωaG
2(2j−1) = g2(1+β)2

ωa
(2j−1

2j )

and is the remanent of the Higgs mode in the U(1) regime
[8]. So in the strong coupling limit, there is wide sepa-
ration between the atomic sector and the optical sector.
This makes the strong coupling expansion very effective
to explore the physical phenomena in the superradiant
regime.

III. GROUND STATE ( l = 0 ) SPLITTING

The two degenerate ground state are |1〉 = |l =
0〉−j|j,−j〉, |2〉 = |l = 0〉j |j, j〉 with the zeroth order en-
ergy E0 = −ωa(Gj)2. Then we can determine the matrix
elements in the 2×2 matrix which is the effective Hamil-
tonian projected onto the 2 dimensional subspace. By a
second order perturbation, one finds a non-zero diagonal
matrix element:

V11 = V22 = V0(λ) = −ω2
b

ωa

2j

2j − 1

1 + λ2

G2
< 0 (3)

However, one needs to perform a N = 2j order pertur-
bation ( See appendix A ) to find the first non-zero con-
tribution to the off-diagonal matrix element V12 = V21 =
∆0(λ):

∆0(λ) = −N2ωb

2
(

ωb

2ωaG2
)N−1e−(NG)2/2

×
N
∑

l=0

λl

(N − l)!

[l/2]
∑

n=0

(−1/2)n(−NG)l−2n

n!(l − 2n)!
(4)

where [l/2] is the closest integer to l/2 and λ
G = 1−β

1+β
ωa

ωb
.

Setting λ = 0 in Eq.4 leads to the splitting in the Z2

Dicke model at β = 1 ( Fig.2d ):

∆0 = − ωb

(N − 1)!
(
ωb

2ωa
)N−1 2g

2

ω2
a

e
−N 2g2

ω2
a < 0 (5)

which is always a negative quantity, so leads to the even
and odd parity as the ground state and the excited state
in the l = 0,m = j doublet in Eq.2 having the energies
Eo/e = E0 + V0 ± |∆0| ( Fig.1 ).
Now we study the dramatic effects of the anisotropy

λ > 0 encoded in Eq.4. If removing the exponential fac-

tor e−(G′)2/2 whereG′ = NG, Eq.4 is a 2N -th polynomial
of g. We find that it always has N positive zeros in g be-
yond the gc ( namely, fall into the super-radiant regime
). Higher than the N−th order perturbations will lead
to other zeros at larger g shown in Fig.3b. Any changing
of sign in ∆0(λ) leads to the exchange of the parity in
the ground state l = 0,m = j in Eq.2 ( namely, Eq.B1 )
with the energies Eo/e = E0 + V0(λ) ± |∆0(λ)| in Fig.1.
So any λ > 0 will lead to infinite number of level cross-
ings with alternative parities in the ground state, which
is indeed observed in the ED results Fig.2 for the energy
levels at N = 2 and β = 0.1, 0.5, 0.9. It is the anisotropy
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FIG. 1. (Color Online) The energy shifts V0 < 0, V1 < 0
and splittings ∆0,∆1 of the ground state l = 0 and the first
excited state l = 1. Shown here is ∆0 < 0,∆1 > 0 case where
the even parity state is the ground state at l = 0, 1. The
blue and red dashed transition lines can be mapped out by
photon and photon number correlation functions Eq.10 and
11 respectively.

which leads to the parity oscillations in the superradiant
regime. However, at β = 1, the infinite level crossings
are pushed to infinity, so no parity oscillations in Fig.2d
anymore [31].

IV. DOUBLET SPLITTING AT EXCITED
STATES l > 0

Now, we look at the energy splitting at l > 0. The
diagonal matric element at l = 0 in Eq.3 can be easily
generalized to l > 0 case:

V11 = V22 = Vl(λ) = −ω2
b

ωa

2j

2j − 1

1 + λ2(2l+ 1)

G2
< 0 (6)

By performing a N = 2j order perturbation, we also
find a general ( but a little bit complicated ) expression
for the off-diagonal matrix element V12 = V21 = ∆l(λ).

However, in the G ≫ 1 limit, it can be simplified to:

∆l(λ) ∼
(−1)l

l!
(G′2)l∆0(λ) (7)

where ∆0(λ) is given in Eq.4. It is enhanced due to
the large prefactor G′2l. Note that it is this oscillating
sign (−1)l which leads to the even/odd parity state with
an extra (−1)l in Eq.2 with m = j ( namely Eq.B2 ).
The l-th levels have the energies Eo/e = E0

l + Vl(λ) ±
|∆l(λ)|, E0

l = ωa[l − (Gj)2] with l = 1 shown in Fig.1.
The diagonal part of the excited energy is:

(E0
l + Vl(λ)) − (E0

0 + V0(λ)) = lωa − (|Vl| − |V0|)

= lωa −
ω2
b

ωa

2j

2j − 1

1 + 2λ2

G2
< lωa (8)

which approaches lωa from below in the G ≫ 1 limit.
This is indeed confirmed by the ED in Fig.2.

Eq.7 shows that at the N -th order perturbation, the
number of zeros remains to be N and the positions of the
zeros are independent of l in the G ≫ 1 limit. This ob-
servation is indeed confirmed in the following ED results
in Fig.3.

V. EXACT DIAGONIZATION RESULTS

Due to the λ term in Eq.1, it is not convenient to
perform the ED in the coherent basis anymore used in
[29], so we did the ED in the original ( Fock ) basis [12].
In the Fock space, the complete basis is |n〉|j,m〉, n =
0, 1, 2, .....∞, j = N/2,m = −j, ....., j where the n is the
number of photons and the |j,m〉 is the Dicke states. In
performing the ED, following [12], one has to use a trun-
cated basis n = 0, 1, ......nc in the photon sector where
the nc ∼ 100 is the maximum photon number in the ar-
tificially truncated Hilbert space. As long as the low en-
ergy levels in Fig.3 and Fig.2 are well below ncωa, then
the energy levels should be very close to the exact re-
sults without the truncation ( namely, sending nc → ∞
). However, the ED may not be precise anymore when g
gets too close to the upper cutoff introduced in the ED
calculations as shown in Fig.3c.

VI. COMPARISON BETWEEN THE STRONG
COUPLING EXPANSION AND THE EXACT

DIAGONZIATION (ED)

In Fig.3 (a)-(c), we compare Eq.4 and 7 with the ED
results on the energy level splitting between the dou-
blets with even and odd parity for N = 2 at β =
0.1, 0.5, 0.9, l = 0, 1, 2. We find the first N zeros (
or parity oscillations ) from the strong coupling expan-

sion match those from the ED nearly perfectly well at
β = 0.5, 0.9 in the super-radiant regime. Of course, the
ED may not be precise anymore when g gets too close
to the upper cutoff introduced in the ED calculation as
shown in Fig.3d. In fact, the first N = 2 zeros of Eq.4
can be found exactly as the two positive roots:

G∓ = (

√

1 + 8
1 + β

1− β
∓ 1)/4 (9)
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FIG. 2. (Color Online) ED results for the energy levels at N = 2 and β = 0.1, 0.5, 0.9 and also the Z2 limit β = 1 in (a)-(d)
respectively. For simplicity, we only show ωa = ωb case. The parity even (e) in red color and odd (o) in green color are
indicated. We only label the atomic modes l = 0, 1, 2, 3.... There are none, one and two level crossing(s) in the normal regime
at l = 0, 1, 2 respectively. When expanding the doublets at l = 0, 1, ...., as g/gc increases, there are infinite energy level crossings
leading to the oscillations of parities at the ground states at l = 0, 1, .... manifolds shown in Fig.3. As β → 1−, all the zeros
are pushed to infinity in (d). There are no level crossings anymore between the even and odd parity pairs. Only the atomic
energies at l = 0, 1, 2.... are labeled. As g/gc → ∞ limit, they approach to lωa from below. This behavior has been discovered
by the strong coupling expansion in the main text. Note that the energy levels here are not directly experimental detectable.
But the photon correlations functions listed in Eq.10 and 11 are.

which falls in the superradiant regime. The spacing be-
tween the two roots ∆( g

gc
) = 1√

2
is independent of β as

shown in Fig.3c,d. As β → 1−, both roots ∼ (1− β)−1/2

are pushed into the infinity.

Eq.7 is also confirmed by the ED shown in Fig.3d for
N = 2, β = 0.9, l = 0, 1, 2 where the positions of the first
N = 2 zeros only depend on l very weakly. So between
the two zeros, at l = 0, 1, 2, · · · , the energy levels are in
the pattern (e, o), (e, o), · · · when ∆0(λ) < 0 shown in
Fig.1 ( or (o, e), (o, e), · · · when ∆0(λ) > 0 ).

VII. PHOTON, SQUEEZING AND NUMBER
CORRELATION FUNCTIONS

Note that the energy level structures in Fig.3a-c are
not directly experimentally measurable. So it is very im-

portant to evaluate various photon correlation functions
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FIG. 3. (Color Online) Shown in (a)-(c) are the even/odd splitting ∆l for N = 2 at β = 0.1, 0.5, 0.9 and l = 0, 1, 2 in the Log

scale ln |∆l

ωb
| versus g/gc. The labels e and o are the parity of the ground states. Being ∆0 > 0, the ground state between

the first two zeros in (a)-(c) has the odd parity. The red ( blue ) line is from the strong coupling expansion and the ED. The
numerical sharp dips mean the zero splittings. It always starts with the even parity with oscillating parities at l = 0, 1, 2. There
are also none, one and two level crossing(s) in the normal regime at l = 0, 1, 2. The ED gives infinite number of zeros after
the first N = 2 zeros which can only be achieved from higher order perturbations in the strong coupling expansion. In (a) at
β = 0.1, the strong coupling results match well with those from the ED at l = 0, but not too well at l = 1, 2 in the first N = 2
zeros. Even so, they match well the envelop of the splitting at l = 0, 1, 2 ( namely, the maximum splitting ). In both (b) and
(c), the strong coupling results match very well with those from ED in the first N = 2 zeros. The other zeros are far apart
from the first N = 2 zeros and out of the scope in the figure. In (a) or (b), if one follow the ground state with the odd parity,
there are some or slight shifts of zeros to the right at l = 0, 1, 2. In (c), the shifts are very small as dictated by Eq.7 in the limit
G = g

gc

1√
N

≫ 1. At too strong couplings, the ED may become ( noise ) un-reliable due to the cutoff introduced in the ED.

graphically shown in Fig.1, which can be directly mea-
sured through leaking cavity photons by various standard
quantum optics detection methods. In order to calculate
the photon correlation functions in the strong coupling
limit, one not only needs to find the energy levels as done
in the previous sections and in Fig.1, but also the wave-
functions listed in the appendix B. Using the Lehmann

representations, we find there is no first order correction
to the normal photon correlation function, but there is
one ∼ 1/G2 to the anomalous photon correlation func-
tion:

〈a(t)a†(0)〉 = Ae−i|∆0|t + e−i(ωa+∆a)t

〈a(t)a(0)〉 = Ae−i|∆0|t −Be−i(ωa+∆a)t (10)
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where A = (Gj)2 = N g2(1+β)2

4ω2
a

∼ G2 is the photon num-

ber in the ground state [37] and B = λ2

G2 (
ωb

2ωa
)2 2j

2j−1 ∼
1/G2 and ∆a = (V1−V0)+

1
2 (|∆1|+|∆0|) shown in Fig.1 .

One can see the anomalous spectral weight −B ∼ (λ/G)2

is negative and completely due to λ ( away from the Z2

limit ). So the B term in the anomalous photon cor-
relation function can reflect precisely the anisotropy β
and can be easily detected in phase sensitive Homodyne
measurements [30].
Similarly, we also find the first order correction∼ 1/G2

to the photon number correlation function:

〈n(t)n(0)〉 − 〈n〉2 = A[1 +B]2e−i(ωa+∆n)t (11)

where ∆n = (V1−V0)− 1
2 (|∆1|−|∆0|) shown in Fig.1 and

〈n〉 = A is the photon number in the ground state which
does not receive first-order correction. From Eq.10 and
11, one can see that the ∆0 can be directly extracted from
the very first frequency in Eq.10, while |∆1| = ∆a −∆n

and V1 − V0 = (∆a + ∆n)/2 − |∆0|. So all the parame-
ters of the cavity systems such as the doublet splittings
∆0(λ),∆1(λ) and energy level shifts V1 − V0 in Fig.1
can be extracted from the photon normal and anomalous
Green functions Eq.10 and photon number correlation
functions Eq.11. Their spectral weights also contain de-
tailed information on the wavefucntions of the system’s
energy levels. They can be measured by photolumines-
cence, phase sensitive homodyne and Hanbury-Brown-
Twiss ( HBT ) type of experiments [30] respectively.

VIII. EXPERIMENTAL REALIZATIONS AND
DETECTIONS

In order to observe the parity oscillation effects, one
has to move away from the Z2 limit realized in the ex-
periments [18–20], namely, 0 < β < 1. This has been
realized in the recent experiment [27] with N ∼ 105 cold
atoms inside an optical cavity which can tune β from 0
to 1. In view of recent experimental advances to manipu-
late a few atoms inside an optical cavity [35, 36], it should
be practical to reduce the number of atoms to a few in
the experiment [27]. In circuit QED systems, there are
various experimental set-ups such as charge, flux, phase
qubits or qutrits, the couplings could be capacitive or in-
ductive through Λ, V,Ξ or the ∆ shape [39]. Especially,
continuously changing 0 < β < 1 has been achieved in
the recent experiment [25]. An shown in [8], the repulsive
qubit-qubit interaction also reduces the critical coupling
gc.
From Fig.3a1, at N = 2, β = 0.1, l = 0, one can es-

timate the maximum splitting between the first two ze-
ros ∆0 ∼ 0.1ωa which is easily experimentally measur-
able. ∆l increases as l = 1, 2 as shown in Fig.3a2,a3. At
β = 0.5 in Fig.3b1, ∆0 decreases to ∼ 0.01ωa which is
still easily measurable. The splittings at β = 0.2, 0.3, 0.4

falling in the range 0.01ωa < ∆0 < 0.1ωa are shown in
the Fig.4 in the appendix C. At β = 0.9 in Fig.3c1, ∆0

decreases to ∼ 10−11ωa which may become difficult to
measure. However, in view of recent advances in the pre-
cision measurements in the detection of the elusive grav-
itational waves [38], it is also possible to measure such a
tiny splitting by the phase sensitive homodyne detection
[20]. So the parity oscillations can be easily experimen-
tally measured when β is not too close to the Z2 limit
with a finite N = 2 − 9 atoms or qubits inside a cavity.
As said in the last section, the photon normal, anomalous
and photon number correlation functions in Eq.10 and 11
can be measured by photoluminescence, phase sensitive
homodyne and Hanbury-Brown-Twiss ( HBT ) type of
experiments [30] respectively.

IX. CONCLUSIONS AND DISCUSSIONS

The four standard quantum optics models at a finite
N were proposed by the old generation of great physi-
cists many decades ago. Their importance in quantum
and non-linear optics ranks the same as the bosonic
or fermionic Hubbard models and Heisenberg models in
strongly correlated electron systems and the Ising mod-
els in Statistical mechanics [40]. Despite their relative
simple forms and many previous theoretical works, their
solutions at a finite N , especially inside the superradi-
ant regime, remain unknown. In this work, we addressed
this outstanding historical problem by using the strong
coupling expansion and ED. We are able to analytically
calculate various photon correlation functions in the su-
perradiant regime remarkably accurate except when β is
too small where the (non)-degenerate perturbations near
the U(1) limit ( β = 0 ) works well [8]. The present
work may inspire several new directions. From the wave-
functions listed in appendix B, it would be interesting
to evaluate [32] the effects of the parity oscillations on
the atom-photon entanglements at a given l = 0, 1, 2...
manifold. It is important to incorporate the effects of
the external pumping and cavity photon decays [30] to
evaluate the photon correlations functions in Eq.10,11
using Keldysh non-equilibrium Green function approach.
It would be tempting to study the arrays of cavities lead-
ing to the Z2/U(1) Dicke lattice models [41] with general
0 < β < 1.
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In this appendix, (1) We give the derivation of Eq.4 in the main text (2) We list the wavefunctions up to the first
order in 1/G2 in the strong coupling expansion which are needed to evaluate various photon correlation functions.
(3) We also provide some additional ED results which complement to those presented in the main text.

Appendix A: Derivation of Equation 4

The first non-vanishing contribution to the off-diagonal matrix element is through N = 2j order perturbation
V12 = V21 = ∆0(λ) = 〈2|HN |1〉 where HN = P0V

1−P0

E0−H0

V · · · 1−P0

E0−H0

V P0 which contains N interaction V and N − 1

propagator 1−P0

E0−H0

, E0 is the ground state energy and P0 is the projection onto the ground state manifold spanned

by the doublets |1〉 and |2〉.
Using the eigenvalues E0

l,m = ωa(l−g2m), gm = mG and inserting the eigenstates |l〉m|j,m〉 of H0 into the expression
leading to

∆0(λ) = −(
ωb

2ωa
)N−1ωb

2

√
N

∑

{l}

j−1
∏

m=−j+1

[A(lj+m+1, lj+m)]

√

j(j + 1)−m(m+ 1)

lj+m +G2(j2 −m2)
× [−j+1〈l1|[|0〉−j + λ|1〉−j ] (A1)

where A(lj+m+1, lj+m) =m+1 〈lj+m+1|1 + λ(a† − a)|lj+m〉m =m+1 〈lj+m+1|[|lj+m〉m + λ
√

lj+m + 1|lj+m + 1〉m −
λ
√

lj+m|lj+m − 1〉m], the product is over the N − 1 intermediate states |l〉m|jm〉,m = −j + 1, · · · , j − 1 connecting
|1〉 to |2〉 and {l} = l1, ·, l2j−1, l2j = 0.
In the G ≫ 1 limit, it is justified to drop the lj+m dependence in the denominator, Eq.A1 is simplified to:

∆0(λ) = −(
ωb

2ωaG2
)N−1ωb

2

√
N

j−1
∏

m=−j+1

√

j(j + 1)−m(m+ 1)

j2 −m2
j

〈0|[1 + λ(a† − a)]N |0〉−j (A2)

The overlapping matrix element between the two ground states can be evaluated as:

j〈0|[1 + λ(a† − a)]N |0〉−j =
N
∑

n=0

λnCn
NEn (A3)

where the En means taking the coefficient of xn/n! in the Tylor expansion of E(x) = e−(G′+x)2/2 where G′ = NG.
Taking the coefficient leads to:

j〈0|[1 + λ(a† − a)]N |0〉−j = e−(G′)2/2
N
∑

l=0

N !λl

(N − l)!

[l/2]
∑

n=0

(−1/2)n(−λG′)l−2n

n!(l − 2n)!
(A4)

where [l/2] is the closest integer to l/2.

Evaluating the product
∏j−1

m=−j+1

√
j(j+1)−m(m+1)

j2−m2 =
√
2j

(2j−1)! in Eq.A2 leads to Eq.4.

Appendix B: The wavefunctions by strong coupling expansion.

The zero-th order ground states with even and odd parities of the system is at l = 0,m = j sector in Eq.2:

|e〉0 =
1√
2
[|l = 0〉j |j, j〉+ |l = 0〉−j|j,−j〉]

|o〉0 =
1√
2
[|l = 0〉j |j, j〉 − |l = 0〉−j|j,−j〉] (B1)

with the energies Eo/e = E0 + V0(λ)± |∆0(λ)| shown in Fig.1.

Using straightforward non-degenerate perturbation expansion, we find the first order correction in 1/G2 to the
even/odd ground states at l = 0 in Eq.B1:

|α〉1 =
ωb

2ωa

√

2j
∑

l

j−1〈l|1− λ(a† − a)|l = 0〉j
l +G2(2j − 1)

1√
2
[|l〉j−1|j, j − 1〉+ α(−1)l|l〉−j+1|j,−j + 1〉]

+ (
ωb

2ωa
)22j

∑

l,l′ 6=0

j〈l′|1 + λ(a† − a)|l〉j−1 ·j−1 〈l|1− λ(a† − a)|l = 0〉j
l′[l +G2(2j − 1)]

1√
2
[|l′〉j |j, j〉+ α(−1)l

′ |l′〉−j |j,−j〉](B2)
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where α = ± for α = e/o respectively. Indeed, it shows that the even ( odd ) parity ground state is mixed with only
other even ( odd ) parity states as dictated by the parity conservation of the Hamiltonian at any finite N . One can
see the first-order correction to the ground state wavefunction consists of two parts: the first part ( line ) is in the
high energy optical sector, the second part ( line ) is in the low energy atomic sector.
The zero-th order l-th level states with even and odd parities of the system is at l,m = j in Eq.2:

|e, l〉 = 1√
2
[|l〉j |j, j〉+ (−1)l|l〉−j|j,−j〉]

|o, l〉 = 1√
2
[|l〉j |j, j〉 − (−1)l|l〉−j|j,−j〉] (B3)

with the energies Eo/e = E0
l + Vl(λ)± |∆l(λ)|, E0

l = ωa[l− (Gj)2] in Fig.1.
Similarly, one can find the first order correction to the two doublets at l = 1 in Eq.B3 by making the following

replacements in Eq.B2: (1) changing |l = 0〉j to |l = 1〉j (2) the denominator [l +G2(2j − 1)] to [l − 1 +G2(2j − 1)].
(3) the sum subscript l′ 6= 0 to l′ 6= 1.
These wavefunctions are used to calculate the photon correlation functions Eq.10 and 11.

Appendix C: Some additional Exact Diagonization results

In this appendix, we show the results on even/odd splitting ∆l for N = 2 at β = 0.2, 0.3, 0.4 at l = 0, 1, 2. They
make up the results between β = 0.1 and β = 0.5 shown in Fig.3 in the main text. Especially, they describe how the
maximum splitting between the first two zeros ∆0 monotonically decreases from ∆0 ∼ 0.1ωa at β = 0.1 to ∆0 ∼ 0.01ωa

at β = 0.5, also how the other zeros separate from the first two as β increases.
We also made the comparisons between strong coupling expansions and the ED on the doublet splittings for N = 5

at β = 0.1, 0.5, 0.9, 1 and l = 0, 1, 2 and found similar agreements as those at N = 2 shown in Fig.3.
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FIG. 4. (Color Online) The even/odd splitting ∆l for N = 2 at β = 0.2, 0.3, 0.4 at l = 0, 1, 2 in the Log scale ln |∆l

ωb
| versus

g/gc. The notations are the same as those in Fig.3. The strong coupling expansion works very well in the ground state doublet
l = 0. There are some small deviations form the ED at the excited doublets l = 1, 2 when β = 0.2, but the deviations decrease
when β = 0.3, 0.4. As β increases, the other zeros start to gradually move away from the first two. As shown in the main text,
all the splittings are easily experimentally measurable.
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