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Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive
force probe, transducer, and actuator, are being increasingly employed in many developing micro-
scopies, spectroscopies, and emerging optomechanical and chem-bio sensors. We predict a significant
squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an
electrically induced nonlinearity. By taking into account the quantum noise, the underlying non-
linear dynamics is investigated in both the transient and stationary regimes of the driving force
leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in in-
stability of the oscillator. We discuss a possible application of this strong quantum squeezing as
an optomechanical method for detecting broad-spectrum single or low-count photons, and further
suggest other novel sensing actions.

I. INTRODUCTION

Quantum effects that may be exhibited by mechani-
cal resonators have been of increasing importance, as re-
ported by Blencowe in his review of quantum electrome-
chanical systems [1], and more recently by Poot and van
der Zant in their review of mechanical systems in the
quantum regime [2], and by Aspelmeyer, et. al., in their
review of cavity optomechanics [3]. In particular, micro-
and nano-beams and cantilevers [4–7] have proved highly
useful in a host of applications such as photon-oscillator
interaction [8] and oscillator-quantum dots coupling [9].
These oscillators have played a central role in the devel-
opment of several forms of scanning probe microscopy,
most notably in the atomic force microscope (AFM) [10–
12]. Fabricated typically from silicon or silicon nitrite
and coated with thin metallic films of gold or chromium,
self-assembled monolayers of biological material such as
DNA and aptamers, or other functionalizing materials,
micro-beams have also been attracting a great deal of in-
terest as biosensors. In a variety of applications such
as delayed dynamics [13], opto-mechanical [14], plas-
monic [15], and gas-kinetic forces [16], these oscillators
continue to be instrumental to establishing the transi-
tion from macro- to microscopic behavior of the stud-
ied effects. Employing ultrathin single crystal silicon
cantilevers, sub-atto-Newton force resolution has already
been demonstrated in low temperature high vacuum ex-
periments [17]. Apart from the general pursuit of obser-
vation of quantum effects in macroscopic systems, under-
standing and designing oscillators that exhibit superior
signal to noise ratio, frequency response and amplitude
control can indeed be of great practical importance in
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FIG. 1. A polysilicon mechanical oscillator biased to a po-
tential V (t) with respect to a substrate. Response to both
mechanical and electric excitation can be computationally
obtained by solving the coupled elastodynamic and electro-
dynamic equations. The computed third displacement eigen-
mode of the suspended beam is shown as an example along
with the potential and field E distributions (top). In a pro-
posed application, low count mid-infrared photons are allowed
to impinge on the oscillator surface and are subsequently de-
tected via a squeezed quantum deformation state. The spec-
tral response of an example system is shown for silicon nitrite.

sensing and imaging [18], where the ability to sensitively
control the response of cantilevers by invoking the prop-
erties of their quantum states will lead to a new paradigm
in the application domain of such oscillators [2, 3]. Or-
dinarily however, quantum effects are only weakly exhib-
ited by micro- and nano-cantilevers. For example, the
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vibrational energy of a cantilever oscillating in its lowest
resonant deformation state (∼ kHz) with a typical tip dis-
placement ∼ µm, is only ∼ 10−16 [J]. Setting the lowest
oscillation energy of a cantilever to ~ω yields a tip dis-
placement ∼ a few pm, the measurement of which would
typically require a temperature T � ~ω/kB ∼ µK. How-
ever, material, geometric, and force-induced nonlineari-
ties can greatly affect the cantilever response and possibly
enhance the associated quantum effects. While in prin-
ciple, an oscillator in one of its flexural modes, say the
fundamental eigenmode, can be prepared in its ground
state [19], in practice, it is often prepared in an initial
state which is close to the ground state, for example by
cavity cooling [20–22].

In the case of force-induced nonlinearity, it is well-
known that micro-electro-mechanical systems (MEMS)
subject to an electric potential develop an instability as
the voltage increases past a critical value (pull-in in-
stability) [23]. While this is a classical effect, quan-
tum properties of micro-cantilevers have also been stud-
ied for electrically driven cantilevers [24, 25], as well as
fixed beams near the Euler (buckling) instability [26],
and squeezed quantum states were shown to exist (as-
suming that quantum mechanics applies to such meso-
scopic systems). Here, we explore the quantum effects
near the pull-in instability for the arrangement shown in
Fig. 1. Investigation of this highly nonlinear parameter
regime is in part motivated by our previous observation
of the broadband sensitive scattering properties of pas-
sive multilayer thin film dielectric/semiconductor-metal
beams [14, 15]. Thus, as an application we propose a pho-
ton detection scheme based on the strong photoacoustic
response to infrared photons by metal coated thin films
of silicon nitrite suspended near a substrate, which is
here suggested as a candidate system in the presented
investigation of the squeezed states. For example, as de-
picted in Fig. 1, for a ∼ 5 mm diameter 100 mW output
beam of a quantum cascade laser, amplitude modulated
at 100 kHz and with a center wavelength of λ = 10 µm,
roughly a fraction of 10−10 J power will scatter off the
surface of a cantilever [14] and engenders a photoacous-
tic stimulus. Without spectral optimization of the ab-
sorption cross section of the involved materials, a signal
& 100 mV can be observed by employing pump-probe
reflectometry and lock-in detection under ambient con-
ditions. With optimization, considering a photon energy
of ∼ 2 × 10−20 J, the detection limit of such a signal
would imply a large number of photons (∼ million). It
is proposed that under the quantum conditions (vacuum,
mK cooling, and proper squeezing), this number can be
drastically reduced.

In Section II, we adopt a linear isotropic elastic mate-
rial (i.e., Hookean stress-strain relations) to formulate the
oscillator dynamics but introduce a nonlinearity in the
external forces via electrodynamic interactions. By con-
sidering the resulting nonlinear dynamics of the beam in
Section III, we first establish the conditions under which
quantum effects may become significant. In doing so we
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FIG. 2. Critical voltage Vc (right axis) and the undriven un-
damped resonance frequencies ω1 and ω2 (left axis) as func-
tions of L0. The annotations display the averages of the fre-
quency and voltage ratios.

consider a single transversal deformation mode, specif-
ically the fundamental eigenmode of the oscillator and
treat the variable describing the position of the beam as
an observable so that creation and annihilation opera-
tors would alter the quantized oscillation amplitude of
the fundamental mode. We then examine the possibility
of existence of squeezed states, and therefore investigate
whether it is possible to squeeze the oscillation ampli-
tude and phase of a beam oscillating in its fundamental
eigenmode without and with being subject to the electro-
dynamic force nonlinearity. We find that, in the latter
case, the squeezing can be made arbitrarily strong as one
approaches the pull-in instability. Section VII contains
our conclusions and a discussion of the possibility that
precision measurements, such as single photon detection
capitalizing on mechanical nanometer scale displacement
may benefit from the presented strongly squeezed state.

II. COMPUTATIONAL AND ANALYTICAL
CLASSICAL MODEL

The deformation properties of a planar solid, as for-
mulated in continuum mechanics, can be specialized to
describe the dynamics of a polysilicon beam-shaped mi-
crostructure with length 0 ≤ x ≤ L, width −b/2 ≤
y ≤ b/2, and thickness −d/2 ≤ z ≤ d/2, in an in-
ertial system xyz, where it is immobilized at x = 0
and x = L and suspended a distance g0 above a pla-
nar polysilicon domain, as shown in Fig. 1. Denoting
the displacement field with u, the equation of motion
in the system shown in Fig. 1 (i, j = x, y, z) for an
elastic medium of density µ subject to a volume force
f is µ∂ttui = fi + σji,j , where σ, proportional to the
strain tensor ε, is the Cauchy stress tensor, which using
the stiffness tensor c can be expressed via the consti-
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FIG. 3. Capacitance and stationary deformation (inset) of
the system as functions of applied potential difference. The
dashed curve in the inset shows a midpoint deformation of
near -800 nm leading to the pull-in instability at a voltage
near 42 V.

tutive equation σij = cijklεkl. The material (polysili-
con) considered in this work is assumed to be isotropic
and homogeneous, that is, cijkl ∝ (E, ν), ∀i, j, k, l with
(E, ν) being the Young modulus and Poisson ratio. For
a linear material εij = (ui,j + uj,i − uk,iuk,j)/2, which
when used with the equation of motion above, one ob-
tains the Cauchy-Navier equation. Fourier transform-
ing the Cauchy-Navier equation expresses it in eigen-
value form −µω2ui = fi + σji,j . For practical dimen-
sions (L, b, d) = (L0, 20, 2) µm, with L0 in µm as a con-
venient parameter, this equation can be solved numeri-
cally [27] for the domain defined in Fig. 1. We compu-
tationally obtain an (infinite) eigenfrequency spectrum
{ωn(L0)}, n = 1, 2, . . . , as shown in Fig. 2 with fi = 0 and
damping neglected. For example, ω2(30) = 108.0 MHz,
ω2(90) = 12.9 MHz, ω1(120) = 7.2 MHz etc can help de-
signing a system to achieve a given frequency response.
We note that the fluctuation-dissipation theorem estab-
lishes a path to obtaining the mode n dependent Brow-
nian oscillation amplitude of the cantilever. In the ab-
sence of any explicit driving forces, the cantilever is there-
fore assumed to possess sufficient Brownian amplitude
to be resonantly excited into low amplitude oscillations
with the first few eigenmodes readily observed experi-
mentally [13].

By imposing a time (t) dependent harmonic poten-
tial difference V (t) between the weakly oscillating (noise
driven) cantilever and the substrate, the system can be
driven into high amplitude resonance by frequency tuning
f(ω) = V0 sin(ωt) = Fdrive, where |V0| may be obtained
from integrating Maxwell’s stress tensor. As shown com-
putationally in Fig. 1 for the third excited eigenmode
ω → ω3(300) and g0 = 2 µm, the approaching point
to the surface (variable gap) will depend on the excited
eigenmode. In the stationary case where V is static, solv-
ing the coupled Cauchy-Navier and Poisson equations for

the transversal displacement component of the neutral
axis defined by (0, 0, w), we obtain a pull-in instability
of just above 42 V, as seen from the capacitance plot
in Fig. 3, and from the corresponding displacement as
a function of the applied voltage indicating a midpoint
deformation of w|x=L0/2 ≈ −800 nm just before the col-
lapse to the substrate, shown in the inset of Fig. 3. The
computed deformation agrees well with the general ap-
proximation of the static deformation of a MEMS parallel
plate capacitor ≈ g0/3 as we are not considering dynamic
or resonant pull-in cases [28]. For a fixed g0 = 2 µm, the
onset of instability occurs when w|x=L0/2 ≈ −800 nm,
irrespective of L0. However, the capacitance drops with
L0 reduction and the voltage required to induce an in-
stability is computed to scale as shown in Fig. 2. Inter-
estingly, one may observe nummerically that Vc = αnωn,
where the constants αn may be extracted from Fig. 2, as
annotated.

The computed spectrum of eigenfrequencies {ωn} for
the three-dimensional model includes lateral, longitudi-
nal, transverse, and torsional degrees of freedom. How-
ever, the specific arrangement in Fig. 1 permits the negli-
gence of all but the transverse motion, which greatly sim-
plifies (Euler-Bernoulli approximation) the exact equa-
tion of motion above to one dimension, allowing an an-
alytical pursuit. Denoting the Lagrangian density with

L, we may therefore write the Lagrangian L =
∫ L

0
Ldx,

excluding damping for the moment, with L = µẇ2/2 −
u(w,w′, w′′), where µ is now the linear density of the ma-
terial, and ẇ = ∂w/∂t, w′ = ∂w/∂x. We consider the
possibility that the potential energy of the system u in-
cludes the effects of an external force Fdrive. Explicitly,
we consider the potential:

u =
EI

2
(w′′)

2
+
ε0V

2

2
ue(w), (1)

where I is the second moment of inertia, and ε0V
2ue is

the electrostatic potential. The dimensionless quantity
ue is related to the capacitance and is given by [29]:

ue =
b

g0

[
w

g0 − w
− γ log

(
1− w

g0

)]
, γ = 0.65

g0

b
, (2)

where g0, defined above, denotes the distance between
the substrate and the beam in the undeformed state
(g0 � L, here 2 µm � 300 µm). In the absence of
deformation (w → 0), the form of the contribution of the
capacitor energy to the potential reduces to (b/g2

0)ε0V
2/2

with a constant capacitance ≈ 36.3 fF. The equation of
motion can be written as:

µẅ + F ′1 − F ′′2 = Fdrive, (3)

where F1 = −∂u/∂w′, F2 = −∂u/∂w′′, and Fdrive =
−∂u/∂w subject to the boundary conditions:

w(0) = w′(0) = w(L) = w′(L) = 0. (4)

The explicit form of the equation of motion is obtained by
differentiating the potential to get F1 = 0, F2 = −EIu′′,
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and the electrically induced force:

Fdrive =
ε0bV

2

2

[
1

(g0 − w)2
+

γ

g0(g0 − w)

]
, (5)

which puts Eq. (3) into the form (undamped, driven
Euler-Bernoulli equation):

µẅ + EIw′′′′ = Fdrive, (6)

which we will treat in both the linear and the nonlinear
regimes to prepare for the sought quantization.

In order to solve Eq. (6), we first solve the homo-
geneous case (V = 0), that is, µẅ + EIw′′′′ = 0, by
separating the variables with w = X(x)eiωt, to obtain
X ′′′′ − λ4X/L4 = 0 with λ4 = µω2L4/EI. The solution
which satisfies three of the boundary conditions is:

X(x) = λ sinh
λx

L
− λ sin

λx

L

−λcoshλ− cosλ

sinhλ+ sinλ

(
cosh

λx

L
− cos

λx

L

)
. (7)

The eigenvalue λ is constrained by the fourth boundary
condition X(L) = 0 to satisfy coshλ cosλ = 1, leading
to the discrete spectrum λ = λ1, λ2, . . . . Numerically,
λ1 ≈ 4.73, . . . . Let Xn be the corresponding normalized
eigenfunctions, explicitly:

Xn(x) =
(sinhλn + sinλn)(sinh λnx

L − sin λnx
L )√

L
2 (cosh 2λn + 2sechλn − 3)

−
(coshλn − cosλn)

(
cosh λnx

L − cos λnxL
)√

L
2 (cosh 2λn + 2sechλn − 3)

, (8)

so that w(x, t) =
∑
n wn(x, t) =

∑
nQn(t)Xn(x), or ex-

plicitly:

w(x, t) =

∞∑
n=1

[
AnXn(x)e−iωnt +BnXn(x)eiωnt

]
. (9)

As is observed experimentally in frequency domain from
the room temperature and pressure Brownian motion,
we assume the system to be in the lowest mode w1 and
denote Q1(t) =

√
Lq(t). The state of the beam is then

approximately:

w(x, t) ≈
√
Lq(t)X1(x). (10)

Higher modes n > 1, which become important at higher
temperatures, can be added straightforwardly. For a fi-
nite V , inclusion of an electrostatic force introduces a
non-linear correction. Integrating the potential yields:

U =

∫ L

0

dxu ≈ 1

2
mω2

1q
2 +

ε0V
2L

2
Ue(q) (11)

where m = µL is the mass of the cantilever (numeri-

cally, m ≈ 30 ng), and Ue =
∫ L

0
dx ue(q

√
LX1)/L may

be expanded in the small dimensionless quantity q/g0,
resulting in:

Ue =
b

g0

[
0.83(1 + γ)

q

g0
− (2 + γ)

q2

2g2
0

+ 0.44(3 + γ)
q3

g3
0

]
+O

(
q4

g4
0

)
. (12)

The minimum of the potential is at q = q̄, where q̄ satis-
fies:

U ′(q̄) = mω2
1 q̄ +

ε0V
2L

2
U ′e(q̄) = 0. (13)

Therefore, small oscillations around the stable equilib-
rium point q = q̄ have frequency Ω, defined as:

Ω2 = ω2
1 − δ2, δ2 =

ε0V
2L(2 + γ)b

2mg3
0

. (14)

There is a critical value of the voltage V = Vc, for which
U ′ has a double root (U ′′ = 0). In addition to (13), we
obtain Ω = 0, which determines the pull-in instability.
Numerically, at the pull-in instability, the voltage is Vc ≈
42 V, and the displacement is q̄ ≈ 1 µm. For V > Vc,
there is no equilibrium point (Ω2 < 0), and (13) has
no solution. For V < Vc, we have Ω2 > 0, and (13)
has two solutions. The smaller solution corresponds to
a stable equilibrium point, whereas the larger one leads
to an unstable equilibrium point. We are interested in
V < Vc with V close to Vc. At the stable equilibrium
point, we have oscillations of (small) frequency Ω. In
this case, non-linear effects are significant.

III. QUANTIZATION AND NOISE

The classical state of the beam (Eq. (9)), under ordi-
nary conditions and without an explicit driving force, can
be described by a mixed mode w =

∑
n wn excited solely

by random forces. In this mode, denoting the conjugate
momentum density with π = ∂L/∂ẇ = µẇ =

∑
n πn, or

explicitly:

π(x, t) = −iµ
∞∑
n=1

ωn
[
AnXn(x)e−iωnt −BnXn(x)eiωnt

]
,

(15)

the Hamiltonian is H =
∫ L

0
Hdx, with the density H =

π2/2µ + u. With w, π and the coefficients in Eq. (9)
promoted to operators, we quantize the system in the
absence of an external potential, by imposing equal-time
commutation relations:

[w(x, t), π(x′, t)] = i~δ(x− x′), (16)

[w(x, t), w(x′, t)] = [π(x, t), π(x′, t)] = 0.

Using Eq. (9), Eq. (15) and Eq. (16), we obtain:

w(x, t) =

∞∑
n=1

√
~

2µωn

[
bnXn(x)e−iωnt + b†nXn(x)eiωnt

]
,

(17)
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π(x, t) =

− i
∞∑
n=1

√
~µωn

2

[
bnXn(x)e−iωnt − b†nXn(x)eiωnt

]
, (18)

where ωn = (λn/L)2(EI/µ)1/2. At t = 0, we deduce

bn =
1√

2~µωn

∫ L

0

dx [µωnw(x, 0) + iπ(x, 0)]Xn(x),

(19)
and b†n is obtained by conjugation. In terms of the
modes bn and b†n, the commutation relations (16) read
[bn, b

†
m] = δnm, and the Hamiltonian, after normal order-

ing, reads H =
∑∞
n=1 ~ωnb†nbn. As alluded in Eq. 10, at

low temperatures, the system behaves approximately as
a harmonic oscillator of frequency ω1, for which we define
the operators q, p, satisfying [q, p] = i~, via

q =

√
~

2mω1

(
b1 + b†1

)
, p = −i

√
~mω1

2

(
b1 − b†1

)
,

(20)
with quantum fluctuations of the displacement being neg-
ligible,

∆q ∼
√

~
mω1

∼ 0.1 fm. (21)

Its ground state |0〉ω1
is annihilated by b1. It is easily

verified that q defined in (20) is related to the displace-
ment w via Eq. (10) at time t = 0. Thus, assuming that
the temperature is low enough that other flexural modes
are not excited, the quantum state of the system lies in a
reduced Hilbert space generated by the creation operator

b†1. Within this subspace, the Hamiltonian simplifies to

Hreduced =
p2

2m
+

1

2
mω2

1q
2 = ~ω1

(
b†1b1 +

1

2

)
. (22)

If we switch on a constant external potential, then the
stable equilibrium point, as implied by Eq. (13), is shifted
to q = q̄, near which small oscillations occur at frequency
Ω, given by Eq. (14). Nonlinearities cause tunneling of
the eigenstates of this harmonic oscillator, that is, tunnel-
ing of the mechanical degree of freedom in w. Although
we are interested in approaching the pull-in instability,
we will assume that we are sufficiently away from it so
that tunneling effects can be neglected over the dura-
tion of the experiment. Thus, with an applied voltage,
the Hamiltonian in the Hilbert space of no excitations of
higher flexural modes becomes

Hreduced =
p2

2m
+

1

2
mΩ2(q− q̄)2 = ~Ω

(
a†a+

1

2

)
, (23)

where we defined the new annihilation operator

a = −α+
1√

2~mΩ
[mΩq + ip] , α =

√
mΩ

2~
q̄, (24)

instead of b1 given by Eq. (20). We have [a, a†] = 1 and
the ground state of the actuated system |0〉Ω is annihi-
lated as a|0〉Ω = 0. The Hamiltonian (23) reduces to
(22) in the case of vanishing voltage. Quantum fluctua-
tions of the displacement are found, using (21) and (24),

to be ∼ 0.1
√
ω1/Ω fm. Thus, they diverge, as we ap-

proach the pull-in instability (since Ω → 0). However,
even with Ω = 10−6ω1, fluctuations are ∼ 100 fm, there-
fore still negligible compared to the position of the elec-
trode (g0 = 1 µm). From eqs. (20) and (24), we see that
the modes in the two cases (with and without applied
voltage) are related through the Bogoliubov transforma-
tion:

b1 = cosh r(a+α)+sinh r(a†+α), e2r =
ω1

Ω
> 1. (25)

The ground state in the actuated system |0〉Ω is a
squeezed coherent state in the system with no applied
voltage, and r is the squeezing parameter [30]. If
the beam operates near the pull-in instability, r is
large. When operated as a sensor, in the presence of
an optical or molecular stimulus leading to photother-
mal/photoacoustic and/or physi- or chemisorption, the
beam in the dynamic mode measurement exhibits a fre-
quency shift or a quasi-static displacement in the static
mode measurement as a result of a direct or an effec-
tive form of mass-loading, surface stress variation, asym-
metric deformation/swelling (in the case of multilayer
beams such as coated microcantilevers), including sensor-
environment coupling. The detected frequency shifts or
static bending comprise the sensor signal [14, 15, 31].
Therefore, r can change dramatically, as the system
moves away from the pull-in instability.

While characterization of the noise observed in exper-
iments using solid micro- and nano-structures is an on-
going effort, typically, temperature and damping effects
play a role in the measurement of the response of beam-
based sensors. For such sensors, while the exact form
of a noise model may not be available without specific
experimental verification, reasonable assumptions can be
made to account for the effect qualitatively. Thus, in
the absence of an applied voltage, if the beam is held at
temperature T , then it will be in the thermal state:

ρ = (1− β)

∞∑
n=0

βn|n〉〈n| , β = e
− ~ω1
kBT , (26)

where the states |n〉 are created with b†1. The average
number of phonons of this mode in the system is

〈n〉= 〈b†1b1〉 =
Tr
[
b†1b1ρ

]
Tr [ρ]

=
β

1− β
≈ kBT

~ω1
. (27)

For ω1/2π = 1 MHz, T = 10 mK, we have 〈n〉 ≈ 220.
We will now turn on a DC voltage and study the re-

sponse of the beam. It should be noted that, although
we here assume the oscillator to be in its first resonant
flexural eigenmode, the same scheme can be applied to
any other resonance or off-resonance deformation state
of the oscillator with little additional effort.
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FIG. 4. Cavity optomechanical state preparation and read-
out of the deformation state of the electrostatically actuated
beam employing homodyne detection. Geometric parameters
annotated include the distance between the fixed and oscil-
lating mirrors Lc, the oscillator length L and displacement w.
The source laser beam PL of frequency ω0 and the beam split-
ter BS provide the local oscillator beam LO, and the cavity
input beam Pi. With no coupling to the cavity, the oscillator
frequency is ω1 (Ω) prior to (after) switching on V. The cav-
ity output beam Po and detectors D, generate the difference
photo current S, which is processed for data acquisition.

IV. PREPARATION OF THE INITIAL STATE

To prepare the proposed system, we form a cavity by
invoking a suitable reflective surface of the beam, as de-
picted in Fig. 4. To achieve high reflectivity, a segment
of the top (or bottom) surface of the beam can be ap-
propriately coated (depending on ω0), for example with
a few (∼ 10) nm of aluminum. The Hamiltonian for such
an optomechanical system was derived by C. K. Law [32]
for the case where the internal modes of the mechanical
oscillator can be neglected. In light of Eq. (22) and (23)
however, this Hamiltonian is valid for our study.

We begin by cooling down the system to the mK range.
We then purify the thermal state of the system with short
laser beam pulses (of duration small compared to the
period ∼ 1/ω1 ∼ 10 µs – fs pulses will do) as follows
[35, 36]. Thus, at the outset, the beam is in the thermal
state per Eq. (26). In this state, for the quadratures:

X1 =
1√
2

(
b†1 + b1

)
=

√
mω1

~
q,

X2 =
i√
2

(b†1 − b1) =
p√

~mω1

, (28)

we have:

〈X1〉 = 〈X2〉 = 0, 〈X2
1 〉 = 〈X2

2 〉 =
1

2

1 + β

1− β
≈ kBT

~ω1
,

(29)
with uncertainties:

∆X1 = ∆X2 =

√
1 + β

2(1− β)
≈
√
kBT

~ω1
. (30)

Denoting the kth creation and annihilation operators

of the cavity field with aL,k and a†L,k, the nonlinear

Hamiltonian by Law [32] considers all optical modes

~
∑
k ωc,kaL,ka

†
L,k. Since in the studied system, shown

in Fig. 4, the cavity length is larger than the oscillator
displacement, that is, w(L/2, t) � Lc, our case meets
the condition for use of the linearized Hamiltonian [32].
Furthermore, since the oscillator frequencies are smaller
than the cavity mode spacing (ω(V )� ∆kωck), the cav-
ity field is dominated by a single mode [32], which is taken
to be closest to resonance with the driving laser [3]. Thus,
fixing k and denoting the cavity frequency ωc,k = ωc, the
interaction Hamiltonian in the frame rotating at the laser
frequency ωc ≈ ω0 is:

Hint = −~ωca†LaL
q

Lc
, (31)

noting that the radiation force is given by the expectation

value of ~ωca†LaL/Lc. The equation of motion of the
optical cavity mode including dissipative effects is given
by the Langevin equation:

daL
dt

= iωc
q

Lc
aL −

1

τc
aL +

√
2

τc
θL, (32)

where τc is the decay time of the cavity (τc � 1/ω1),
and the operator θL, representing the input noise, obeys
commutation relations:

[θL(t) , θ†L(t′)] = δ(t− t′), (33)

with correlation functions:

〈θL(t)θ†L(t′)〉 = δ(t− t′). (34)

For maximal measurement strength, we choose input
drive

〈θL〉 =

√
NL
τc
e−|t|/τc , (35)

where NL is the mean number of photons in the pulse.
Noting that q does not change appreciably during τc since
ω1τc � 1, the equation of motion yields:

d〈aL〉
dt

= − 1

τc
〈aL〉+

√
2

τc
〈θL〉, (36)

we deduce

〈aL(t)〉 =
√
NL

[
1√
2

+
√

2
t

τc
θL(t)

]
e−|t|/τc . (37)

From the input-output formulation of cavities [33], relat-
ing the far field amplitude outside to the internal cavity
field, the output is

aL,out =

√
2

τc
aL − θL. (38)
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For the phase quadrature

PL,out =
i√
2

(
a†L,out − aL,out

)
, (39)

we obtain for large t,

PL,out ≈
√

2ωc
q

L

√
2

τc
e−t/τc

∫ t

−∞
dt′et

′/τc〈aL(t′)〉

+
2

τc
e−t/τc

∫ t

−∞
dt′et

′/τcθL(t′)− θL(t). (40)

This is measured via homodyne detection, i.e.,

PL =
√

2

∫ t

−∞
dt′αLO(t′)PL,out(t

′), (41)

where the local oscillator αLO envelope is chosen to
match the time dependence of the coefficient of q in the
expression for PL,out, as

αLO(t) = Ce−t/τc
∫ t

−∞
dt′et

′/τc〈aL(t′)〉, (42)

where C is determined by the normalization condition∫ +∞

−∞
dtα2

LO(t) = 1.

The effect of the measurement, described by the non-
unitary operator:

Y =
1

π1/4
ei

3NL
2 τcωcq/Lc− 1

2 (PL−
√

10NLτcωcq/Lc)
2

, (43)

is a change of the state of the beam as:

ρ→ Y ρY †. (44)

We apply two pulses and corresponding homodyne mea-
surements at times t1 = π

2ω1
and t2 = 2t1. To find the

resulting state, it is convenient to express the thermal
state Eq. (26) in terms of coherent states |α〉 as [34]

ρ =
1− β
πβ

∫
d2αe−

1−β
β |α|

2

|α〉〈α|, (45)

and the operator Y in terms of the quadrature X1 given
by Eq. (28)

Y =
1

π1/4
eiP̄LX1− 1

2 (PL−χX1)2 , (46)

where we introduced the dimensionless parameters:

P̄L =
3NL

2
ωcτc

√
~

mω1L2
c

, χ = ωcτc

√
10~NL
mω1L2

c

. (47)

The average value of an operator O can be written as

〈O〉 =
1

Z

∫
d2αe−

1−β
β |α|

2

〈α|Y †OY |α〉, (48)

where

Z =

∫
d2αe−

1−β
β |α|

2

||Y |α〉||2. (49)

For explicit calculations, we express the states in one of
the two quadrature representations. In the X1 represen-
tation, X2 = −i d

dX1
, and

〈X1|α〉 =
1

π1/4
e−

1
2 (X1−

√
2<α)2+

√
2i=αX1 , (50)

whereas in the X2 representation, X1 = i d
dX2

, and

〈X2|α〉 =
1

π1/4
e−

1
2 (X2−

√
2=α)2−

√
2i<αX2 . (51)

The first homodyne measurement with outcome PL,1 is
described by the operator

Y1 =
1

π1/4
eiP̄LX2− 1

2 (PL,1−χX2)2 . (52)

For the quadrature X1, we readily obtain 〈X1〉 = 0. For
the other quadrature, we expect 〈X2〉 ∝ PL,1. Taking
derivatives and setting PL,1 = 0, we obtain

〈X2〉 = − d logZ

dχ2

∣∣∣∣
PL,1=0

2χPL,1 =
χPL,1

χ2 + 1−β
1+β

. (53)

For the variances, we may set PL,1 = 0, as they are not
affected by the outcome of the measurement. We obtain

(∆X2)2 = − d logZ

dχ2

∣∣∣∣
PL,1=0

=
1

2(χ2 + 1−β
1+β )

. (54)

The calculation of the other variance ∆X1 is somewhat
involved. Working in the second quadrature representa-
tion, after some algebra, we obtain

(∆X1)2 =
1

2

(
χ2 +

1 + β

2(1− β)

)
. (55)

Without the coupling (χ = 0), we recover our earlier re-
sult (30). For χ > 1, the measurement has resulted in
squeezing of the X2 quadrature below the ground state
noise. The wavefunction is now much closer to a min-
imum uncertainty wave packet. For large χ, ∆X2 ap-
proaches zero whereas ∆X1 diverges, while

∆X1∆X2 ≈
1

2
, (56)

which is independent of the temperature (for sufficiently

high χ), to be compared with ∆X1∆X2 = 1+β
2(1−β) before

the measurement.
At time t2 = π

ω1
, we perform a second homodyne detec-

tion with outcome PL,2. The state of the system becomes

ρ0 ∝ Y2Y1ρY
†
1 Y
†
2 , (57)
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where

Y2 =
1

π1/4
eiP̄LX1− 1

2 (PL,2−χX1)2 . (58)

For the variance of the first quadrature, we have

(∆X1)2 =

∫
d2αe−

1−β
β |α|

2

||X1e
− 1

2χ
2X2

2 e−
1
2χ

2X2
1 |α〉||2∫

d2αe−
1−β
β |α|2 ||e− 1

2χ
2X2

2 e−
1
2χ

2X2
1 |α〉||2

.

(59)
Using

〈X1|e−
1
2χ

2X2
2 |α〉 =

1

π1/4
e
−

1
2
(X1−

√
2<α)2+

√
2i=αX2+χ2=α2

1+χ2 ,

(60)
we obtain

(∆X1)2 =
χ2 + 1+β

1−β

2(1 + 1+β
1−βχ

2 + χ4)
. (61)

Similarly, for the second quadrature, we obtain

(∆X2)2 =
1 + 1−β

1+βχ
2 + χ4

2(χ2 + 1−β
1+β )

. (62)

The average of the second quadrature, 〈X2〉 remains the
same, whereas for the other quadrature, working as be-
fore, we obtain

〈X1〉 =
χ2 + 1+β

1−β

1 + 1+β
1−βχ

2 + χ4
χPL,2. (63)

For large χ, the wavefunction approaches a minimum un-
certainty wave packet, as was the case after the first mea-
surement. The advantage of the second measurement is
that the system is close to minimum uncertainly even
with moderate coupling (χ ∼ 1).

For example, for ω1/(2π) = 1 MHz, T = 10 mK,
and χ = 1.5, before the measurements, we have ∆X1 =
∆X2 = 14.8. After the first measurement, we obtain
∆X1 = 14.9 and ∆X2 = 0.47, whereas after the sec-
ond measurement, ∆X1 = 0.47 and ∆X2 = 1.16. No-
tice that ∆X1∆X2 = 0.55, which is within 10% of the
minimum 0.5. A moderate increase in the coupling, to
χ = 3.5 squeezes the first quadrature to ∆X1 = 0.2 and
∆X1∆X2 = 0.502. Details are shown in figure 5.

The above discussion ignores thermal noise between
the two measurements. This can be safely done as long
as the average number of phonons, 〈n〉 ≈ kBT

~ω1
, is small

compared with the mechanical quality factor, kBT
~ω1

. Q.

For Q ∼ 104, this is indeed the case, because kBT
~ω1
≈ 220.

V. QUANTUM EVOLUTION

Now switch on a DC voltage V = V0. In the sudden
approximation, the initial state of the system will be as
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FIG. 5. Initial state uncertainties ∆X1 (upper), ∆X2 (mid-
dle), and their product ∆X1∆X2 (lower), vs. coupling χ, be-
fore any measurements, after the first homodyne measure-
ment, and after the second homodyne measurement, for fre-
quency 1 MHz and temperature 10 mK. Close to minimum
uncertainty (∆X1∆X2 ≈ 0.5) is attained after the second
homodyne measurement even at moderate coupling.

discussed above, built on the ground state |0〉ω1
. The lat-

ter, however, is not annihilated by a (Eq. (24)). Instead,
it is a squeezed state. After we switch on the voltage, for
the quadratures

X ′1 =
1√
2

(
a† + a

)
= e−rX1 ,

X ′2 =
i√
2

(
a† − a

)
= erX2, (64)

we have

(∆X1)2 = e−2r
χ2 + 1+β

1−β

2(1 + 1+β
1−βχ

2 + χ4)
,

(∆X2)2 = e2r
1 + 1−β

1+βχ
2 + χ4

2(χ2 + 1−β
1+β )

. (65)
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FIG. 6. Characterization of the transient response of the os-
cillator to the applied bias in a range of switching times. The
oscillation period of ≈ 1 µs for the midpoint displacement
w(L/2) observed for switching time t0 ≥ 0.3 µs indicates the
response (decaying after a few tens of µs) is primarily domi-
nated by the fundamental mode of the oscillator.

As the voltage is tuned to its value near (but below) the
pull-in instability, we have Ω → 0, therefore, ∆X1 can
be made very small and ∆X2 very large with the prod-
uct ∆X1∆X2 remaining near minimum uncertainty. It
is worthy to note that for the typical values of quality
factor Q here, the oscillator may exhibit transient oscil-
lation when switching time is considerably smaller than
the dominant mode’s relaxation time. In Fig. 6, we char-
acterize the ring-down effect for a beam for various fi-
nite switching times t0. As can be seen for an oscillator
with the fundamental frequency ≈ 1 MHz, the oscillatory
response is negligible for switching times t0 & 0.3 µs.
Therefore, for a more realistic application of the voltage,
let t0 be the time over which the voltage is switched on,
i.e.,

V 2(t) =
V 2

0

1 + e−t/t0
, (66)

so that V switches from 0, for large negative t, say,
t . −T , to V0, for large positive t & +T , with the switch
occurring over an interval t0 at t = 0. We would like to
choose a large enough T so that damping effects can be
ignored. As shown in Fig. 2, for a micro-beam it is possi-
ble to observe ω1 ∼ 1 MHz, and the quality factor can be
Q ∼ 104 [13, 37], therefore, we may choose T . τ , where
τ = Q/ω1 ∼ 10 ms is the relaxation time of the system.
A fast switch of t0 . µs will then ensure that damping
effects can be safely ignored. We note that while design
and fabrication of higher Q micro- and nano-oscillators
continue to be explored, values of 104 and higher have
been reported for a variety of material and geometric
considerations [38–42]. From the Heisenberg equations
of motion:

dq

dt
=

1

i~
[q, ~Ωa†a] ,

dp

dt
=

1

i~
[p, ~Ωa†a], (67)

we deduce for q, measured from its stable equilibrium
point q̄ (i.e., letting q → q − q̄),

d2q

dt2
+ Ω̄2(t)q = 0 , Ω̄2(t) = ω2

1 −
δ2

1 + e−t/t0
, (68)

where δ is the constant voltage shift in frequency defined
in (14). The time-dependent frequency Ω̄(t) smoothly
interpolates between ω1 for t → −∞ and Ω � ω1 for
t→ +∞. We obtain two linearly independent solutions,
Q and Q∗, where

Q(t) = e−iω1t
2F1(a+, a−; 1 + a+ + a−;−et/t0), (69)

with a± = −i(ω1 ± Ω)t0. Therefore,

q(t) = <AQ(t) , p(t) = mq̇(t). (70)

To determine the coefficient A, notice that for large
negative time q(t) ≈ <Ae−iω1t therefore, A = q(0) +
ip(0)/(mω1), i.e., the system is described in terms of

creation operators b†1 (eq. (20)). To find q(t) for large
positive t, we use the Hypergeometric identity:

2F1(a+, a−; 1 + a+ + a−;−et/t0) =

a−Γ(1 + a− + a+)Γ(1 + a− − a+)

(a− − a+)2Γ2(1 + a−)
(1 + et/t0)−a+

× 2F1(a+, 1 + a−; 1 + a+ − a−;
1

1 + et/t0
)

+ (a+ ↔ a−).

We obtain q(t) ≈ <BeiΩt, where

B = A
(Ω− ω1)Γ(1− 2iω1t0)Γ(1 + 2iΩt0)

2ΩΓ2(1− i(ω1 − Ω)t0)

+(ω1 → −ω1).

For small switch time t0 � 1/ω1, 1/Ω, we have B ≈
q(0) + ip(0)/(mΩ), i.e., the system is now described
by creation operators a† (eq. (24)), as expected. The
quadratures

X1 =

√
m

2~Ω̄
<[q̇Q−qQ̇] , X2 =

√
m

2~Ω̄
=[q̇Q−qQ̇], (71)

smoothly interpolate between the initial and final values
of their counterparts in Eqs. (28) and (64), respectively,
as the system evolves.

VI. DETECTION OF THE SQUEEZED STATE

x To detect the state of the beam, we apply short pulses
and perform homodyne detection. Thus, we obtain the
probability distribution of the outcomes

P(PL) =
Tr
[
Y ρY †

]
Tr [Y †Y ]

. (72)
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FIG. 7. Uncertainty ∆X1 before turning on the voltage V (t),
and after, for Ω = 10 kHz and Ω = 1 kHz vs. coupling χ.
Initial frequency is ω1 = 1 MHz, and temperature is 10 mK.

If we apply a sequence of pulses at times nπ
Ω (n =

0, 1, 2 . . . ), then all measurements commute with each
other because each one measures the quadrature X1. The
duration of each pulse is short, so that evolution of the
beam during each pulse can be neglected. We obtain

P(PL) =
Tr
[
ρe−(PL−erχX1)2

]
Tr
[
e−(PL−erχX1)2

] , (73)

from which the state ρ can be reconstructed. Notice that
the effective coupling erχ is now strong so the distribu-
tion of PL should closely resemble that of X1.

For comparison, one can perform similar measure-
ments of the beam before the switching on of the voltage
(spaced by shorter time intervals, π

ω1
). In this case, the

distribution of the measurement outcomes is

P(PL) =
Tr
[
ρ0e
−(PL−χX1)2

]
Tr
[
e−(PL−χX1)2

] , (74)

where ρ0 is the initial state of the beam (57). As can
be seen in figure 7, in comparison with the results in
figure 5 (middle panel), one achieves, after measuring the
initial state, high levels of squeezing even with moderate
to weak coupling by fine-tuning the voltage V .

VII. CONCLUSIONS AND OUTLOOK

In summary, the obtained analytical results, suggesting
plausible non-classical behavior encoded in a single de-
gree of freedom of the studied beam near an electrostat-
ically induced instability point, predict strong squeez-
ing in the transversal displacement w. The predicted
squeezed states from the presented quantization scheme
suggest potential use in devising new sensing capabili-
ties where the pull-in action itself may be utilized as the
basis for the signal transduction. In particular, the elec-
trostatically induced nonlinearity that may cause tunnel-
ing of the eigenstates near the stable equilibrium point

may be proposed as a design route to structures that
optimally respond to given field distribution. The possi-
bility of employing such tunneling may lead to new mea-
surement technologies where the actuation mechanism
is based on the transition probability among the rele-
vant states. In such instances, one would advantageously
employ the squeezed states to better assess the transi-
tion of the stable to unstable oscillations. Following the
presentation here, one may further consider the possi-
bility of an entangled state where the oscillator is pre-
pared to oscillate at two quantized flexural eignmodes,
for example by amplitude modulation of V (t) to achieve
the needed Fourier content. The preliminary computa-
tional solutions of the classical model for the studied
capacitive micro-bridge proved useful by providing the
oscillation eigenfrequency spectrum {ωn} and the corre-
sponding eigenmodes {Xn}, the stationary response w
and capacitance C as functions of the applied voltage V
with the prediction of a threshold value for the pull-in
instability. We may conclude that, for design and im-
plementation purposes, a trade-off between the material
type, oscillator dimensions, and gap size seems reason-
able. For example, fabrication employing graphitic ma-
terials with high Young moduli of up to 10 times that of
the polysilicon considered here, shorter beams, and nar-
rower gaps will not only affect the spectral positions of
the resonances of the system but also greatly impact the
threshold voltage. As shown, a material with greater E,
”blueshifts” the spectrum but also increases the instabil-
ity threshold voltage. Whereas, for the quantized case,
we obtained an analytical expression to account for the
contribution of the system’s capacitance to the potential
energy, in principle, the presented computational results
can be extended to acquire, for a given applied poten-
tial V , the capacitance as a function of the deformation
state w. Furthermore, although the classical computa-
tional model neglected the stochastic cantilever oscilla-
tions, in the quantum calculations, the random noise of
the system was taken into account, leading to squeezing
when read out by coupling to a cavity. The introduced
nonlinearity in the dynamics of the system via imposi-
tion of the potential difference V , allowed for preparing
the oscillator near the pull-in instability where strong
squeezing was predicted when read out from cavity-based
measurements. The presented approach can readily be
adopted to explore the quantum states of other solid and
MEMS oscillators. Indeed, with the exception of a mod-
ification to Eq. 4, the calculation may be repeated to
characterize the squeezed states of cantilevers. One may
have then to resort to higher resonances (n) of the system
since typically for the same materials and dimensions, the
spectrum {ωn} of a cantilever (fixed-free beam) is down-
shifted when compared to a bridge (fixed-fixed beam),
and consequently, a significantly lower threshold voltage
would be required to reach a pull-in instability. Fur-
thermore, the results suggest squeezed displacement in
other degrees of freedom may provide a significantly more
versatile dynamics since the frequencies of the torsional,
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longitudinal and lateral oscillation eigenmodes are not
only sufficiently well-separated but also typically higher
than those of the transversal motion. Advanced fabrica-
tion will then have to be employed to create MEMS with
non-uniform or asymmetric geometries to allow electro-
static access to the non-transversal modes. Lastly, as a
potential application of the studied system we propose
a sensitive photon detection scheme. When V 6= 0, sub-
jecting the system to incoming photons (Fig. 1) can result
in highly sensitive static and dynamic mechanical actua-
tion. For a photon contacting the surface at x0 at time
t0, inducing a photo-acoustic effect of magnitude C, a
total force f(x, t) = Fdrive + Cδ(x − x0)δ(t − t0) is en-
gendered by a number of processes [43] such as carrier
generation, plasmon excitation and nonradiative decay,
and photothermal absorption depending upon the phys-
ical characteristics of the oscillator, for example whether
the structure is stratified as a in metal-dielectric thin
film or nanoparticle multilayer composite with asymmet-
ric thermal response [14, 15]. Without elaborating on

the underlying mechanism, it can be shown that the
oscillator then undergoes the transient deformation [13]
w(x, t) =

∑∞
n=1 In(t)Xn(x)/ωn, with

In(t) =

∫ 1

0

Xn(u) du

∫ 1

0

f(u, τ)e−η(t−τ) sinωn(t− τ) dτ,

where η represents a damping factor.
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