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We simulate transport in an atomtronic circuit of a Bose-Einstein condensate that flows from a
source region into a drain through a gate channel. The time-dependent Gross–Pitaevskii equation
(GPE) solution matches the data of a recent experiment. The atomtronic circuit is found to be
similar to a variable–resistance RLC circuit, which is critically damped at early times and shows
LC oscillations later. The GPE also predicts atom loss from the drain. Studies of the dependence
of condensate transport upon gate parameters suggest the utility of the GPE for investigation of
atomtronic circuits.
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I. INTRODUCTION

The “lumped abstraction” model provides an interface
between the physics of electromagnetism and the engi-
neering of electronic circuits. By attributing ideal inde-
pendent macroscopic properties (e.g. resistance, induc-
tance, and capacitance) to the individual components a
circuit, the lumped abstraction model makes possible the
design of highly complex functional circuits. [1, 2]. A ma-
jor challenge in the emerging field of atomtronics is the
establishment of a comparable interface for the design of
atom circuits. Lee et al. [3] have found equivalents of elec-
tronic resistance, capacitance and inductance in a simple
atomtronic circuit. We believe that the time–dependent
Gross–Pitaevskii equation can be useful in both deter-
mining the validity of an atomtronic lumped abstraction
model and, if valid, determining the values of circuit pa-
rameters. Here we test this hypothesis by applying it to
a recent atomtronic experiment [4].
A typical example of an atom circuit consists of a Bose–

Einstein condensate (BEC) harmonically confined to a
horizontal plane by a red–detuned laser and arbitrarily
confined within the plane by a combination of red– and
blue–detuned lasers [5–9]. Atomtronic devices analo-
gous to batteries, diodes, transistors, and fundamental
logic gates have been proposed [10–16]. Atom circuits
in the form of a BEC confined in a ring geometry have
been studied as potential rotation sensors [17–25]. Re-
cently, a series of experiments was conducted in which
a gas of thermal atoms [3] and Bose–Einstein–condensed
atoms [4] were confined in a quasi–2D potential consist-
ing of two wells connected by a channel. The atoms were
initially confined the source well and then released to flow
down the channel into the drain well. The difference be-
tween the number of atoms in the source, NS(t), and the
number in the drain, ND(t), normalized by their sum,
the number imbalance ∆N(t) = (NS −ND)/(NS +ND),
as a function of time was inferred from image data. Sim-
ilar experiments in Fermi gases have been recently re-
ported [26, 27].
In this paper we present simulations of the experiment
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FIG. 1. (color online) The potential in the horizontal (xy)
plane consists of the mask potential and the xy part of the
(harmonic) sheet potential. The mask potential is zero inside
hard–walled circular wells (with centers (xk, yk) and radii rk
where k = 1, 2) and is equal to Vd outside; inside the channel
the mask potential is harmonic along the y direction plus a
constant step.

of Ref. [4] using the time–dependent Gross–Pitaevskii
(GP) equation and show that it quantitatively captures
the physics of the evolution of the number imbalance. We
then describe the features of the GP–predicted transport
dynamics in terms of a variable–resistance RLC circuit.
The dynamics includes atom loss from the drain and we
provide a possible mechanism for this loss. Finally we
summarize our study of the transport dynamics depen-
dence on the length and effective width of the channel.
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II. MODELING THE NIST EXPERIMENT

The time–dependent GP equation [28, 29] has the form

ih̄
∂Ψ

∂t
=

[

− h̄2

2M
∇2 + Vtrap(r, t) + gN |Ψ|2

]

Ψ(r, t), (1)

where M is the mass of a condensate atom, g =
4πh̄2as/M measures the strength of binary atom scat-
tering where as is the s–wave scattering length, N is the
number of condensate atoms, and Vtrap(r, t) is the trap
potential in which the condensate atoms move. In simu-
lating the experiment in Ref. [4] we found that obtaining
agreement with the data strongly depended on careful
modeling of the trap potential.
The optical dipole trap present in Ref. [4] was produced

by the superposition of a horizontal, planar red–detuned
light sheet and a vertical, blue–detuned, Gaussian laser
beam (the “mask beam) partially blocked by a dumbbell–
shaped mask. We modeled this as a 3D harmonic “sheet”
potential plus a 2D dumbbell–shaped ”mask” potential
plus a “gate” potential, a high step function that blocks
the channel only during condensate formation. The mask
potential was, in turn, modeled as the superposition of
“well” and “channel” potentials. The full model potential
thus had the form

Vtrap(r, t) =
1

2
M
(

ω2
sh,xx

2 + ω2
sh,yy

2 + ω2
sh,zz

2
)

+ Vwell(x, y) + Vchannel(x, y)

+ ǫ(t)Vgate(x). (2)

For the gate potential, ǫ = 1 during condensate formation
and is zero otherwise. The z axis is vertical, the x axis
lies along the line joining the two well centers, and the y
axis is perpendicular to the channel (see Fig. 1).
The well and channel potentials had the form

Vwell(x, y) = Vd
∑

k=1,2

1

2

[

1 + tanh

(

ρk(x, y)− rk
b

)]

,

ρk(x, y) ≡
√

(x− xk)2 + (y − yk)2, k = 1, 2,

Vchannel(x, y) = Vstep +
1

2
Mω2

yy
2. (3)

The well potential was zero inside two wells with cen-
ters at (xk, yk) and radii rk (k = 1, 2) and equal to
the well depth, Vd, outside. The hardness of the well
edges was controlled by the value of b. The channel
potential was modeled as a step plus a harmonic os-
cillator along y. The channel length was defined by
Lc = (x2−x1)− (r2+ r1) and the mask potential was set
equal to min(Vwell, Vchannel) when x1 ≤ x ≤ x2 and equal
to Vwell otherwise.
The sheet–potential frequencies were determined to be

ωsh,x/2π = 10 Hz, ωsh,y/2π ≈ 0 Hz, and ωsh,z/2π = 529
Hz. The well radii were r1 = r2 = 24 µm, the well
depth was Vd/k = 83 nK, and the hardness parameter
was b = 0.2 µm. The well centers were separated by
x2 − x1 = 74 µm. In the channel Vstep/k ≈ 20 nK and
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FIG. 2. (color online) Atom number imbalance (with error
bars) between source and drain wells versus time from Ref. [4]
for different channel transverse trapping frequencies, ωy/2π:
112 Hz (gray x’s, bottom curve); 121 Hz (green circles, middle
curve); and 129 Hz (blue triangles, top curve). For all cases
the channel length was Lc = 26 µm and the well depths where
V0/k = 83 nK where k is the Boltzmann constant. The red
solid curves show the GP simulation. The number of conden-
sate atoms was taken to be N = 480,000. The middle and top
curves have been vertically offset by 0.5 and 1.0, respectively,
for clarity.

ωy/2π varied between 110 and 130 Hz (see Fig. 2). More
details are given in Appendix A.
The solution of the 3D time–dependent GP equation

was approximated using the hybrid Lagrangian Varia-
tional Method (HLVM) [30]. This approach is valid when
there is strong confinement to a planar region. The solu-
tion is assumed to be a product of an unrestricted func-
tion in the plane and a Gaussian in the strongly con-
fined direction. The HLVM equations were solved us-
ing the split–step, Crank–Nicolson algorithm [31] in a
150µm × 75µm box with a space step of ∆x = ∆y =
0.09375 µm. The initial, variationally stable condensate
was determined as described in Ref. [30] and evolved for
a total of 0.5 seconds using 700,000 time steps. Conden-
sate transport dynamics was modeled by integrating the
GP equation on the same with ǫ = 0 in Eq. (2).

As described below, the evolution of the system exhib-
ited atom loss from the dumbbell area. This significantly
degraded the GP simulation because atoms leaving the
dumbbell region were reflected from the grid boundary
back into the dumbbell. Thus, at each time step, the GP
solution was multiplied by a windowing function having
unit value inside an area surrounding the dumbbell and
that sloped gradually to zero outside this region. This
absorbing boundary condition enabled the determination
the atom loss as a function of time.

Figure 2 compares the GP results with the data of
Ref. [4]. The number imbalance, ∆N(t), is plotted versus
time for three progressively wider (top to bottom, curves
vertically offset for clarity) channels. As an aid to intu-
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FIG. 3. (color online) (a) Number imbalance, ∆N(t), for a dumbbell potential with channel length Lc = 20µm, Thomas–Fermi
width of wTF ≈ 22µm (or transverse frequency ωy/2π = 63 Hz), well depth of Vd/k = 97 nK, and N = 436,000 atoms.
The bottom (red) curve is the GP solution. The top (blue) curve shows the fraction of initial number of atoms remaining
in the dumbbell area versus time. (b) Dumbbell optical density snapshots at four times during filling of the drain well. (c)
Enlargement of the dumbbell optical density at t = 15 ms. Atoms that flow straight along the dumbbell axis can collide with
atoms that bounce off the drain wall at angle θ.

ition, we introduce a Thomas–Fermi (TF) approximate
channel width wTF = ((64/π)gnchωz/ω

3
y)

1/4, (where nch

is the number of atoms per unit length in the channel,
see Appendix B for details). The channel widths range
between 12 and 14 µm. The agreement between theory
(shown in red), with no adjustable parameters, and ex-
periment is good suggesting that the GP equation can ac-
curately portray the behavior of average quantities such
as ∆N(t). It is therefore interesting to understand the
GP–predicted transport dynamics and how it depends on
channel shape.

III. TYPICAL TRANSPORT BEHAVIOR AND

ATOM–LOSS MECHANISM

To illustrate the typical transport behavior predicted
by the GP equation, we present here the results of one
of the 252 simulations performed in our channel–shape
study (described below) as a typical case study. The
behavior described here was seen in all of the simulations
we performed.
It is possible to regard the dumbbell as a double–well

potential with the channel acting as the barrier. In this
view it would be natural to expect that an analog RLC
circuit model with constant circuit parameters might
capture the GP–predicted behavior [3, 32]. We were,
however, unable to find any such circuit (with constant
circuit parameters) that fit the GP–predicted behavior.
We were able to match the GP behavior using a series
RLC circuit with a time–dependent resistance.
The behavior of the number imbalance can be con-

veniently described using the terminology of this model
RLC circuit which has a time–dependent resistance, an
initially charged capacitor and a switch that is closed at
t = 0. The capacitor charge ratio, q(t)/q(0), in this cir-
cuit is equivalent to the number imbalance, ∆N(t), [3]

and the chemical capacitance, in analogy with the elec-
tronic capacitance, can be determined from the poten-
tial shape and the number of condensate atoms [3] (Ap-
pendixC describes how the dumbbell capacitance is cal-
culated. AppendixD contains details on the variable–
resistance RLC circuit.)

Figure 3(a) displays this typical behavior of ∆N(t)
where three distinct regimes of behavior are readily ap-
parent. For 0 ≤ t ≤ t0 it drops rapidly from unity as
the condensate flows down the channel and begins to fill
the drain. We find that this behavior accurately matches
a critically damped RLC circuit characterized by a ca-
pacitive discharge time, τ . The optical density at sev-
eral times during this period is shown in Fig. 3(b). At
t ≈ t0, ∆N exhibits a “kink”, that is an abrupt increase
in the (negative) slope, after which the imbalance shows
an approximately linear decrease between t0 < t < t1.
At t = t0, the resistance in the analog circuit abruptly
increases and then begins a linear decrease to zero at
t = t1. After this, ∆N exhibits oscillations at frequency
ω about a positive, but small, average value equivalent
to resistance–free LC oscillations in the analog circuit.

The presence of the kink can be understood from the
top (blue) curve appearing in Fig. 3(a). This curve shows
the ratio of the number of atoms located in the dumbbell
area at time t relative to the initial number. It is clear
from this curve that this ratio drops sharply at time t ≈
t0 indicating atom loss from the dumbbell area. This
coincides with the appearance of the kink. From the
simulation images it can be seen that atoms leaving the
dumbbell region area do so chiefly in the drain well. A
sudden reduction of ND, while keeping NS fixed, causes
an increase in ∆N or, in this case, a slowing of its rate
of decrease.

The question arises as to why the atoms are leaving
the drain. Atoms in the initial condensate (shown in the
top picture in Fig. 3(b)) obviously do not have enough
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energy (which is chiefly due to interactions) to jump out
of the source well. When the early atoms arrive at the
drain their energy is almost entirely kinetic but their total
energy hasn’t changed and they will still be unable to
leave the drain.

One possible mechanism for atoms to gain the needed
kinetic energy to escape the drain is through energy–
redistributing collisions. This is illustrated in Fig. 3(c).
Atoms fan out as they exit the channel. Some atoms
flow straight along the dumbbell axis (straight–through
atoms) while others diffract, bounce off the drain wall,
and come back to the drain center (wall–bounce atoms).
Straight–through atoms colliding elastically with wall–
bounce atoms can redistribute kinetic energy.

In a classical collision of two identical particles of mass
m, speed v, and colliding at an angle θ, kinetic energy
is transferred from one particle to the other after the
collision. The maximum possible kinetic energy of the
more energetic particle is given by (see AppendixE for
more details):

Kf,max = Ki (1 + sin θ) . (4)

If we take Kf,max = Vd (the well depth) and Ki = µi (the
chemical potential of the initial BEC), then the minimum
collision angle, θmin, that could produce atoms with suf-
ficient energy to escape satisfies

sin θmin =
Vd
µi

− 1. (5)

Atoms can thus be prevented from escaping simply by
making the well depth at least twice the BEC chemical
potential. For the case illustrated in Fig. 3, µi/k ≈ 65 nK
and Vd/k ≈ 97 nK. Thus, we expect θmin to be approx-
imately 29◦, which is smaller than our measured angle
of θ ≈ 35◦. It is important to note that this loss anal-
ysis (in particular the size of the angle θ) applies to all
of the 252 cases considered in the channel–shape study
presented next.

Thus even one collision can transfer enough kinetic
energy to an atom to enable it to escape the drain.
Atom loss from the condensate is an additional dissipa-
tion mechanism, increasing the resistance already devel-
oped by the creation of vortices and solitons [4]. In the
experiment, atoms that leave the dumbbell area are re-
flected by the harmonic sheet potential and return to the
dumbbell area during the time measurements are made.
These atoms are now part of the thermal cloud which is
approximately isotropic and much more dilute than the
condensate. This adds a nearly constant and small offset
to the dumbbell density profile. Since the experimental
measures the total column density, it cannot distinguish
between condensate and thermal atoms. The GP equa-
tion is a zero–temperature, mean–field theory and cannot
describe this thermal cloud. Atoms entering the thermal
cloud are handled here by using absorbing boundary con-
ditions described above.
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FIG. 4. (Color online) (a) Exponential decay time,
τ (Lc, wTF), vs. the length of the channel Lc and the Thomas–
Fermi width of the channel, wTF . (b) Conductance G = 1/R
vs. one–dimensional channel density, n1D, with a linear fit.

IV. CHANNEL–SHAPE STUDY

Finally we studied the dependence of the transport
dynamics on the channel length and width by perform-
ing 252 simulations. Each simulation was characterized
by a value of ωy, chosen from 21 values in the range
60Hz <∼ ωy/(2π) <∼ 130Hz, and a value of Lc, chosen
from 12 values in the range 2µm ≤ Lc ≤ 24µm. We
calculated the number of atoms in the source, channel,
and drain regions of the dumbbell potential as a function
of time for a total simulation time of 0.5 seconds. For
each case we fit the number imbalance to find the values
of the capacitive discharge time, τ , and the LC oscilla-
tion frequency, ω. Details about the fitting function and
fitting method can be found in Appendix F.

The dependence of the exponential decay time,
τ(Lc, wTF), on the channel length and width is shown
in the density plot in Fig. 4(a). It is clear from this plot
that τ = RC is independent of Lc. Since we have fixed
the number of condensate atoms and the shape of the
wells, the capacitance, C, is also fixed. The resistance
is therefore independent of channel length suggesting a
“contact” resistance in which dissapative processes giv-
ing rise to a resistance occur in the wells rather than in
the channel. Examples of such processes include atom
loss and the formation of vortices and solitons.

The plot also shows that the decay time does depend
on the channel width. We averaged τ(Lc, wTF) over Lc

keeping wTF fixed and found that the resulting average
decay time, τavg(wTF), decayed according to a power law
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w−1
TF. This differs from the Feynman model [33] where

superfluid flow above a critical velocity from a channel
into an infinite reservoir dissipates energy via the forma-
tion of a line of vortices. The Feynman resistance varies
inversely with the square of the channel width. This dif-
ference may be due to the presence of other dissipation
sources such as atom loss and the geometry of the well.
Finally we analyzed the results of the study to deter-

mine how the channel resistance depends on the late–
time 1D density of atoms in the channel, n1D. We
used the fitted decay times averaged over all channel
lengths for fixed channel width, τavg(wTF), to calculate
the conductance, G = 1/R = C/τavg(wTF). Figure 4(b)
shows a plot of this quantity versus n1D. The rela-
tionship between the conductance and n1D is linear as
was seen in the experiment [4]. The dependences of the
oscillation frequency, ω, on channel length, width, and
channel 1D density were determined by fitting to power
laws Lbl

c , w
bw
TF, and nbn

1D, respectively. The results were
bl = −0.18(2), bw = 0.35(8), and bn = 0.29(6).

V. CONCLUSION

In conclusion, we studied the transport dynamics of
a BEC confined in a quasi–planar, dumbbell atomtronic
circuit. We found that the results of GP–equation simu-
lations matched the data of a recent experiment [4] given
an accurate confining potential and absorbing boundary
conditions. The GP solution exhibited atom loss from
the drain well, a phenomenon not easily detectable in
the experiment. We further proposed that this atom loss
could be due to collisions that redistribute the atoms’ ki-
netic energy. Finally we presented a systematic study of
the characteristics of the transport for a range of different
channel lengths and widths.
These results suggest that the operation of the class of

atomtronic systems where a BEC is confined to a planar
region with arbitrary in–plane potential can be simulated
by using the GP equation. We believe that the GP equa-
tion can be a useful tool in addressing the challenge of
developing a theoretical framework for design of atom-
tronic circuits similar to the theoretical framework that
already exists for designing electronic circuits. If such
a framework could be developed, it would enable atom
circuits to be designed for applications not yet envisaged.

ACKNOWLEDGMENTS

This material is based upon work supported by the
U.S. National Science Foundation under grant numbers
PHY–1068761 and PHY–1413768, and the Physics Fron-
tier Center @ JQI. This work was also supported by a
grant from the China Scholarship Council grant number
[2012]3011.
Here we provide appendixes containing extra material

on the following topics: (A) a description of how the po-

tential parameters used to model the NIST experiment
were determined, (B) an explanation of the fitting pro-
cedure used in the systematic study of transport behav-
ior for different channel shapes, (C) the details of the
variable–resistance RLC circuit model, (D) a derivation
of the model capacitance of the dumbbell circuit, (E)
a derivation of the Thomas–Fermi channel width, wTF,
and (F) a derivation of the formula for maximum kinetic
energy transfer in a classical, elastic collision.

Appendix A: Determination of dumbbell potential

parameters

In this appendix we provide details on how the param-
eters of the potential were determined. We reiterate this
potential here for convenience. The full model dumbbell
potential consists of sheet, well, and channel potentials:

Vtrap(r, t) =
1

2
M
(

ω2
sh,xx

2 + ω2
sh,yy

2 + ω2
sh,zz

2
)

+ Vwell(x, y) + Vchannel(x, y) (A1)

The z axis is vertical, the x axis lies along the line joining
the two well centers, and the y axis is perpendicular to
the channel. There is also a gate potential but it was
modeled as a high step located along the y axis and was
present only during formation of the initial condensate
we neglect it here.
The model well and channel potentials have the form

Vwell(x, y) = Vd
∑

k=1,2

1

2

[

1 + tanh

(

ρk(x, y)− rk
b

)]

,

ρk(x, y) ≡
√

(x− xk)2 + (y − yk)2, k = 1, 2,

Vchannel(x, y) = Vstep +
1

2
Mω2

yy
2. (A2)

The channel potential has two circular wells having cen-
ters (xk, yk) and radii rk where k = 1, 2 and depth Vd.
The hardness of the well edges was varied by adjusting
the value of b which is the range over which the step
rises from zero to one. The channel potential is harmonic
along the y direction (due to instrument resolution [4])
plus a step, Vstep.
The full mask potential is equal to min(Vwell, Vchannel)

between the wells (−r1 ≤ x ≤ r2) and equal to Vwell

outside this region. The gate potential is a high step
function parallel to the y axis and located in the center
of the channel. The sheet–potential frequencies were de-
termined to be ωsh,x/2π = 10 Hz, ωsh,y/2π ≈ 0 Hz, and
ωsh,z/2π = 529 Hz. The well radii were r1 = r2 = 24 µm,
the well depth was Vd = 83 nK, and the hardness param-
eter was b = 0.2 µm. The well centers were separated by
74 µm. In the channel Vstep ≈ 20 nK and ωy/2π varied
between 110 and 130 Hz.
Because of imaging aberrations, the exact channel po-

tential is unknown and cannot be determined a priori.
We therefore chose to model the channel potential in the
simple way described above, using the combination of a
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harmonic trapping potential ωy ∝
√
Vd and a Vstep that is

independent of Vd. With two free parameters – the pro-
portionality constant between ωy and

√
Vd and Vstep – we

found we could accurately predict the measured 1D equi-
librium densities in the channel. Other observables like
the Thomas-Fermi width or the 2-D density of atoms are
compromised by the aberrations; as such, the 1-D den-
sity is the only reliable measure by which we can model
the channel potential. The reservoir potentials, which
are much larger than the channel, are less affected by the
imaging aberrations and thus we found parameters (ωsh,x

and ωsh,y, b, and Vd) that best reproduced the measured
2-D density.

Appendix B: The Thomas–Fermi channel width

In this appendix we provide a derivation of the
Thomas–Fermi condensate width in the dumbbell poten-
tial. This width enables us to define the channel shape
in a more intuitive way. The channel is assumed to have
a length Lc along the line joining the two wells of the
dumbbell (x axis) with hard walls located at x = ±Lc/2.
In between these walls, the potential is assumed to be
harmonic in y and z plus a constant step:

Vch(x, y, z) =

{

Vstep +
1
2Mω2

yy
2 + 1

2Mω2
zz

2 |x| ≤ 1
2Lc

∞ |x| > 1
2Lc

}

(B1)

The solution of the time–independent Gross–Pitaevskii
(GP) equation, ψ, can be approximated by the Thomas–
Fermi solution ψTF where the kinetic–energy term in the
GP is neglected:

− h̄2

2M
∇2ψ(r) + Vch(r)ψ(r) + gNch|ψ|2ψ(r) = µψ(r)

Vch(r)ψTF(r) + gNch|ψTF(r)|2ψTF(r) = µTFψTF(r)

(B2)

where we have assumed that there are Nch atoms in the
channel. The Thomas–Fermi–approximate solution can
be written as

gNch|ψTF(r)|2 =

{

µTF − Vch(r) µTF ≥ Vch(r)
0 otherwise

}

The value of µTF is determined by normalization.

Thus we require that

∫

d3r |ψTF(r)|2 = 1 (B3)

or, equivalently,

∫

d3r gNch|ψTF(r)|2 = gNch. (B4)

Using the explicit TF solution we have

gNch =

∫

d3r gNch|ψTF(r)|2

=

∫ +Lc/2

−Lc/2

dx

∫ +yTF

−yTF

dy

∫ +zTF(y)

−zTF(y)

dz

×
[

(µTF − Vstep)−
1

2
Mω2

yy
2 − 1

2
Mω2

zz
2

]

(B5)

where zTF(y) satisfies

1

2
Mω2

zz
2
TF(y) = (µTF − Vstep)−

1

2
Mω2

yy
2. (B6)

Performing the integral over z gives

gNch =
4

3

(

1

2
Mω2

z

)
∫ +Lc/2

−Lc/2

dx

∫ +yTF

−yTF

dy

×
(

(µTF − Vstep)− 1
2Mω2

yy
2

1
2Mω2

z

)3/2

(B7)

Now yTF is the edge where the y integrand goes to zero
and satisfies the following condition:

1

2
Mω2

yy
2
TF = µTF − Vstep (B8)

This expression enables us to define the Thomas–Fermi
width, wTF, as follows:

wTF = 2yTF = 2

(

µTF − Vstep
1
2Mω2

y

)1/2

(B9)

So now we need to find µTF−Vstep by evaluating the rest
of the integral in Eq. (B7). The result is

gNch =
(π

2

)

y4TF

(

1
2Mω2

y

)3/2

(

1
2Mω2

z

)1/2
Lc, (B10)

where

y4TF =

(

µTF − Vstep
1
2Mω2

y

)2

. (B11)

Inserting this into the equation for gNch gives us an ex-
pression from which we can evaluate µTF − Vstep:

gNch =
(π

2

)

(

µTF − Vstep
1
2Mω2

y

)2 ( 1
2Mω2

y

)3/2

(

1
2Mω2

z

)1/2
Lc

=
(12πLc) (µTF − Vstep)

2

(

1
2Mω2

y

)1/2 ( 1
2Mω2

z

)1/2
(B12)

We can use this equation to solve for µTF − Vstep:

µTF − Vstep =

(

(gNch)
(

1
2Mω2

y

)1/2 ( 1
2Mω2

z

)1/2

1
2πLc

)1/2

.

(B13)
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With this we can now get the final result for wTF:

wTF = 2yTF = 2

[

(

2

π

)

(gNch)
(

1
2Mω2

z

)1/2

Lc

(

1
2Mω2

y

)3/2

]1/4

(B14)

The channel width can be obtained from this expression
for each of the simulations in the channel–shape study by
using the simulation value of Nch. We compared the pre-
dictions of this formula with the channel widths as deter-
mined by inspection of the images at the end of each sim-
ulation and found good agreement between them. This
formula enables us to present the channel–shape study
results in terms of channel length and width. This is
more intuitive than in terms of the channel length and
transverse harmonic frequency, ωy.

Appendix C: Calculation of the capacitance of the

dumbbell–potential BEC

1. Definition of chemical capacitance

Here we derive the capacitance of the BEC in the
dumbbell potential. The chemical capacitance is defined
in analogy with the definition for electronic capacitance.
For the electronic capacitor, if an external agent moves
a (positive) charge δq from one initially neutral plate
(drain plate) to the other plate (source plate), then the
source plate has a net charge of +δq while the drain
plate has a net charge −δq. The source reservoir gets
its name from the fact that moving “charges” (either
real positive charges or atoms) will initially flow from
source to drain to regain equilibrium. The charge differ-
ence (source charge - drain charge) is +2δq however the
charge on the electronic capacitor is regarded as being
+δq. Once there is a charge on the capacitor, it causes
a voltage difference, δV , to develop and the electronic
capacitance is defined as

Celec ≡
δq

δV
. (C1)

This motivates the definition of the chemical capacitance.
The chemical capacitance is defined analogously. If the

total number of atoms is N and there are equal numbers
of atoms (N/2) in each well (this is equilibrium) and the
external agent moves δN atoms from the drain well to
the source well, then the number of atoms in each well is

NS =
1

2
N + δN and ND =

1

2
N − δN. (C2)

Analogous to the electronic capacitor the difference in the
number of atoms between the wells is +2δN . However,
we shall regard the charge on the chemical capacitor as
being δN atoms. Once there is a charge on the chemical
capacitor, it causes a chemical potential difference, δµ,
to develop and the chemical capacitance is defined as

Cchem ≡ δN

δµ
. (C3)

We can find an approximate expression for this based
on the TF approximation for the chemical potential of a
BEC in a cylindrical well potential.

2. The chemical potential for a BEC in a

cylindrical well

Consider a BEC havingN atoms confined in a cylindri-
cal well potential. To get an expression for the chemical
potential we will assume that the Thomas–Fermi approx-
imation applies and that the BEC is confined radially in
a hard–walled cylindrical well of radius R and axially in
a harmonic potential. We assume that the confining po-
tential is therefore (using cylindrical coordinates (r, θ, z)

Vtrap(r, θ, z) =
1

2
Mω2

zz
2 + Vwell(r) (C4)

where

Vwell(r) =

{

0 0 ≤ r ≤ R
∞ R < r <∞

}

. (C5)

In the potential actually present in the experiment, there
is also a weak harmonic confinement along the x direc-
tion whose zero is offset from the origin (assumed here
to be at the center of the source well). The effect of this
extra harmonic potential is to produce a small but no-
ticeable gradient along the x direction in the initial con-
densate density profile. Since this extra potential is so
weak (ωsh,x/2π ≈ 10Hz), it does not appreciably change
the value of the chemical potential or its dependence on
N .
The condensate wave function, ψ0(r), satisfies the

time–independent Gross–Pitaevskii (GP) equation:

µ0ψ0(r) = − h̄2

2M
∇2ψ0(r) + Vtrap(r, θ, z)ψ0(r)

+ gN |ψ0(r)|2ψ0(r) (C6)

whereM is the mass of a condensate atom, N is the num-
ber of condensate atoms, g = 4πh̄2as/M is the strength
of the binary scattering of condensate atoms, as is the s–
wave scattering length, and µ0 is the chemical potential
of the condensate. The chemical potential is the energy
required to add another atom to the condensate.
We will derive an approximate expression for the chem-

ical potential by using the Thomas–Fermi (TF) approx-
imation. The TF approximation is valid whenever the
interaction energy is much larger than the kinetic en-

ergy. When this is the case we have ψ0(r) ≈ ψ
(TF)
0 (r),

µ0 ≈ µ
(TF)
0 , and these TF–approximate quantities sat-

isfy the GP equation where the kinetic–energy term is
neglected:

µ
(TF)
0 ψ

(TF)
0 (r) = Vtrap(r, θ, z)ψ

(TF)
0 (r)

+ gN |ψ(TF)
0 (r)|2ψ(TF)

0 (r). (C7)
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The formal solution of this equation is

gN |ψ(TF)
0 (r)|2 =

{

µ
(TF)
0 − Vtrap(r, θ, z) if ≥ 0

0 if ≤ 0

}

(C8)
We can now insert the particular form of the potential
into the above to get

gN |ψ(TF)
0 (r)|2 =

{

1
2Mω2

zz
2
TF − 1

2Mω2
zz

2 |z| ≤ zTF

0 otherwise

}

(C9)
Where we have defined the TF z radius as

µ
(TF)
0 ≡ 1

2
Mω2

zz
2
TF. (C10)

The values of zTF and thus µ
(TF)
0 are found by requiring

that the TF wave function be normalized to unity or,
more conveniently

gN = gN

∫

d3r|ψ(TF)
0 (r)|2. (C11)

Thus we have

gN =

∫ 2π

0

dθ

∫ +zTF

−zTF

dz

∫ R

0

rdr
1

2
Mω2

z

(

z2TF − z2
)

=

(

1

2
Mω2

z

)

(2π)

(

1

2
R2

)(

4

3
z3TF

)

=

(

4

3
πR2

)

(

µ
(TF)
0

)3/2

(

1
2Mω2

z

)1/2
. (C12)

So the expression for the TF chemical potential is

µ
(TF)
0 =

(

(gN)
(

1
2Mω2

z

)1/2

(

4
3πR

2
)

)2/3

≡ αN2/3 (C13)

We will now use this expression for the TF chemical po-
tential in a single cylindrical well to derive a formula for
the TF chemical capacitance.

3. The chemical capacitance in the Thomas–Fermi

approximation

Now consider the chemical potential difference between
the source well having NS atoms and the drain well with
ND atoms. Using Eq. (C13) we have

δµ = µ(NS)− µ(ND) = αN
2/3
S − αN

2/3
D

= α

(

1

2
N + δN

)2/3

− α

(

1

2
N − δN

)2/3

= α

(

1

2
N

)2/3
[

(

1 +
δN
1
2N

)2/3

−
(

1− δN
1
2N

)2/3
]

≈ α

(

1

2
N

)2/3 [(

1 +
2

3

δN
1
2N

)

−
(

1− 2

3

δN
1
2N

)]

δµ = α

(

1

2
N

)2/3
4

3

δN
1
2N

=
4αδN

3
(

1
2N
)1/3

(C14)

where we assumed that δN ≪ 1
2N in the above deriva-

tion. This linear approximation is good to 10% over a
number imbalance up to δN/(12N) = ±0.93 [4].
Finally we can get an approximate expression for the

chemical capacitance:

Cchem =
δN

δµ
=

3
(

1
2N
)1/3

4α
. (C15)

This expression for Cchem only depends on the shape of
the potential and the total number of condensate atoms.

Appendix D: Variable resistance RLC circuit model

In this appendix we give more details about the
variable–resistance RLC circuit model described in the
main text. This circuit model consists of an initially
charged capacitor of capacitance C, an inductor with in-
ductance L, an initially open switch, and a resistor with
time–dependent resistance, R(t). This circuit is shown
in Fig. 5(a).
The goal of this modeling exercise is to find out if such

a model circuit with some variable resistance, R(t), is
capable of reproducing the behavior of the number im-
balance, ∆N(t), of the dumbbell circuit as produced by
the GP equation. Thus we need to find the functional
form of R(t). The method for determining it will be to
equate the normalized charge on the capacitor,

q̄(t) ≡ q(t)/q(0), (D1)

where q(t) is the capacitor charge in the model circuit, to
the number imbalance. Next we find a formula for R(t)
in terms of q̄(t) using Kirchhoff’s circuit rules. Finally
we find a fit to q̄(t) and use this fitting function to get
R(t).
We can apply Kirchhoff’s rule to the circuit in Fig. 5(a)

where we assume an instantaneous current i(t) flowing
in the clockwise direction and an instantaneous charge
q(t) on the capacitor. Then we have the following two
equations:

L
di

dt
+R(t)i(t) +

1

C
q(t) = 0

dq

dt
= i(t) (D2)

and we can combine these yielding one equation for q(t):

L
d2q

dt2
+R(t)

dq

dt
+

1

C
q(t) = 0

R(t) = −
(

¨̄q(t) + ω2q̄(t)

Cω2 ˙̄q

)

(D3)

where ω ≡ 1/
√
LC is the frequency of LC oscillations

that the circuit would have if R = 0 and we have written
the result in terms of q̄. The values of q(t) and ω will
be found by fitting. The value of the capacitance can be
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FIG. 5. (color online) (a) Model RLC circuit with variable resistance. (b) Number imbalance, ∆N(t), from the Gross–Pitaevskii
(GP) equation and fitted result (see text) for a dumbbell potential with channel length Lc = 20µm and and Thomas–Fermi
width of wTF ≈ 22µm. (c) The time–dependent resistance, R(t), derived from the fitted number imbalance.

calculated given the dumbbell potential and the number
of condensate atoms and so is assumed to be known here.

The number imbalance has distinct behavior during
Interval (a): 0 ≤ t ≤ t0, Interval (b): t0 ≤ t ≤ t1 and
Interval (c): t > t1 as explained in the main text. Thus
we chose a different function for ∆N(t) on each interval.
Our fitting function was the following:

∆N(t) =
q(t)

q(0)
≡ q̄(t)

=







(1 + ω1t)e
−ω1t 0 ≤ t ≤ t0

qc − Ic(t− t0) t0 ≤ t ≤ t1
b cos(ω2t+ φ) + c t < t1







. (D4)

We fit the frequencies appearing in Intervals (a) and
(c) separately. However, we found that these frequen-
cies were nearly the same in most cases. The fitting
parameters were ω1, qc, Ic, b, ω2, φ, c, t0, and t1.
Thus, for the final value of the fitting function, we set
ω1 = ω2 = (ω1 + ω2)/2.

An example of the result of this fitting procedure is
shown in Fig. 5(b). The graph shows a plot of number
imbalance for a dumbbell potential with channel length
Lc = 20µm and TF width wTF = 22µm (red curve)
along with the result of the fit (green curve). The fit
is very good as would be expected given the number of
fitting parameters.

Finally, this fitting function can be used to find the
time–dependent resistance, R(t), as already described.
This quantity is plotted in Fig. 5(c). The plot shows
that R is essentially constant during 0 ≤ t ≤ t0. At
t = t0, where ∆N displays a kink, the resistance abruptly
increases after which is decreases linearly to zero at t = t1
and remains zero thereafter. A summary of this behavior
appears in the main text.

Appendix E: Kinetic energy transfer in a classical

collision

In this appendix we derive a formula for the final ki-
netic energies of two identical particles that collide at an
angle θ. This result enables us to estimate the amount
of kinetic energy that can be transferred in a collision of
wall–bounce atoms in the drain well with atoms that flow
directly into the well. This estimate can be compared
with the depth of the well to determine if this kinetic–
energy transfer is a viable mechanism for atom loss from
the dumbbell region.

y

θ1
2

x

v

v

FIG. 6. Classical model for a collision of atoms that bounce off
the wall with those that come straight through. Two particles
each having mass m and speed v collide at an angle θ.

We assume first that the colliding atoms have the same
initial kinetic energy and that this kinetic energy comes
entirely from the interaction energy of the initially con-
fined condensate in the source well. In the source well, al-
most all of the particle energy is interaction energy since
the potential energy and kinetic energies are (nearly)
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zero. After release, particles that flow into the chan-
nel have all of their initial interaction energy converted
to kinetic energy.
To develop a classical model we imagine two identical

particles of mass M and initial speed v colliding elas-
tically at an angle θ as shown in Fig. 6. The central
question is: how much kinetic energy can be transferred
from one particle to the other in this perfectly elastic,
momentum–conserving collision? We will impose these
conservation laws on the collision in the center–of–mass
(CM) frame. These lab and CM frames are illustrated in
the following figure:

2
1θ

labx

cmy

laby

xcm
particle 1

particle 2 v

A

O

B

v θ

FIG. 7. Collision as observed in the CM frame. The particle
speeds before and after the perfectly elastic collision are the
same but the velocity directions have rotated by an angle θf
after the collision.

This figure shows the tracks of the particles in the “lab”
frame whose origin is chosen to be at the point where the
particles meet and the xlab axis is chosen along the direc-
tion of particle 1. The track of particle 2 runs through
the origin and makes an angle θ with the xlab axis. In
the figure the particle positions are shown at six different
times before the collision. The pair of particle locations
corresponding to a given time are connected by a line.
These lines denote the xcm axis of the CM frame of ref-
erence. The line perpendicular to these lines is the ycm
axis in this frame.
The xcm axis is inclined from the xlab axis by angle

θ/2. This can be seen by considering the triangle AOB
in the figure which runs from the open–circle particle fur-
thest from the origin (point A) to the filled–circle particle
furthest from the origin (point B) to the origin (point O)
and back to point A. Since the particles are equidistant
to the origin, this is an isosceles triangle. Hence angles
BAO and ABO are equal and the sum of these angles
is supplemental to angle AOB. But, since angle AOB is
also supplemental to θ it follows that the sum of the two
equal angles BAO and ABO is equal to θ so both angles
BAO and ABO equal θ/2.

Thus we can define unit vectors for the lab îlab and
ĵlab that point along the xlab and ylab axes respectively.
Additionally we can define unit vectors that point along

the xcm and ycm and denote them as îcm and ĵcm, respec-
tively. Although the CM frame is moving with respect

to the lab frame, the relative orientation of the two pairs
of axes remains fixed with the CM axes rotated with re-
spect to the lab axes by the angle θ/2. Thus the CM unit
vectors can be expressed in terms of the lab unit vectors
as follows:

îcm = îlab cos(θ/2) + ĵlab sin(θ/2)

ĵcm = −îlab sin(θ/2) + ĵlab cos(θ/2). (E1)

With these two sets of unit vectors, we can now analyze
the collision.
We will analyze the collision by requiring that the total

momentum and total kinetic energy be conserved. Our
strategy will be to conserve these quantities in the CM
frame. Thus we will write down the initial velocities of
particles 1 and 2 in the lab frame, transform these to the
CM frame, find the final velocities there, transform the
velocities back to the lab frame, and then compute the
final kinetic energies in that frame. In this way we will be
able to calculate the difference in the final kinetic energies
to learn how much kinetic energy can be transferred due
to the collision. Before we implement this procedure, we
need to know how to transform between the two frames.
Consider two particles of masses m1 and m2 with po-

sition vectors r
(lab)
1 and r

(lab)
2 . In what follows the super-

script in a variable name will denote the reference frame

to which the quantity is referred. Thus, r
(lab)
1 is the vec-

tor that stretches from the origin of the lab frame to the

location of mass m1 while r
(cm)
1 would be the vector that

stretches from the origin of the CM frame to m1. The
position and velocity of the center of mass of the two–
particle system, referenced to the lab frame, is given by

r(lab)cm =
1

2
r
(lab)
1 +

1

2
r
(lab)
2

v(lab)
cm =

1

2
v
(lab)
1 +

1

2
v
(lab)
2 (E2)

where we have assumedm1 = m2. This gives the velocity
of the CM frame as measured by an observer in the lab
frame. We can transform velocities between the lab and
CM frames using

v(lab) = v(lab)
cm + v(cm). (E3)

We will use this equation to express the initial velocities
of the colliding particle with respect to the CM frame.
From the picture of the collision in Fig. 6 we can write

the velocities of the colliding particles in the lab frame.
These initial velocities are

v
(lab)
1i = v îlab

v
(lab)
2i = −v cos(θ) îlab − v sin(θ) ĵlab. (E4)

These velocities can now be used to compute the velocity
of the center of mass in the lab frame:

v(lab)
cm =

1

2
v
(lab)
1i +

1

2
v
(lab)
2i

=
1

2
v (1− cos(θ)) îlab −

1

2
v sin(θ) ĵlab

=
(

−v sin(12θ)
)

ĵcm. (E5)
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Now we can express the initial velocities with respect to
the CM frame.
The initial velocities of particles 1 and 2 relative to the

CM frame can be calculated as follows:

v
(cm)
1i = v

(lab)
1i − v(lab)

cm

= v îlab −
(

1

2
v (1− cos(θ)) îlab −

1

2
v sin(θ) ĵlab

)

= v cos(12θ) îcm,

v
(cm)
2i = v

(lab)
2i − v(lab)

cm

= −v cos(θ) îlab − v sin(θ) ĵlab

−
(

1

2
v (1− cos(θ)) îlab −

1

2
v sin(θ) ĵlab

)

= −v cos(12θ) îcm. (E6)

In the CM frame, the colliding particles have equal and
opposite velocities along the xcm axis as expected.
In the CM frame the total momentum of the system is

zero before and after collision. Also, since kinetic energy
and total momentum are conserved in the lab frame and
because the CM frame moves at a constant velocity rel-
ative to the lab frame, the total momentum and kinetic
energy, as measured in the CM frame, will also be con-
served. Figure 8 shows before and after pictures of the
collision as observed in the CM frame.

θ f

θ f

x cm

ycmycm

x cm

v v
v

v
before collision after collision

CM frame

FIG. 8. Collision as observed in the CM frame. The particle
speeds before and after the perfectly elastic collision are the
same but the velocity directions have rotated by an angle θf
after the collision.

The particles have oppositely directly velocities before
and after the collision with equal speeds guaranteeing
that the total momentum of the system is always zero.
The directions of their final velocities don’t have to be
the same as the initial velocities. In Fig. 8 the angle
between the velocities before and after the collision is
denoted as θf which we will refer to as the “CM scattering
angle”. This angle can vary between 0◦ and 180◦. The
CM–frame speeds of the particles before the collision are
v′ ≡ v cos(12θ). If the speed of the particles after the
collision is denoted as v′′, then conservation of kinetic
energy requires that

1

2
M(v′)2 +

1

2
M(v′)2 =

1

2
M(v′′)2 +

1

2
M(v′′)2 (E7)

Thus we have v′′ = v′ = v cos(12θ).

From the figure it is easy to write down the CM–frame
final velocities for the two particles. These are

v
(cm)
1f = v′ cos(θf )̂icm + v′ sin(θf )̂jcm

v
(cm)
2f = −v′ cos(θf )̂icm − v′ sin(θf )̂jcm (E8)

In expressing these velocities back in the lab frame and it
will be convenient to express them in terms of the CM–
frame unit vectors:

v
(lab)
1f = v(lab)

cm + v
(cm)
1f

= v cos(12θ) cos(θf ) îcm

+
(

v cos(12θ) sin(θf )− v sin(12θ)
)

ĵcm

v
(lab)
2f = v(lab)

cm + v
(cm)
2f

= −v cos(12θ) cos(θf ) îcm
−
(

v cos(12θ) sin(θf ) + v sin(12θ)
)

ĵcm (E9)

The last step will be to compute the difference in lab–
frame final kinetic energies.
The difference in the lab–frame kinetic energies of the

two particles after the collision can be written as

δK(lab) ≡ 1

2
M
(

v
(lab)
2f

)2

− 1

2
M
(

v
(lab)
1f

)2

. (E10)

We can calculate the squares of the vectors v
(lab)
1f and

v
(lab)
12f using their components in the CM–frame coordi-

nate system since vector lengths are independent of the
coordinate system. Thus we have

(v
(lab)
1f )2 = v2 − v2 sin(θ) sin(θf )

(v
(lab)
2f )2 = v2 + v2 sin(θ) sin(θf ) (E11)

Substituting these squared velocities into the expression
for the kinetic–energy difference the result is

δK(lab) =
1

2
M
(

v2 + v2 sin(θ) sin(θf )
)

− 1

2
M
(

v2 − v2 sin(θ) sin(θf )
)

=
1

2
Mv2 (2 sin(θ) sin(θf )) . (E12)

The final kinetic energies in the lab frame can be written
as

K
(lab)
1f =

1

2
Mv2 (1− sin(θ) sin(θf )) (E13)

K
(lab)
2f =

1

2
Mv2 (1 + sin(θ) sin(θf )) . (E14)

We can now find the maximum possible transfer of kinetic
energy in a collision of the type considered here. Since θf
can take any value from 0◦ to 180◦, the maximum and
minimum kinetic energies for fixed θ occur when θf =



12

90◦:

K
(lab)
1f,min =

1

2
Mv2 (1− sin(θ))

= K
(lab)
1i (1− sin(θ)) (E15)

K
(lab)
2f,max =

1

2
Mv2 (1 + sin(θ))

= K
(lab)
2i (1 + sin(θ)) (E16)

We will use these expressions to determine if a single col-
lision between wall–bounce and straight–through atoms
can transfer enough kinetic energy to enable atoms to
escape the drain well.

Appendix F: Shape–study fitting procedure

The study of the transport dynamics of condensate re-
leased into the dumbbell potential across a range of dif-
ferent channel lengths and widths described in the main
text consisted of two phases. The first phase was the
simulation of the condensate behavior using the Gross–
Pitaevskii (GP) equation for each of the 252 cases of fixed
channel length and width. For each case, the number of
atoms in the source well, channel, and drain well as a
function of elapsed time following condensate was calcu-
lated and saved. In the second phase, for each channel
shape, the number imbalance, ∆N(t), was calculated and
a fit was performed to extract the capacitive decay con-
stant, τ , and the LC oscillation frequency, ω.

The simulations performed in the first phase were done
by numerical solution of the GP equation. The procedure
for this was the same as described in the main text for
the experimental simulations. The hybrid Lagrangian
variational equations (HLVM) of motion for the 3D GP
were solved using the split–step, Crank–Nicolson algo-
rithm under conditions of space and time step size the
same as for the experiments. Each simulation produced a
time–tagged wave function, stored on a 2D space grid, at
400 equally spaced times during the interval 0 ≤ t ≤ 0.5
seconds and these wave functions were immediately used
to compute the populations (numbers of atoms) in the
source, channel, and drain regions. These numbers were
stored and the wave functions were not retained.

In order to calculate the population in a particular re-
gion, we integrated squared modulus of the HLVM wave
function over the given region. The HLVM wave function

(up to an irrelevant phase factor) has the form [30]:

Ψ(x, y, z, t) =

(

1√
πw(t)

)1/2

exp

{

− z2

2w2(t)

}

ψ(x, y, t).

(F1)
The number of atoms in the source region at time t is
given by

NS(t) =

∫

3D source
region

d3r |Ψ(x, y, z, t)|2

=

(

1√
πw(t)

)
∫ +∞

−∞

dz exp

{

− z2

w2(t)

}

×
∫∫

2D source
region

dx dy |ψ(x, y, t)|2

NS(t) =

∫∫

2D source
region

dx dy |ψ(x, y, t)|2 , (F2)

and similarly for the channel and drain regions. The
source, channel, and drain populations were computed
numerically at each time during a given simulation and
the result was stored. This was done for all 252 channel–
shape cases.
In phase two of the shape study, the time–dependent

number imbalance, ∆N(t) = (NS(t) −ND(t))/(NS(t) +
ND), was fitted with a function that enabled the esti-
mation of the decay constant, τ , and the LC oscillation
frequency, ω. The fitting function had the following form:

∆N(t) =





1

1 + exp
{

t−tc
tw

}



 e−t/τ

+





1

1 + exp
{

− t−tc
tw

}





×
(

b cos

(

2πt

T
+ φ

)

+ c

)

. (F3)

This function only assumes capacitive discharge, e−t/tF ,
and LC–oscillation behavior, b cos

(

2πt
T + φ

)

+c, and con-
sists of these functions multiplied by turn–off and a turn–
on functions, respectively. These turn–off/turn–on func-
tions are set off in square brackets in the above equation.
The fit parameters are tc, tw, τ , b, T , φ, and c. The decay
constant, τ , is already one of the fit parameters and the
LC oscillation frequency can be calculated by ω = 2π/T .
The number imbalance associated with each channel–

shape simulation was fit with this function to get τ and
ω. These results were then, themselves, analyzed for de-
pendence on channel length and width as described in
the main text.
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