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We develop a generalized gradient expansion of the inhomogeneous dynamical mean-field theory
method for determining properties of ultracold atoms in a trap. This approach goes beyond the
well-known local density approximation and at higher temperatures, in the normal phase, it shows
why the local density approximation works so well, since the local density and generalized gradient
approximations are essentially indistinguishable from each other (and from the exact solution within
full inhomogeneous dynamical mean-field theory). But because the generalized gradient expansion
only involves nearest-neighbor corrections, it does not work as well at low temperatures, when the
systems enter into ordered phases. This is primarily due to the problem that ordered phases often
satisfy some global constraints which determine the spatial ordering pattern, and the local density
and generalized gradient approximations are not able to impose those kinds of constraints; they
also overestimate the tendency to order. The theory is applied to phase separation of different
mass fermionic mixtures represented by the Falicov-Kimball model and to determining the entropy
per particle of a fermionic system represented by the Hubbard model. The generalized gradient
approximation is a useful diagnostic for the accuracy of the local density approximation—when
both methods agree, they are likely accurate, when they disagree, neither is likely to be correct.

I. INTRODUCTION

Ultracold atoms in optical lattices have become one
of the most interesting platforms to examine many-body
physics properties of quantum particles. Experiments are
under great control, and one can modify both lattice pa-
rameters and interactions by adjusting laser intensity or
external magnetic field strength. One of the challenges,
however, is that these systems also require a (harmonic)
trap to keep them stable, which breaks the periodicity of
the system. The system size is also finite—usually about
100 − 300 lattice sites per spatial dimension—implying
a three-dimensional system has one to thirty million lat-
tice sites. Many different numerical techniques have been
applied to these systems, but the larger systems in two-
dimensions and nearly all systems in three-dimensions
are too large for most exact calculations (the one excep-
tion is Bosonic systems, where the quantum-Monte-Carlo
approaches based on the worm algorithm work extremely
well in equilibrium for ≈ 300,000 particles [1, 2]). Inho-
mogeneous dynamical mean-field theory (IDMFT) has
been applied to many of these systems, and it works well
at high temperatures, but it often cannot handle the full
system size, especially in three-dimensions [3, 4]. The
dynamical mean-field theory (DMFT) has two computa-
tionally limiting steps—one is calculating the diagonal of
the inverse of a general complex matrix whose dimension
is the number of lattice sites |Λ| and the other is solv-
ing the impurity problem on each lattice site. The former
problem grows like |Λ|3 for conventional linear-algebra al-
gorithms, while the latter grows linearly with |Λ|. Hence,
significant progress can be made with the IDMFT ap-
proach if other methods could be employed to approxi-
mately solve the calculation of the local Green’s function

from the local self-energy. Other, more direct, quantum
Monte Carlo approaches, also suffer from similar issues
regarding the computational effort required (which usu-
ally grows as a power law of |Λ|) and so are also limited
by the system size they can work with [5].

This problem has been tackled by employing the so-
called local density approximation (LDA), which assumes
the local properties of a site within a trap at a given lo-
cal chemical potential are well approximated by the lo-
cal properties of a site inside a periodic system at the
same chemical potential [6, 7]. Since the trap varies both
smoothly and slowly with position, this approximation
ends up being quite good, with the chemical potential ad-
justed for each temperature to conserve the total number
of particles. One expects it to start to fail in two regimes:
(i) the first is at low temperature for ordered phases,
especially ordered phases which partially break transla-
tional symmetry, because the LDA does not invoke any
global constraints involved with ensuring that the or-
dered phase can “fit” into the given lattice structure with
the trap present and (ii) the second is in nonequilibrium
systems with mass transport, because the LDA assumes
the density at a given site is unchanged regardless of the
external field applied. These two issues motivate us to
try and develop a technique that will share the success of
the LDA for high temperatures but will be able to cor-
rect it as the temperature is lowered to take into account
some of these nonlocal effects or can handle mass trans-
port in the presence of external perturbations (see Ref. 8
for an application of LDA in nonequilibrium when there
is no mass transport).

A similar problem has existed within band structure
calculations for quite some time. The generalized gra-
dient approximation (GGA) was introduced there to try
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to take into account some of this nonlocal behavior [9].
One can think of it, in some sense, as a Taylor series ex-
pansion in “inhomogeneity” with the LDA as the lowest-
order term, and gradient corrections as the next term in
the hierarchy. In this work, we extend this GGA concept
to solving for the Green’s functions of inhomogeneous
systems that takes into account the local inhomogene-
ity about a given lattice site. While the initial formu-
las we derive will hold for all computations, we quickly
adopt them to the DMFT approach, where we assume
the self-energy is local. Another way of describing this
calculation is that both the LDA and the GGA approx-
imate the step where we calculate the diagonal of the
inverse of a |Λ| × |Λ| matrix. In the LDA, we replace
the diagonal in the inverse matrix by one matrix element
for the whole diagonal and using Fourier transformation
to compute the inverse. In the GGA, we set up a self-
consistent equation for the diagonal of the inverse that
involves employing the LDA local and nearest-neighbor
Green’s functions, the local self-energy and GGA Green’s
function. Other forms of extending the LDA to a GGA
have also been proposed. For example, see Ref. 10.

One can view this work as providing a rigorous expan-
sion about the LDA and demonstrating why it works so
well in the normal state. It also provides, in principle,
a path toward systematically improving the LDA, but,
as we show below, it is unlikely one will achieve high
accuracy at low temperatures with any variant of this
approach. Hence, other approaches, which take into ac-
count the sparsity of the system, are likely to be required
for even more accurate solutions of these problems. But,
when the LDA and GGA agree, this is a strong indica-
tion that the LDA is accurate for this set of parameters,
and this can be a quite useful application of the GGA
approach.

The formalism is developed in Sec. II for the
two models we consider in this work: the spinless
fermionic Falicov-Kimball model and the fermionic Hub-
bard model. In Sec. III, we present the numerical results
for ordered phases in mixtures and for the entropy in the
Hubbard model. Conclusions and outlooks are given in
Sec. IV.

II. FORMALISM

In order to determine the properties of a many-body
quantum system, we often employ a Green’s function-
based method. The imaginary-time Green’s function is
defined by

Gi,j;σ(τ) = −Tr

{
e−βH

Z
Tτ ciσ(τ)c†jσ(0)

}
. (1)

Here, H is the Hamiltonian, Z = Tr exp[−βH] is the
partition function, β = 1/T is the inverse tempera-
ture, −β ≤ τ ≤ β is the imaginary time and Tτ is
the time-ordering operator, indicating that the operators
are ordered from right to left in increasing time. The

fermionic creation (annihilation) operators are c†iσ (ciσ)
and O(τ) denotes an operator in the Heisenberg repre-
sentation O(τ) = exp[Hτ ]O exp[−Hτ ]. The index i (j)
is the lattice site and σ is the z-component of the spin
of the fermion (which is dropped for the spinless Falicov-
Kimball model). We will show the explicit Hamiltonians
below.

We also can define the Green’s function for real times,
and here, we will define the retarded Green’s function,
which satisfies

GRi,j;σ(t) = −iθ(t)Tr

{
e−βH

Z
{ciσ(t), c†jσ(0)}+

}
, (2)

where θ(t) is the Heaviside unit-step function, {. . . , . . .}+
denotes the anticommutator, and the Heisenberg rep-
resentation for an operator in real time is O(t) =
exp[iHt]O exp[−iHt]. We typically work with the Fourier
transform of the retarded Green’s function, which is

GRi,j;σ(ω) =

∫ ∞
0

dteiωtGRi,j;σ(t). (3)

The derivation of the GGA formalism starts with the
Dyson equation for the retarded Green’s function with
the inhomogeneous Hamiltonian on a lattice Λ (with |Λ|
lattice sites), which includes a (global) chemical potential
(µ), a local potential for lattice site i (Vi with µi = µ−Vi
the local chemical potential), a hopping between lattice
sites i and j for spin σ (−ti,j;σ), and a self-energy corre-
sponding to sites i and j [ΣRi,j;σ(ω)]:

|Λ|∑
k=1

[
(ω + µi)δi,k + ti,k;σ − ΣRi,k;σ(ω)

]
GRk,j;σ(ω) = δi,j ,

(4)
which has an obvious modification on the imaginary axis
when Matsubara frequencies are used instead of real fre-
quencies. We also want to investigate the corresponding
equation in the bulk, which would be used for the LDA
approach. To do this, we need to introduce some nota-
tion. For simplicity, we will assume the hopping matrix
is homogeneous (this is not required, but makes the no-
tation much less complex), so that −ti,j;σ is the same
for the inhomogeneous system and for the homogeneous
ones used to develop the LDA (for simplicity, we also
assume the hopping is between nearest neighbors only,
hence −ti,j;σ = −ti,i+δ;σ = −tσ for δ a nearest-neighbor
translation and i+ δ a schematic notation indicating the
neighbor of site i in the δ direction). We then denote
the (local) chemical potential for the homogeneous sys-

tem by µ̄
(I)
j = µ − VI for all j ∈ Λ. To be clear, here

the index j is the lattice site, but µ̄
(I)
j doesn’t actually

depend on the lattice site j; we have set it globally equal
to the value the inhomogeneous problem has at site I.
If we write out the Dyson equation for the LDA Green’s
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function corresponding to site I, it satisfies

|Λ|∑
k=1

[
(ω + µ̄

(I)
i )δi,k + ti,k;σ − Σ

LDA(I)
i,k;σ (ω)

]
G
LDA(I)
k,j;σ (ω)

= δi,j , (5)

where we suppress the R superscript for retarded. This
system is actually translationally invariant and can be
solved exactly in momentum space (and then Fourier
transformed back to real space).

Since the right hand sides of Eqs. (4) and (5) are equal,
so are the corresponding left hand sides. First, we pick
i = j = I and solve for the local Green’s function (by
equating the corresponding left hand sides) to find

GI,I;σ(ω) =
ω + µ̄

(I)
I − Σ

LDA(I)
I,I;σ (ω)

ω + µI − ΣI,I;σ(ω)
G
LDA(I)
I,I;σ (ω)

+
1

ω + µI − ΣI,I;σ(ω)
(6)

×

{∑
δ

tI,I+δ;σ

[
G
LDA(I)
I+δ,I;σ (ω)−GI+δ,I;σ(ω)

]
+
∑
k 6=I

[
ΣI,k;σ(ω)Gk,I;σ(ω)− Σ

LDA(I)
I,k;σ (ω)G

LDA(I)
k,I;σ (ω)

]}
.

Here, we used the notation δ to denote a nearest-neighbor
translation vector and I + δ to denote the lattice site
corresponding to the translation by the nearest-neighbor
translation vector δ from site I. For the next equation,
we choose i = I + δ, j = I and the LDA is evaluated
with respect to site I + δ. We then solve for GI+δ,I;σ(ω),
which yields

GI+δ,I;σ(ω) =
ω + µ̄

(I+δ)
I+δ − Σ

LDA(I+δ)
I+δ,I+δ;σ (ω)

ω + µI+δ − ΣI+δ,I+δ;σ(ω)
G
LDA(I+δ)
I+δ,I;σ (ω) +

1

ω + µI+δ − ΣI+δ,I+δ;σ(ω)
(7)

×
{∑

δ′

tI+δ,I+δ+δ′;σ

[
G
LDA(I+δ)
I+δ+δ′,I;σ(ω)−GI+δ+δ′,I;σ(ω)

]
+
∑
k 6=I+δ

[
ΣI+δ,k;σ(ω)Gk,I;σ(ω)− Σ

LDA(I+δ)
I+δ,k;σ (ω)G

LDA(I+δ)
k,I;σ (ω)

]}
.

For the GGA derivation, we want to restrict the terms in our self-consistent equations to involve only on-site terms
and nearest-neighbor terms, so we drop terms from Eq. (7) that involve second neighbors or further. This implies
δ′ = −δ and k = I only, which gives

GI+δ,I;σ(ω) =
ω + µ̄

(I+δ)
I+δ − Σ

LDA(I+δ)
I+δ,I+δ;σ (ω)

ω + µI+δ − ΣI+δ,I+δ;σ(ω)
G
LDA(I+δ)
I+δ,I;σ (ω) +

1

ω + µI+δ − ΣI+δ,I+δ;σ(ω)
(8)

×
{
tI+δ,I;σ

[
G
LDA(I+δ)
I,I;σ (ω)−GI,I;σ(ω)

]
+ ΣI+δ,I;σ(ω)GI,I;σ(ω)− Σ

LDA(I+δ)
I+δ,I;σ (ω)G

LDA(I+δ)
I,I;σ (ω)

}
.

Restricting k = I + δ in Eq. (6), and substituting in Eq. (8), produces (after some significant algebra and suppressing
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retarded superscripts and the σ subscript)

GI,I(ω) =
ω + µI − Σ

LDA(I)
I,I (ω)

ω + µI − ΣI,I(ω)
G
LDA(I)
I,I (ω) +

1

ω + µI − ΣI,I(ω)−
∑
δ

[tI,I+δ+ΣI,I+δ(ω)][tI+δ,I−ΣI+δ,I(ω)]
ω+µI+δ−ΣI+δ,I+δ(ω)

×

{∑
δ

tI,I+δ

[
G
LDA(I)
I+δ,I (ω)−

ω + µI+δ − Σ
LDA(I+δ)
I+δ,I+δ (ω)

ω + µI+δ − ΣI+δ,I+δ(ω)
G
LDA(I)
I+δ,I (ω)

]

−
∑
δ

[tI,I+δ + ΣI,I+δ(ω)]
[
tI+δ,I − Σ

LDA(I+δ)
I+δ,I (ω)

]
ω + µI+δ − ΣI+δ,I+δ(ω)

[
G
LDA(I+δ)
I,I (ω)−

ω + µI − Σ
LDA(I)
I,I (ω)

ω + µI − ΣI,I(ω)
G
LDA(I)
I,I (ω)

]

+
∑
δ

[
Σ
LDA(I+δ)
I+δ,I (ω)G

LDA(I+δ)
I+δ,I (ω)−

ω + µI − Σ
LDA(I)
I,I (ω)

ω + µI − ΣI,I(ω)
ΣI+δ,I(ω)G

LDA(I)
I+δ,I (ω)

]

+
∑
δ

[tI,I+δ + ΣI,I+δ(ω)]
[
Σ
LDA(I+δ)
I+δ,I (ω)− ΣI+δ,I(ω)

]
ω + µI+δ − ΣI+δ,I+δ(ω)

ω + µI − Σ
LDA(I)
I,I (ω)

ω + µI − ΣI,I(ω)
G
LDA(I)
I,I (ω)

}
. (9)

In particular, if we examine this equation for a spa-
tially uniform system, we have that the LDA self-energy
equals the full self-energy, and the equation reduces to
G=GLDA, as it must.

Note that this result depends both on the local and the
nearest-neighbor self-energy. One can extract a nearest-
neighbor self-energy from the LDA solution, because the
local problem is mapped to a homogeneous lattice, but
then one must decide which nonlocal self-energy to use,
the one extracted from the Ith site or from the Jth site.
One could average the nonlocal self-energies extracted
from each site via

ΣI,J(ω) =
1

2

[
Σ
LDA(I)
I,J (ω) + Σ

LDA(J)
I,J (ω)

]
, (10)

as the most unbiased way to proceed, but the problem
becomes more complex due to these types of ambiguities.
We will not pursue this discussion further here.

For this work, we focus on the IDMFT approach,
so we have only local self-energies, and hence we have
ΣI,J(ω) = 0. This result produces a great simplification,
and we find

GI,I(ω) =
ω + µI − Σ

LDA(I)
I,I (ω)

ω + µI − ΣI,I(ω)
G
LDA(I)
I,I (ω) +

1

ω + µI − ΣI,I(ω)−
∑
δ

tI,I+δtI+δ,I
ω+µI+δ−ΣI+δ,I+δ(ω)

×

{∑
δ

tI,I+δ

[
G
LDA(I)
I+δ,I (ω)−

ω + µI+δ − Σ
LDA(I+δ)
I+δ,I+δ

ω + µI+δ − ΣI+δ,I+δ(ω)
G
LDA(I)
I+δ,I (ω)

]

−
∑
δ

tI,I+δtI+δ,I
ω + µI+δ − ΣI+δ,I+δ(ω)

[
G
LDA(I+δ)
I+δ,I+δ (ω)−

ω + µI − Σ
LDA(I)
I,I (ω)

ω + µI − ΣI,I(ω)
G
LDA(I)
I,I (ω)

]}
(11)

within the GGA-DMFT approach. For a spatially uniform system, we find G=GLDA, same as before.

The LDA-DMFT algorithm is as follows: (1) determine
all of the local chemical potentials {µi = µ− Vi} for the
different lattice sites; (2) start with a guess for the LDA
self-energy on each lattice site (usually zero); (3) solve |Λ|
copies of the bulk problem for the LDA self-energy and
LDA Green’s function for each different value of µi via

the standard homogeneous DMFT algorithm [(i) com-
pute the local Green’s function G from the self-energy Σ
by summing over all momenta; (ii) extract the effective
medium (or host Green’s function) G0 = 1/(1/G + Σ);
(iii) solve the impurity problem for the given effective
medium to construct the new G; (iv) extract the new
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self-energy from the impurity Dyson’s equation and the
old effective medium and new Green’s functions; (v) re-
peat (i-iv) until the equations reach a fixed point]; (4) use
the new LDA self-energy on each lattice site to initialize
part (3) again and iterate until one reaches a fixed point;
(5) compute the total density of particles and compare to
the target density—if correct, then stop, if incorrect, up-
date µ and repeat the process. Solving the LDA problem
will produce the self-energies and the Green’s functions
for all of the different lattice sites in the LDA approx-
imation. These are then input into the GGA calcula-
tion, which involves the following steps; (1) start with a
guess for the self-energy given by the corresponding LDA

solution—ΣI,I(ω) = Σ
LDA(I)
I,I (ω); (2) compute the new

local Green’s function G at each site from Eq. (11) and
the fixed LDA results; (3) compute the effective medium
for the impurity problem via G0 = 1/(1/G+Σ); (4) solve
the impurity problem in the given effective medium; (5)
determine the new self-energy from the impurity Dyson’s
equation, the old effective medium and the new Green’s
function; (6) extract the self-energy via Dyson’s equation;
(7) iterate (2-6) until converged. These solutions are the
GGA-DMFT solutions to the problem. Note that this
algorithm works for either real or imaginary frequencies.
Note further that the chemical potential should be ad-
justed to give the correct filling for the GGA. This implies
that the LDA results employed within the GGA solution
may be at the wrong chemical potential. This causes no
problems with the formalism, but one should not com-
pare the LDA solutions at this wrong chemical potential
to the GGA solutions, rather one should compare the
LDA and GGA solutions at the same total particle num-
ber.

A. Application to the Falicov-Kimball model

The spinless Falicov-Kimball model is given by the fol-
lowing Hamiltonian [11]

HFK = −
∑
ij

ti,jc
†
i cj−

∑
i

µic
†
i ci+

∑
i

Efi wi+U
∑
i

c†i ciwi

(12)
where µi = µ − Vi is the local chemical potential (and

Vi is the harmonic trap), Efi = Ef + V fi is the local

site energy for the static particles with V fi the harmonic
trap potential for the heavy particles, U is the on-site

interaction between heavy and light particles, c†i (ci ) are
the fermionic creation and annihilation operators for the
mobile electrons and wi = 0 or 1 is the heavy particle
number operator. This Hamiltonian can be thought of as
the Hubbard model Hamiltonian with a spin-dependent
hopping and the hopping for the down particles set to
zero.

The dynamical mean-field theory for the Falicov-
Kimball model is exactly solvable [12, 13]. We usually
solve the problem on the imaginary axis to determine
the chemical potentials, and the fillings of the different

particles on the different sites. Many other quantities can
be determined from these solutions, like the total energy,
kinetic energy, and so on; but some observables, like the
entropy, require results on the real frequency axis, and so
one would then repeat the above procedure, this time for
the real frequency axis, to calculate those observables. In
that case, the chemical potentials would be set from the
imaginary axis calculations, and the real-axis calculations
would be done primarily to find the spectral functions,
and quantities that can be derived from them.

One technical element for the Falicov-Kimball model
on the imaginary axis, is that it is useful to sum the tails
of series using exact sum rules for summations of Green’s
functions. These sum rules can be found from the mo-
ments of the Green’s functions. We use this technique to
improve the accuracy of our calculations when we deter-
mine the filling on each lattice site. For all of the prop-
erties reported here with the Falicov-Kimball model, we
focused entirely on the imaginary-axis results—no real-
axis calculations were needed.

Because we will be comparing these LDA-DMFT and
GGA-DMFT results for the Falicov-Kimball model to a
complete inhomogeneous DMFT calculation, we cannot
make the system size too large. We work primarily with
about 10,000 lattice sites and total particle number equal
to 1350 (625 for each species). This system is slightly
smaller than a typical experimental system, but only by
a factor of four or so. Note also that earlier work already
showed that the IDMFT solution agrees well with the
Monte Carlo solution [14].

B. Application to the Fermi Hubbard model

The Hubbard model Hamiltonian is [15]

HH = −
∑
ijσ

ti,j;σc
†
iσcjσ−

∑
i

µic
†
iσciσ +U

∑
i

c†i↑ci↑c
†
i↓ci↓

(13)
where we have mobile up and down spin particles now.

We employ two different techniques to solve this prob-
lem. One is a strong-coupling perturbation theory ap-
proach (through second-order in the hopping divided by
the interaction), which has been used earlier to determine
the inhomogeneous distribution of the density of the par-
ticles and the entropy per particle of the system [16]. We
do not repeat the derivation of those formulas here.

We also use a continuous-time quantum Monte Carlo
approach with a weak-coupling implementation. This ap-
proach uses stochastic sampling to sum a series of Feyn-
man diagrams in imaginary-time which then solves the
problem [17, 18]. The algorithm sums over a random
collection of diagrams at different orders, and adjusts the
order of the diagram based on importance sampling via a
Metropolis strategy. In the implementation that we em-
ploy, the approach is most accurate at high-temperature
and small interaction strengths. As both the temperature
is reduced and the interaction is increased, the average
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FIG. 1: (Color on-line.) (Upper row) Radial density for T=0.5. Blue is for heavy particles, red is for light particles. From left
to right, we have the (a) LDA, (b) GGA, and (c) IDMFT results. (Lower row) Radial density for T=0.15. Blue is for heavy
particles, red is for light particles. From left to right, we have the (d) LDA, (e) GGA, and (f) IDMFT results.

order of the calculation increases, and the integration
range in imaginary-time also increases (which requires
more sampling). This technique is currently believed
to be the most accurate state-of-the-art approach for
determining properties that can be calculated at finite-
temperatures using Green’s functions evaluated along the
imaginary-time axis. These include the particle-density
at each lattice site, the double occupancy, the entropy-
per-particle, and the order parameter if the system goes
into an ordered antiferromagnetic phase. Details for
how this algorithm is implemented can be found else-
where. [19]

Here, we focus on the density distribution and the cal-
culation of the total energy of the system. Starting from
high temperature, we can then integrate to find the en-
tropy via the relation [20]

S(β) = S(0) +

∫ β

0

β̄
dE(β̄)

dβ̄
dβ̄

≈ S(β′) +
1

2
[E(β)− E(β′)](β + β′), (14)

for β′ = β −∆β with a small chosen step size ∆β, with
S(0) the infinite-temperature entropy. This result fol-
lows from the thermodynamic relation ∂TE = T∂TS.
We start at a high temperature with hard-wall bound-
ary conditions, which has a limiting form for the high-
temperature entropy and then lower the temperature
in steps to accumulate the entropy for lower tempera-
tures. One must be careful to properly renormalize the
entropy per lattice site for a lattice calculation into an

entropy per particle for the trapped system. Since the
strong-coupling approximation is excellent at high tem-
peratures, it provides a useful benchmark for the LDA-
DMFT and GGA-DMFT when we are at high temper-
ature. (In the following, we sometimes drop the DMFT
when we describe the LDA-DMFT and GGA-DMFT ap-
proximations, for simplicity).

Because these solution methods are highly optimized,
they allow us to directly solve the problem on lattices
with 8 million lattice sites and up to 300,000 particles
just like in the experimental systems. The scaling of the
code with problem size is discussed elsewhere. [21]

III. RESULTS

A. Falicov-Kimball model

We perform a series of test calculations on the Falicov-
Kimball model to examine the robustness of the LDA-
DMFT and GGA-DMFT approaches. The system we
chose to examine is a two-dimensional lattice with |Λ| =
101 × 101 = 10, 201. This system is large enough that
the density of particles approaches zero at the boundary
at high temperature where T/t = 0.5, and stays within
the boundary for all lower T . We have 625 light and
625 heavy particles and choose UFK/t = 5, so we can
compare to work done previously [14]. The trap potential
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FIG. 2: (Color on-line.) (Upper row) Radial density for T=0.1. Blue is for heavy particles, red is for light particles. From left
to right, we have the (a) LDA, (b) GGA, and (c) IDMFT results. (Middle row) Light particle density for T=0.1 (red). The
size of the symbol is proportional to the density of the light particles at that site. From left to right, we have the (d) LDA, (e)
GGA, and (f) IDMFT results. (Lower row) Heavy particle density for T=0.1 (blue). The size of the symbol is proportional to
the density of the heavy particles at that site. From left to right, we have the (g) LDA, (h) GGA, and (i) IDMFT results.

for the heavy fermions is written as

V
(f)
i = t

(
h̄ω(f)

2t

)2 |Ri|2

a2
(15)

where the f superscript is used for the heavy parti-
cles and ω denotes the trap frequency. Here, we define
α(f) = 2t/h̄ω(f) as the trap parameter, which is set equal
to 12.9 for the light particles and 30 for the heavy par-
ticles. At low temperatures, this system shows phase
separation, where the light particles concentrate at the

center and the heavy particles concentrate in a ring on
the periphery of the system. Because this system has
a homogeneous order parameter in the phase-separated
state, it should be describable by both the LDA and the
GGA more accurately than any other phase transition
that partially breaks translational symmetry. Hence, it
is a useful test case to examine. Note that energies are
in units of t and entropy per particle in units of kB when
not explicitly included.

We begin by showing radial profiles for the LDA, the
GGA, and the IDMFT results at the same temperature.
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FIG. 3: (Color on-line.) (Upper row) Radial density for T=0.05. Blue is for heavy particles, red is for light particles. From left
to right, we have the (a) LDA, (b) GGA, and (c) IDMFT results. (Middle row) Light particle density for T=0.05 (red). The
size of the symbol is proportional to the density of the light particles at that site. From left to right, we have the (d) LDA, (e)
GGA, and (f) IDMFT results. (Lower row) Heavy particle density for T=0.05 (blue). The size of the symbol is proportional
to the density of the heavy particles at that site. From left to right, we have the (g) LDA, (h) GGA, and (i) IDMFT results.

In Fig. 1, we plot the radial profiles for the light particles
(red) and the heavy particles (blue) for T = 0.5 (upper)
and T = 0.15 (lower). Across each row, we show the
(a and d) LDA, the (b and e) GGA, and the (c and
f) full IDMFT results. In all the cases, the difference
between these curves is difficult to see with the naked
eye. Indeed, in the normal state, before phase separation
sets in, all results agree perfectly, indicating the accuracy
of the LDA, and the fact that corrections are very small.

On the other hand, as the temperature is lowered
further, the system starts to enter the phase-separated

state, and the bulk systems also see density-wave or-
dered phases, the most prominent being the checkerboard
phase. In our results, we can see these effects clearly. We
start to see disagreements between the three methods
and even the prediction of the wrong ordered phases!

Start with T = 0.1, shown in Fig. 2, where we first see
the effects of the phase separation. In the top row, we
plot the radial density profiles for the three different ap-
proximations. Unlike at higher temperature, where the
curves were all essentially identical, we see disagreement
between all three methods here. The fast oscillations in
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FIG. 4: (Color on-line.) (Upper row) Radial density for T=0.02. Blue is for heavy particles, red is for light particles. From left
to right, we have the (a) LDA, (b) GGA, and (c) IDMFT results. (Middle row) Light particle density for T=0.02 (red). The
size of the symbol is proportional to the density of the light particles at that site. From left to right, we have the (d) LDA, (e)
GGA, and (f) IDMFT results. (Lower row) Heavy particle density for T=0.02 (blue). The size of the symbol is proportional
to the density of the heavy particles at that site. From left to right, we have the (g) LDA, (h) GGA, and (i) IDMFT results.

the radial profile for the GGA case, occur due to an or-
dering in the checkerboard phase at the edge of the region
where the light particles give way to the heavy particles
(see middle and lower row). Note that the GGA also
shows the beginnings of a faceted stable region instead of
a circular region. Of course, the IDMFT solution doesn’t
show these features, so they are an artifact of the GGA
solution.

It is easy to understand what is happening here. Both
the LDA and the GGA are predicting too tight a com-
pression of the heavy particles around the light ones. The

result is that the transition between the two occurs too
soon, and ends up lying very close to the regions where
the checkerboard phase is stable near half-filling. For the
LDA, it doesn’t quite look like the checkerboard is stabi-
lized (although there might be a small modulation of the
charge), while the GGA has significant regions with ob-
vious checkerboard order. Because the IDMFT solution
is somewhat less dense, it stays away from simultaneous
half-filling for both particles, and hence does not display
the density-wave order.

To understand this behavior further, we lower the tem-
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perature even more. The results at T = 0.05 are shown
in Fig. 3. Surprisingly, here we see the checkerboard
density-wave ordering is far reduced, and appears only on
the boundary regions of the heavy particle rings. Looking
closely at the LDA solution, we can see the beginnings
of some organization of facets, with the flat regions in
the inner and outer circles for the heavy particle distri-
butions. In the GGA, the behavior is somewhat reduced.
It is absent in the IDMFT solution. One might ask, how
can such facets form at all in the LDA or GGA, since
the potential profiles have circular symmetry, but a lit-
tle thought shows that if there is any kind of density-
wave order, then one might not be able to fit the pattern
of the density wave into a circular shape, and hence it
can slightly alter the shape of the density distributions,
yielding behavior that resembles facets. Of course, the
IDMFT can naturally pick up facets if they are energet-
ically favorable, which they clearly are not at this tem-
perature.

Finally, we go to the lowest temperature studied here
T = 0.02 in Fig. 4. Here the LDA shows an innermost
phase separated region containing light particles, sur-
rounded by a phase-separated ring containing heavy ones,
followed by a checkerboard region, where both species
interpenetrate before the density gets small at large dis-
tances. The GGA appears to have a small amount of
disorder in the checkerboard phase, which perhaps could
be inferred as an indication that it is trying to destabi-
lize the checkerboard phase. But otherwise, it resembles
the LDA results quite closely, with the exception that
it shows more faceting, as one might expect because it
has some sensitivity to nonlocal ordering effects. The
IDMFT results, on the other hand, continue to show only
phase separation, and they now start to build up facets
as one might expect at low temperatures.

Hence, the results we see for the Falicov-Kimball
model, which represents mixtures of atoms with differ-
ent hoppings on an optical lattice (one much bigger than
the other), show that at high temperature, the LDA is
an excellent approximation, but it rapidly breaks down
as one lowers the temperature and enters the ordered
phases. This occurs, primarily, because neither the LDA
nor the GGA can enforce global constraints and hence
favor density-wave ordering much more strongly than it
occurs in the real system. The IDMFT results, on the
other hand, evolve smoothly and, because they invoke
global constraints, they show less density-wave ordering
patterns. One can also see the stability of the half-filled
checkerboard phase in the bulk is so strong that it falsely
introduces that phase into the LDA and GGA results,
even though they are not present in the IDMFT results.
There is a delicate balance between local, or nearly lo-
cal stability and global stability effects that determines
the correct phases in the trap, and these effects require
more complex algorithms that properly impose the global
constraints, rather than techniques that only sense small
variations on the scale of the nearest neighbors.

B. Hubbard model

We next turn to the Hubbard model, where we apply
our results to the experimental results of Refs. 22 and 23.
In that work, a strong-coupling perturbation theory was
employed to determine the entropy per particle of fermion
systems with different interaction strengths and different
particle densities (the assumption was that under an adi-
abatic turning on of the optical lattice, the entropy per
particle should be the same for all particle densities).
Furthermore, it was shown that the entropy per particle
appeared to be nearly constant and fell into a reasonable
range in between that of the initial fermionic gas (prior
to turning on of the lattice) and the final fermionic gas
(after dropping the lattice), where it heated during the
experiment due to diabatic and other effects. In addition,
all but the lowest U cases worked very well for determin-
ing a single entropy per particle for the range of differ-
ent particle densities. But for the smallest interactions,
a case where the strong-coupling perturbation theory is
expected to be least accurate, and particularly for low
densities, one could see significant deviations of the plots
of the double occupancy versus particle number.

We investigate this problem further here by compar-
ing the strong-coupling approach to a more accurate but
approximate IDMFT calculation based on the LDA and
GGA approximations [since the system is too large to be
studied with the IDMFT because it requires about ten
million lattice sites for the highest number of fermions
(about 300,000)]. The issue for IDMFT lies not in the
problem with solving the impurity problem for so many
lattice sites, but it lies in the problem of finding the diag-
onal of the inverse of the sparse matrix which gives G−1.
There are techniques like an iterative low-rank Lanczos-
based method [24] that could be applied in this case, but
the implementation turns out to be difficult in finding the
appropriate starting point without requiring the inverse
of a rather large submatrix block.

Because the bulk DMFT solution is rather fast with
the continuous time quantum Monte Carlo algorithm, it
is feasible to do the LDA-DMFT and GGA-DMFT cal-
culations on a high-performance computer. We took the
parameters for the system from experiment. The mass
of the K40 atom is 39.964 a.u. and the lattice spacing
is 532 nm. Energies are measured in terms of the recoil
energy Er for a potassium atom in a 1064 nm laser. Us-
ing a lattice depth of 7Er, the hopping is 174 Hz, and
the trap frequencies for the x, y, and z, axes are 54.1 Hz,
50.1 Hz, and 129.1 Hz, respectively. We use these precise
trap frequencies, which create a slightly anisotropic trap.
The trap potential energy is written as

1

2
m
(
ω2
xx

2 + ωyy
2 + ω2

zz
2
)

= h̄t

(
a2i2

R2
x

+
a2j2

R2
y

+
a2k2

R2
z

)
(16)

where we introduced the trap lengths Rα given by Rx =
10.3a, Ry = 11.1a and Rz = 4.3a. We choose the lat-
tice to initially be a cube of 250 lattice sites on each
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edge. Next, we compute the maximal potential at the
point (0, 125a, 0) which is at the center of the cube face
where the potential grows the slowest, and then discard
all points in the lattice with a potential energy due to
the trap that is larger than this cutoff. The net num-
ber of lattice sites used was then 1,964,881. But we re-
duced these lattice sites into equivalence classes due to
the three reflection planes, which involved 253,230 equiv-
alence classes for different lattice sites (in an irreducible
wedge). This is the number of lattice sites for which we
needed to solve the impurity problem with the QMC al-
gorithm during each step of the iteration. This process
is easy to parallelize despite the fact that at low temper-
atures the times to obtain solutions for different fillings
could vary by more than an order of magnitude. This is
done simply by employing a master-slave algorithm and
dividing the work according to “first finished gets a new
job”. The code scaled linearly on up to 43,500 cores.
About 15 million cpu hours were required to run these
codes on a Cray XE6. [21]

In Fig. 5, we plot the radial distribution for different
temperatures with a total number of N = 61455 par-
ticles. At high temperature, the distribution is rather
flat, and then as T is lowered, the peak in the density
at the center of the trap sharpens and starts to show a
kink at half-filling due to the strong-coupling physics. In
Fig. 6, we show the similar plot for N = 332455,where
the strong-coupling behavior becomes more pronounced
at low T . The LDA curves are completely smooth in both
plots. This is because the LDA depends only on the value
of the potential at the particular position in space. The
GGA results, especially those at low T , show more vari-
ations due to the increased anisotropy that sets in in the
cloud as the temperature is lowered, and the fact that the
GGA results depend not only on the potential, but on the
environment of the neighbors. These fluctuations can be
seen by the thickening of the lines and the rapid oscil-
lations in the data. The occurrence of those oscillations
is an artifact of how we chose to plot the data and does
not represent a loss of continuity in the particle density
for the system when viewed as a function in space. This
is the simplest way to summarize the three-dimensional
data.

In the experiment, systems of up to 300,000 particles
were cooled down to an entropy per particle of about
1.3 kB . Two different hyperfine states of K were em-
ployed for the spin-up and spin-down states of the Hub-
bard model. The optical lattice was then turned on, ex-
periments performed, and then the lattice was dropped.
The ending entropy per particle was around 2.5 kB . If
we assume the entropy is held constant during the ex-
periment in the trap, then we would immediately guess
that the entropy per particle is halfway between these
two limits or 1.9 kB , but there might be some variations
depending on the interactions and on whether both the
turning on and turning off of the lattice heat the system
in the same fashion. Hence, we would like to be able to
independently assess the value of the entropy per particle
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FIG. 5: (Color on-line.) Density of particles for N = 61455
(a) LDA and (b) GGA for four different temperatures as la-
beled in the figure. Note how the system must be as large
as it is to enclose all of the particles at high temperature and
how at lower T we start to see the kink in the distribution due
to strong-coupling physics. The horizontal axis is an effective
radius derived from the potential energy and using the geo-
metric mean of the trap lengths. This allows all of the data
for the 3d system to be plotted on one plot.

in the optical lattice. This was done by plotting the dou-
ble occupancy versus the total number of particles and
fitting to isoentropic curves for the double occupancy ver-
sus the number of particles. The latter were found via a
strong coupling approach. Excellent results were found
for U = 24.6t, 19.2t, and 14.4t, but when the case with
U = 8.4t was examined, there were clear deviations be-
tween the experimental data and the isoentropic curves
at low particle numbers. Hence, we choose to examine
this case with the LDA and GGA approaches employing
a weak-coupling continuous-time QMC solver instead of
the strong-coupling solver.

Numerically, we achieve this by picking a fixed num-
ber of particles and setting U = 8.4t. Then we start
at high temperature and use the LDA or GGA algo-
rithms to compute the total number of particles for a
given chemical potential. This is then adjusted until the
total number of particles agrees with the target value;
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FIG. 6: (Color on-line.) Density of particles for N = 332455
(a) LDA and (b) GGA for four different temperatures as la-
beled in the figure. Note how the system must be as large
as it is to enclose all of the particles at high temperature and
how at lower T we start to see the kink in the distribution due
to strong-coupling physics. The horizontal axis is an effective
radius derived from the potential energy and using the geo-
metric mean of the trap lengths. This allows all of the data
for the 3d system to be plotted on one plot.

because the LDA and GGA results are so close here, we
use the same global chemical potential for both, which
results in a slightly different total number of particles for
each. Then we extract the double occupancy and the
total energy. By using the integral formula for the en-
tropy, we also determine that for each temperature. We
then reduce the temperature and repeat. In our calcula-
tions, we typically used about 12 different temperatures
to establish a fine grid of entropy versus T , fraction of
doubly occupied particles d versus T , and µ(T ). This
is then repeated for the different experimental densities
(15 different total number of particles chosen to match
experiment), and the data is then interpolated to de-
termine the isoentropic curves. These curves are then
compared to the experimental data. As an example, we
show a series of calculations for the target particle num-
ber N = 174, 518 in Tables I and II. One can see that the
two calculations are quite close to each other, but they

deviate rather significantly from the strong-coupling ap-
proach at low temperatures.

T/t µ N/N0 d E/N SLDA/N Sstrong/N

20.0 -17.3833 23.518 0.0809 30.542 3.474 3.474

15.0 -5.4714 23.536 0.1045 25.177 3.161 3.160

10.0 4.6824 23.555 0.1477 19.139 2.658 2.658

7.0 9.5722 23.556 0.1918 15.655 2.235 2.231

5.0 12.1948 23.576 0.2356 13.621 1.886 1.869

3.3 13.9113 23.591 0.2884 12.227 1.538 1.493

2.5 14.5775 23.614 0.3242 11.685 1.348 1.267

2.0 14.9092 23.609 0.3507 11.341 1.193 1.112

1.5 15.1753 23.620 0.3807 11.097 1.051 0.948

1.0 15.3812 23.636 0.4156 10.914 0.898 0.765

0.8 15.4460 23.642 0.4311 10.863 0.841 0.686

TABLE I: Data employed in the LDA calculation for N =
174, 518. N0 = 7, 393 is the characteristic particle number,
d is the fraction of doubly occupied particles, E/N is the
total energy per particle in units of t, and S/N is the en-
tropy per particle in units of kB for the LDA and strong-
coupling approximations. We have U/t = 8.4. Note how
the strong-coupling approximation agrees well with the LDA-
DMFT-QMC calculation until the temperature becomes low
enough that they start to deviate.

T/t µ N/N0 d E/N SGGA/N Sstrong/N

20.0 -17.3833 23.529 0.0808 30.555 3.474 3.474

15.0 -5.4714 23.545 0.1044 25.186 3.161 3.160

10.0 4.6824 23.561 0.1477 19.139 2.657 2.658

7.0 9.5722 23.572 0.1917 15.656 2.234 2.231

5.0 12.1948 23.580 0.2355 13.622 1.885 1.869

3.3 13.9113 23.598 0.2882 12.230 1.537 1.493

2.5 14.5775 23.617 0.3241 11.686 1.347 1.267

2.0 14.9092 23.607 0.3507 11.340 1.191 1.112

1.5 15.1753 23.619 0.3808 11.097 1.049 0.948

1.0 15.3812 23.633 0.4158 10.913 0.897 0.765

0.8 15.4460 23.637 0.4314 10.861 0.838 0.686

TABLE II: Data employed in the GGA calculation for N =
174, 518. N0 = 7, 393 is the characteristic particle number,
d is the fraction of doubly occupied particles, E/N is the
total energy per particle in units of t, and S/N is the entropy
per particle in units of kB for the LDA and strong-coupling
approximations. We have U/t = 8.4. Note how the GGA and
LDA results are nearly identical.

Since the strong-coupling calculation is much more ef-
ficient, we compare our results to the strong-coupling
results. We found that the entropy versus T for the
GGA solution starts to deviate from strong-coupling re-
sults (with the DMFT results showing a higher entropy
per particle than the strong-coupling results) at temper-
atures in the range of 2.5t ≤ T ≤ 3.3t for both high and
low densities of particles (see Fig. 5 of Ref. 21 for a plot
and look at the two tables). This is a little higher than



13

0 10 20 30 40 50
Characteristic density N/N0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Pr

ob
ab

ili
ty

 to
 b

e 
do

ub
ly

 o
cc

up
ie

d 
d(

N
) LDA (a)

S/N=1.3kB

S/N=2.14kB

S/N=2.5kB S/N=2.34kB

S/N=2.24kB

0 10 20 30 40 50
Characteristic density N/N0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pr
ob

ab
ili

ty
 to

 b
e 

do
ub

ly
 o

cc
up

ie
d 

d(
N

) GGA (b)

S/N=1.3kB

S/N=2.14kB

S/N=2.5kB S/N=2.34kB

S/N=2.24kB

FIG. 7: (Color on-line.) Double occupancy versus particle
number for experiment (symbols with error bars) and isoen-
tropic lines with the entropy per particle equal to the most-
likely fit interval 2.14, 2.24, or 2.34 kB and the extreme values
at 1.3 and 2.5 kB for (a) LDA and (b) GGA. In both cases,
we have U/t = 8.4.

the rule of thumb that the strong-coupling approach fails
once the temperature reaches around t. Unfortunately,
because the DMFT solutions are known to overestimate
the entropy at low temperatures, it is not clear which
result is more accurate in the temperature range from
about 3t to 0.5t. We operate under the assumption that
the DMFT results are better here because the interaction
strength is not particularly strong.

The fitting of the data is then rather straightforward.
We plot a series of isoentropic curves for the double occu-
pancy versus the total number of particles and compare
to the data and to the data shifted upward and down-
ward by the standard deviation of the double occupancy
at each point (see Fig. 7). Then we can estimate both by
eye and by evaluating a weighted least-squares fit what
the optimal entropy per particle is. Note that the low
particle number data still do not fit so well. Hence the
use of LDA or GGA does not significantly improve the
analysis.

To be more quantitative, we use a Bayesian inference

approach to determine the posterior probability density
function (PDF) as determined by the experimental mea-
surements. We start from a prior PDF that is flat be-
tween the initial experimental value for the entropy per
particle 1.3 kB and the final value 2.5 kB (since we only
know the possible range for the entropy and all possi-
bilities are a priori equally likely). For each experimen-
tal measurement, we compare to a theoretical estimate
which results from the QMC calculations within the LDA
or GGA approach, which are extended from their com-
puted values by a quadratic Lagrange interpolation for-
mula. Then we form the chi-square

χ2(s) =
∑
i

[
dexpi (Ni)− dthi (s,Ni)

σi

]2

. (17)

Here, dexpi (Ni) is the measured experimental probabil-
ity for an atom to be paired when there are on average
Ni atoms in the system, dthi (s,Ni) is the theoretical pre-
diction for the probability to be paired at a fixed value
for the entropy per particle; this is calculated by inter-
polating the QMC data. The symbol σi is the exper-
imental standard deviation for each experimental mea-
surement at Ni of the pairing probability. The posterior
probability for the system then follows from Bayes rule:
P (s|d) = P (s)P (d|s)/P (d) ∝ P (s) exp[−χ2(s)/2]. The
posterior PDF is the product of the prior PDF (which
is chosen to be uniform) and the exponential of minus
one half the chi-square. The posterior PDF is plotted in
Fig. 8 for the LDA (black solid) and for the GGA (or-
ange dashed). One can see that they nearly lie on top
of each other. The simplest estimate for the entropy is
the maximum a posteriori (MAP) estimate, which is the
entropy per particle at the maximum of the PDF, which
is 2.243 kB for the LDA and 2.242 kB for the GGA.
We also can calculate the average value of the entropy
per particle, by integrating over the PDF along with the
variance, which is called the least mean squares (LMS)
estimate. It yields s = 2.244±0.033 kB for the LDA and
s = 2.243 ± 0.033 kB for the GGA; the strong-coupling
fit was s = 2.25 kB . The reason why the LDA and GGA
approaches do not improve things very much is that the
fit temperature is rather high and hence is in the regime
where the LDA, GGA, and strong-coupling approaches
all agree quite closely. In particular, we find that the
GGA and LDA results are so close for this case that
they essentially lie on top of each other. This is not too
surprising since we are rather far from the temperature
where the system will start to order. Unfortunately, we
are not able to quantitatively answer the question as to
whether this LDA or GGA analysis is more accurate than
the strong-coupling analysis, because we had no unbiased
way to choose between them.

One additional point to note, however, is that the low-
est point in each figure for S/N = 1.3 kB in Fig. 7 ap-
pears to be a bit higher than we would have expected.
This arises because of the problems the DMFT has in
overestimating the entropy at low temperature. In par-
ticular, at half-filling, in a bulk system, the entropy per
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FIG. 8: (Color on-line.) Posterior PDF for the LDA (black,
solid) and GGA (orange, dashed) approaches, compared to
the prior PDF (magenta, dashed). Note how it becomes
strongly peaked around 2.24 kB .

lattice site cannot get below ln 2 kB until the systems or-
ders into an antiferromagnetic phase, which can quench
the entropy. We believe that the entropy we calculated at
the lowest temperature T = 0.5 for N = 61, 445, is high
and when we extrapolate to find the double occupancy
for the S/N = 1.3 kB curve, we find it produces results
that are too high. The situation is a little better for the
GGA than for the LDA, primarily because the entropy in
the GGA is a bit smaller than the entropy for the LDA at
T = 0.5 (1.305 versus 1.338 kB , respectively). For both
points, we employed a linear extrapolation using T = 0.7
and T = 0.5 data.

IV. CONCLUSION

In this work, we showed how to develop the first correc-
tion to the LDA by taking into account gradient terms in
the Dyson equation for the Green’s function. We found
that the algorithm for the GGA within a DMFT ap-
proach involved only a small change from the LDA. In
the normal state, at temperatures above any of the or-
dering temperatures, the LDA, GGA, and IDMFT results
all agree very well with one another. This result strongly
supports the accuracy for using the LDA for such normal
state calculations of the properties of ultracold atoms on
an optical lattice.

However, when we enter the ordered phase, the LDA
and GGA become inaccurate, often predicting the wrong

transition temperature and also predicting the wrong or-
dered phase. We have so far not found there to be any
simple way to fix this, as the problem appears to require
properly applying global constraints as opposed to local
and nearly local constraints. Hence, we conclude that the
LDA is poor for these kinds of problems when the tem-
perature is low enough that it falls into a regime where
the system orders.

This does not rule out the approach as being good to
describe systems in nonequilibrium with mass transport.
Such a problem is beyond the scope of this article, but
there has been some preliminary work on this question.[8]

Finally, we conclude that in most cases where the LDA
works well, the GGA does not provide a significant im-
provement, and when the LDA fails, the GGA does not
fix the failures, so there does not seem to be a huge need
for the GGA per se, unless it works well at repairing
the problem with nonequilibrium mass transport, which
should be looked at critically from this perspective. How-
ever, calculating results for the GGA is only slightly more
complicated than the LDA, and doing so can serve as a
useful test on the accuracy of the LDA—in cases where
the LDA and GGA agree, it is likely that their results
are accurate, in cases where they disagree, it is likely
that neither is accurate.
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1382 (2003). DOI: 10.1103/RevModPhys.75.1333.
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