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We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in
a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential, such
that the interaction strength U f is much larger than the hopping amplitude J f . The quench initiates collective
oscillations with frequency |U f |/(2π) in the momentum occupation numbers and imprints an oscillating phase
with the same frequency on the BCS order parameter ∆. The oscillation frequency of ∆ is not reproduced by
treating the time evolution in mean-field theory. In our theory, the momentum noise (i.e. density-density) cor-
relation functions oscillate at frequency |U f |/2π as well as at its second harmonic. For a very deep lattice, with
zero tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling
after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscil-
lations. The damping occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi
gas. Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of
the BCS state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop
strong anti-correlations near the Dirac point.

PACS numbers: 67.85.-d, 67.85.Lm

I. INTRODUCTION

Ultracold atoms in optical lattices are a versatile tool to sim-
ulate solid state phenomena [1]. The tunability of lattice prop-
erties over a wide range of parameters is not only allowing
experiments to explore regions of the phase diagram not at-
tainable in solid state systems, but it also offers new, highly
controllable methods for initiating dynamics. This has been
extensively used for studying non-equilibrium dynamics in
bosonic systems [2–4]. In particular, quenches of the lattice
depth have been used to study the collapse and revival of a
Bose-Einstein condensate (BEC) [5, 6].

At low temperatures fermionic atoms in optical lattices un-
dergo a phase transition to a BEC of molecules for repulsive
interactions and the paired Bardeen-Cooper-Schriffer (BCS)
state [7–9] for small attractive interactions [10, 11]. In the
BCS regime the density and momentum distribution is nearly
independent of the size of the order parameter (gap). It has
therefore been proposed by Altman et al. to use the density-
density correlation to measure the order parameter in exper-
iment [12]. Greiner et al. have demonstrated that measur-
ing the shot noise in absorption images makes the density-
density correlations experimentally accessible [13]. This has
motivated several further studies of the density-density cor-
relations [14–16] as well as proposals to use them in order
to distinguish different phases of ultracold fermions [17–20].
An alternative approach to measuring the correlations in a
Fermionic gas is to observe the time-evoulution after a quench
of either the lattice depth or the interactions between atoms.
In fact, Volkov and Kogan have predicted oscillations of the
order parameter (gap) in the BCS regime over 40 years ago
[21]. Recently, this topic has attracted new attention and sev-
eral different quenches of the interaction strength from a non-
interacting state to the BCS regime [22, 23], within the BCS

regime [24–28] and between the BCS and the BEC regime
[29–34] have been analyzed. Phase diagrams of the asymp-
totic behaviour for long times after the quench have been ob-
tained in [35]. All of these theoretical models for quenches in
Fermionic systems have in common that they use mean-field
theory for both the initial state as well as the time evolution.

The experimental realization of loading ultracold bosons
[36] and fermions [37, 38] into topological lattices, here the
honeycomb (graphene) lattice, in particular, has started much
interest in the exotic phase diagrams of these systems [39–
42]. Furthermore, it was demonstrated that initiating dynam-
ics in topological lattices gives direct experimental access to
the band structure [43] as well as topological quantities such
as chern numbers [44], the Berry curvature [45] and Wilson
lines [46].

In this paper we investigate the time evolution of a BCS
state in the honeycomb lattice after a sudden ramp of the lat-
tice depth. We consider the Fermi-Hubbard model away from
half filling for small attractive interactions. The corresponding
ground state is well described by mean-field BCS theory [39].
By exploiting the integrability of the BCS model we compute
the full time evolution beyond mean-field theory for ramps to
large final lattice depths, where the dynamics is determined
by the interaction strength U f between the atoms, while the
hopping strength J f is negligible. The quench is considered
sudden with respect to many particle physics, but slow com-
pared to the time scales of inter-band transitions. This regime
is indeed achievable as we find that transitions between the
lowest two bands are highly suppressed for a ramp of the lat-
tice depth. Transitions to higher bands are negligible due to
the large energy gap between bands.

We find collective sinusoidal oscillations of the momentum
occupation numbers with the frequency |U f |/(2π) for all mo-
mentum modes. We also find that the phase of the complex-
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valued order parameter ∆(t) increases linearly in time, while
its amplitude is time independent. In a Fermi-Hubbard model
a quench of the lattice depth is formally equivalent to a
quench of the interaction strength. References [27, 32, 34]
studied such an interaction quench within the framework of
Bogoliubov-de Gennes mean-field theory and predict that the
time evolution of ∆(t) has large-amplitude, non-trivial oscilla-
tions. Such difference in predictions for the time dependence
should be experimentally verifiable.

We extend our analysis to include a small, finite tunnel-
ing energy after the quench. This leads to dephasing between
different momentum modes and a subsequent damping of the
oscillations. For times much smaller than 1/(|U f |2J f )

1/3 we
find a regime where damping occurs for an interacting initial
state with a finite order parameter ∆, while a non-interacting
initial state does not damp. This motivates the use of the
damping signal as an experimentally-accessible signature of
∆. Fully numerical calculations with small systems using ex-
act diagonalization show, however, that the oscillations may
also damp for an interacting initial state with zero order pa-
rameter. In an experiment it may therefore be challenging to
isolate the damping origin.

As a direct measure of pair correlations we also investigate
the time evolution of the density-density correlations. For the
BCS ground state these correlations are non-zero only for op-
posite momenta and can be used to estimate the size of the
order parameter. Mean-field theory enforces that even after
the ramp the correlations are only non-zero for those momenta
while our exact theory predicts small corrections to these re-
sults. The discrepancy between mean-field and the exact the-
ory becomes particularly strong at the Dirac points of the hon-
eycomb lattice, where the first and second band touch linearly.

The remainder of the article is set up as follows. Section
II describes the Hamiltonian as well as the initial state used
for our calculations. We give the model for the time-evolution
procedure in Sec. III and present the results in Sec. IV. In
particular, Secs. IV A and IV B describe the time evolution
of the momentum modes for zero and finite hopping after the
ramp, respectively, and Sec. IV C describes the time evolution
of the order parameter for both cases. The time evolution of
higher-order correlation functions is analyzed in Sec. IV D.
Finally, we summarize in Sec. V.

II. HAMILTONIAN AND BCS GROUND-STATE

For our calculations we use a two-band attractive Fermi-
Hubbard model with equal spin populations on a honey-
comb lattice with on-site interactions, nearest and next-nearest
neighbour hopping. Brillouin zones and lattice vectors in co-
ordinate and reciprocal lattice space are defined in Fig. 1. The
Hamiltonian in momentum space is given by

H(µ,J,J′,U) = HJ +HU +Hµ (1)

with

HJ = ∑
k

[
εk

(
a†

k,Aak,B +b†
k,Abk,B

)
+ c.c.

]

+∑
k,C

ε ′k
(

a†
k,Cak,C +b†

k,Cbk,C

)
(2)

HU =U
1
M ∑

kpq,C
a†

k,Cak+p−q,Cb†
p,Cbq,C (3)

and Hµ =−µ ∑
k,C

(
a†

k,Cak,C +b†
k,Cbk,C

)
(4)

where HJ denotes the hopping part, HU the interaction part
and Hµ the chemical potential part of the Hamiltonian. The
operators a†

kC (b†
kC) and akC (bkC) create and annihilate a spin

down (up) fermion with quasi-momentum k on the sublattice
C = A,B. Here and throughout this paper, quasi-momentum
sums run over all M momenta in the first Brillouin zone, M
is the total number of lattice sites and A and B denote the
two distinct lattice sites per unit cell as defined in Fig. 1(a).
The interaction strength is given by U < 0, while J > 0 and
J′ > 0 denote the hopping strengths between nearest and next-
nearest neighbours, respectively. For a spin-balanced gas the
chemical potential µ of the two species is equal. Finally,

εk(J) =−J
(
1+ e−ik·e1 + e−ik·e3

)
≡ |εk|eiφk (5)

ε ′k(J
′) =−2J′

[
cos(k · e1)+ cos(k · e2)+ cos(k · e3)

]
, (6)

where e3 = e1 + e2. All operators obey fermionic anticom-
mutation relations, e.g. {ap,C,a

†
k,D} = δpkδCD. While the

Fermi-Hubbard model is based on the lattice space Hamil-
tonian, given in App. A, the above momentum space one is
obtained by using the Fourier transforms from Eq. A4.

The non-interacting Hamiltonian HJ +Hµ is exactly solv-
able by a unitary transformation to the operators a†

k,1 (a†
k,2)

and b†
k,1 (b†

k,2) creating a fermion in the first (second) band.
Their eigenenergies are spin independent and given by εk,1 =
ε ′k− µ −|εk| and εk,2 = ε ′k− µ + |εk|. The band structure for
these two bands is shown in Fig. 1(d). There has been much
interest in the two Dirac (K-) points, marked in Fig. 1(c),
where εk = 0 and the two bands touch. The K-points feature a
linear dispersion relation [37, 40] and φk, the complex phase
of εk, jumps by π when going through the Dirac points in an
arbitrary direction. The discontinuity in φk results in a non-
zero Berry curvature or equivalently a non-zero Berry phase
for any closed loop containing one of the Dirac points [47].

The low energy spectrum of H is to good approximation
given by that of the mean-field Hamiltonian

Hmf(J,J′,U,µ) = HJ +Hµ +∑
k,C

(
∆∗ak,Cb−k,C +∆b†

−k,Ca†
k,C

)
.

(7)

with order parameter or gap ∆, based on pairing between
fermions of opposite spin and momentum [7–9]. The mean-
field Hamiltonian is diagonalized by a Bogoliubov transfor-
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FIG. 1: (color online) (a) Sketch of the honeycomb lattice with unit
vectors e1 = (a,0)T and e2 and lattice constant a. Solid black lines
show the hexagonal lattice of Wigner-Seitz unit cells. The dashed
blue parallelograms show an equivalent lattice spanned by e1 and e2.
Both lattices contain two sites, A and B, per unit cell. (b) Recipro-
cal lattice of the honeycomb lattice. Solid black hexagons show the
first Brillouin zones at each lattice point and dashed red lines show
the lattice spanned by the two reciprocal lattice vectors k1 and k2.
(c) First, second and third Brillouin zones of the honeycomb lattice.
Their boundaries are indicated by solid black, dashed red and dotted
blue lines, respectively. The Γ, M and Dirac (K-) points are marked
by black dots. (d) Single-particle band structure of the honeycomb
lattice for the first two bands and all quasi-momenta inside the unit
cell spanned by the reciprocal lattice vectors k1 and k2 as defined in
(b). The bands touch at the two Dirac points, which feature a linear
dispersion relation.

mation with quasi-particle annihilation operators αk,γ and βk,γ

Hmf(J,J′,U,µ) = ∑
k,γ

Ek,γ

(
α†

k,γ αk,γ +β †
k,γ βk,γ

)
, (8)

where γ = 1,2 and

Ek,γ =
√

ε2
k,γ +∆2 . (9)

For small attractive interactions U < 0 the ground-state
wave function of Eq. 7 is the well known BCS wave func-
tion [8] at zero temperature, while at finite temperature T the
ground state is a density matrix, where the order parameter is
given by the self-consistent gap equation

∆ =− U
2M ∑

k,γ

∆
2Ek,γ

tanh
(

Ek,γ

2kBT

)
, (10)

with Boltzmann constant kB.

III. MODEL FOR THE TIME EVOLUTION

In this section we present the analytical model used to eval-
uate the time-dependent expectation values of observables af-
ter a sudden ramp of the lattice depth. In particular, we are
interested in the momentum occupation numbers of the two
bands γ = 1,2

Pk,γ(t) =
〈

e−itH(J f ,J′f ,U f ) a†
k,γ ak,γ eitH(J f ,J′f ,U f )

〉
(11)

and the time-dependent order parameter

∆(t) =− U
2M ∑

p,γ

〈
e−itH b−k,γ ak,γ eitH〉 . (12)

Here angle brackets denote the expectation value with respect
to the (thermal) BCS state, as obtained by diagonalizing the
initial mean-field Hamiltonian Hm f (Ji,J′i ,Ui,µi) with initial
values Ji, J′i , Ui and µi. The parameters J f , J′f and U f de-
note the corresponding quantities after the ramp. The chem-
ical potential in the final Hamiltonian does not contribute to
the time evolution. The reduced Planck constant h̄ is set to
1 throughout. We focus on quenches that increase the lattice
depth. This implies that the atom-atom interaction remains at-
tractive. Repulsive interactions are experimentally accessible
through magnetic Fano-Feshbach resonances and the simulta-
neous quench of the applied magnetic field. Our derivations
are also valid in this regime.

While we use mean-field theory to determine the initial
state we use the full Hamiltonian H(J f ,J′f ,U f ) for the time
propagation going beyond mean-field theory. Finally, it suf-
fices to consider the time evolution of spin-down fermions as
the Hamiltonian is symmetric with respect to the exchange of
spin species for equal populations.

We first consider a ramp to a sufficiently deep lattice such
that the dynamics after the ramp are determined by the in-
teraction part of the Hamiltonian. Then the hopping part is
negligible and we can assume J f = J′f = 0. Some algebra,
presented in App. A, leads to the following analytic expres-
sion for the time evolution of each momentum mode in the
two bands

Pk,γ(t) = nk,γ +2sin
(
tU f
)

Im
(
Gk,γ D∗

)

+2
[
1− cos(tU f )

]
Zk,γ , (13)

with all time dependence isolated in the sin and cos, the initial
momentum occupation

nk,γ =
〈

a†
k,γ ak,γ

〉
=

1
2

{
1− εk,γ

Ek,γ
tanh

(
Ek,γ

2kBT

)}
, (14)

the initial momentum-resolved pairing field

Gk,γ =
〈
b−k,γ ak,γ

〉
=

∆
2Ek,γ

tanh
(

Ek,γ

2kBT

)
(15)

and

Zk,γ = (1−nk,γ)|D|2 +Wk,γ . (16)
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FIG. 2: (color online) Initial momentum distribution nk,1 (panel (b))
and nk,2 (panel (a)) along the Γ-K-M-direction in bands 1 and 2, re-
spectively, for filling n = 0.45. The units of k are chosen such that
k = 1 at the K-point, which is situated at the edge of the first Bril-
louin zone, indicated by the dashed vertical line. Different curves
show different values for the order parameter ∆ and temperature T as
indicated in the legend. For all cases J′i = 0.2Ji.

Finally D = ∆/U is the scaled order parameter. The quantity
Wk,γ is time independent and given in App. A. Note that both
εk,γ and Ek,γ depend on Ji and J′i and ∆ is computed for the
initial hopping and interaction parameters. Lastly, Re(z) and
Im(z) are the real and complex part of z, respectively.

Next, we consider a quench to a final lattice depth, where
small hopping parameters J f ,J′f � |U f | remain, and solve it
perturbatively by using the Suzuki approximation for the ex-
ponential of the final Hamiltonian

eit(HJ+HU ) = eitHJ/2eitHU eitHJ/2 +O(t3) , (17)

where of course HJ and HU depend on J f , J′f and U f .
As explained in App. A 2 we again obtain Eq. 13, but make

the replacements

Gk,γ → Gk,γ(t) = exp
(
itνk,γ

) ∆
2Ek,γ

tanh
(

Ek,γ

2kBT

)
(18)

and

D→D(t) =− 1
2M ∑

p,γ
Gp,γ(t) , (19)

which are now time dependent quantities. Here, the band en-
ergies νk,γ are εk,γ evaluated at J f , J′f and µ = 0 rather than Ji,
J′i and µi. Note that the energies Ek,γ are evaluated at Ji and J′i
but that Gp,γ and D are replaced in the definitions for Zk,γ and
Wk,γ .

The accuracy of the Suzuki approximation can be estimated
from the strength of terms of cubic order in time. These have
two contributions, one proportional to |U f |2J f t3 and the other
to |U f |J2

f t
3. In our case J f � |U f | and we therefore require

t3� 1/(|U f |2J f ).

In summary, we have derived an expression for the time
evolution of the momentum occupation, which can be eval-
uated analytically except for straightforward numerical sum-
mations in Wk,γ . While we focus on the density and pairing
field, this calculation can be extended to the time evolution of
other operators.

IV. OBSERVING COLLECTIVE OSCILLATIONS

A. Time evolution of the momentum modes for a quench to
zero hopping

A sudden ramp of the lattice depth to a deep lattice, where
J f = J′f = 0, induces collective oscillations of the quasi-
momentum occupation numbers Pk,γ(t). In order to get an un-
derstanding for these oscillations we first investigate the initial
quasi-momentum distribution, which is shown in Fig. 2 for a
filling fraction n slightly less than 1/2 and several ∆ and T .
The filling fraction n = 1/(2M)∑p,γ np,γ is the mean number
of particles per site per spin state.

For non-interacting fermions at half filling n = 1/2 and
T = 0 the lower of the two bands is completely filled. The
upper band is empty. Population is removed around the Dirac
(K-) points in the lower band for slightly smaller n. Finite
temperature, on the other hand, transfers population to the sec-
ond band, predominantly around the Dirac points. A kink in
the quasi-momentum profiles appears at this point, as the two
bands touch linearly. A finite order parameter has similar ef-
fects. In fact, a comparison of the curves in Fig. 2 shows that
distinguishing a paired state with finite order parameter from
a finite temperature state by looking at the initial momentum
distribution only, is hard if not impossible.

The time evolution of Pk,γ(t) in Eq. 13 is periodic with k-
independent frequency |U f |/(2π). Moreover, as Gk,γ and D
are real for J f = J′f = 0, the occupation numbers Pk,γ(t) sim-
plify to nk,γ +2(1− cos(tU f ))Zk,γ and oscillate in phase. Fig-
ure 3 shows the momentum distributions at different times t in
the first oscillation cycle 0 < t < 2π/|U f | for several values of
temperature and order parameter. After half an oscillation pe-
riod at t = π/|U f | we find that momentum modes with small
initial occupation have high occupation and vice versa. In par-
ticular, we observe a significant occupation of the second band
for all momentum modes.

We find numerically that the main contribution to the ampli-
tude of the momentum oscillations, Zk,γ , does not depend on
the order parameter ∆. Out of the terms that do depend on ∆
the dominant one is the first term in Eq. 16, (1−nk,γ)|∆|2/U2.
It enhances the population of momentum modes with small
initial occupation nk,γ at t = π/|U f |. We observe this when
comparing Pk,γ(t = π/|U f |) (dashed black line) of a state with
a finite order parameter in Figs. 3(c) and (f) with that of a
finite temperature state in Figs. 3(b) and (e). In fact, the en-
hancement occurs for all momentum modes in the upper band
as well as for those close to the Dirac point in the lower band.

We conclude that the oscillation frequency of the momen-
tum modes after a sudden ramp of the lattice depth to J f =
J′f = 0 is a direct measure for the interaction strength between
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FIG. 3: (color online) Momentum distribution Pk,γ (t) after a sudden ramp to a lattice with zero tunneling and filling fraction n = 0.45. We
show the momentum distribution along the Γ-K-M direction at several snapshots in time x = t|U f |/(2π) as indicated in the legend above the
figure. The units of k are chosen as in Fig. 2. The top and bottom rows show populations in the upper and lower band, respectively. The time
point t = 0 (solid red line) corresponds to the initial momentum distribution before the ramp, which is again obtained at t = 2π/|U f | due to the
periodicity of the time evolution. Panels (a) and (d) show distributions at zero temperature and gap, while panels (b) and (e) show zero gap and
finite temperatue kBT = 0.3Ji. Panels (c) and (f) show finite gap ∆ = 0.5Ji and zero temperature, which corresponds to Ui =−2.68Ji. Finally,
in all cases J′i = 0.2Ji, µ = 0, J f = J′f = 0 and the results are valid for any sufficiently large U f .

atoms. Furthermore, we find small differences in the time
evolution of momentum modes between finite-gap and finite-
temperature states. The kink of the momentum distribution at
the K-point of our hexagonal lattice remains observable after
the ramp. Measuring both effects in experiment may, how-
ever, be limited by the current resolution of time of flight im-
ages.

B. Time evolution of the momentum modes for a quench to
small finite hopping

Even for ramps to deep lattices, hopping between lattice
sites will not be completely negligible. We take this into
account perturbatively in Eq. 13 with the definitions from
Eqs. 18 and 19. Most notable we find dephasing of the mo-
mentum occupation numbers for an initial state with finite or-
der parameter. The pairing fields Gp,γ(t) then evolve with a
different frequency for each momentum and band index. This
causes the summands in D(t) to dephase and eventually leads
to damping of the oscillations of the occupation numbers.

The damping is illustrated in Fig. 4, where we show the
total population of the second band P2(t) = 2n− P1(t) =
1/M ∑k Pk,2(t). We observe that P2(t) is close to a minimum,
whenever t is a multiple of 2π/|U f |. In fact, at these time
points the quantitites sin(tU f ) and 1− cos(tU f ) in Eq. 13 are
zero and the occupation numbers Pk,γ(t) are equal to their ini-
tial values nk,γ . The most pronounced dephasing effects can

be observed, when P2(t) is close to a maximum, half way
in between two such revivals at t = t j = ( j− 1/2)2π/|U f |,
with positive integer j. In Fig. 4 we see that the dephasing
of momentum modes causes P2(t j) to decrease over several
time-evolution cycles. Comparing Figs. 4(a) and (b) it is fur-
thermore evident that P2(t j) decreases more rapidly for larger
values of ∆.

This motivates a closer investigation of P2(t). For this pur-
pose it is useful to define the envelope of the occupation num-
bers

P2(t) = ∑
k

[
nk,2 +4Zk,2(t)

]
, (20)

which is obtained by evaluating the periodic quantities
sin(t jU f ) = 0 and 1− cos(t jU f ) = 2 at t = t j in Eq. 13, but
keeping the time dependence of Gk,γ(t), D(t) and Zk,γ(t). Fig-
ure 4 shows that P2(t) closely follows the maxima of P2(t).
It has a quadratic time dependence for small tJ f and tJ′f

P2(t) = P2(0)
[
1− c(∆)J2

f t
2 +O([J f t]3)

]
, (21)

where c is a function of the order parameter ∆, the filling frac-
tion n and the relative hopping strength J′f /J f . Nevertheless,
we only make the ∆ dependence explicit as we expect the
other two quantities to be approximately constant in exper-
iments. This dependence is analytically confirmed by eval-
uating Pk,γ(t) using the Lie first-order approximation for the
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FIG. 4: (color online) Total occupation of the second band P2(t) = 1/M ∑q Pq,2(t) (solid red line) as a function of time with a residual finite
hopping after the ramp and filling fraction n= 0.45. The dotted green line shows the envelope of the oscillations P2(t) as defined in Eq. 20. For
small times it is well approximated by a quadratic time dependence (dashed black line). For all panels the final hopping strength J f = 0.02U f ,
the ratios J′f /J f = J′i/Ji = 0.2 and the results are valid for any sufficiently large U f . Panels (a) and (b) show zero temperature data with
∆ = 0.5Ji (corresponding to Ui = −2.68Ji) and ∆ = 1Ji (Ui = −3.45Ji), respectively. Panel (c) shows data for ∆ = 1.0Ji and kBT = 0.3Ji,
implying Ui =−3.53Ji.
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FIG. 5: (color online) Quadratic coefficient c, quantifying the damp-
ing of the oscillations of the second-band occupation P2(t), as a func-
tion of order parameter ∆ for constant filling fraction n = 0.45 and
J′f = 0.2J f . Different curves show c at different temperatures as indi-
cated in the legend. A larger coefficient c indicates a faster damping.

Hamiltonian

exp
(
itH(J f ,U f )

)
= exp(itHJ)exp(itHU )+O(t2) , (22)

instead of the Suzuki second-order approximation from
Eq. 17. We obtain the same time evolution as for J f = J′f = 0,
because the hopping part of the Hamiltonian HJ commutes
with the observable a†

k,γ ak,γ . Therefore Pk,γ(t) and P2(t) are
independent of J f and J′f and hence P2(t) does not have a
contribution linear in time.

The quadratic approximation for P2(t) agrees well with the
exact P2(t) for the first few oscillations. Afterwards terms of
cubic and higher order in time are important. We, however, do
not expect the Suzuki approximation in Eq. 17 to be valid in
that regime. An estimate for its validity is given by the con-

dition t|U f |/(2π)� (|U f |/J f )
1/3, where the right hand side

equals 3.7 for J f = 0.02|U f |, as used throughout this paper.
In Fig. 5 we plot the quadratic coefficient c(∆) obtained

from the analytic expansion of P2(t) as a function of ∆ for
several temperatures. It vanishes for a zero order parameter,
since Eqs. 18 and 19 vanish (Gk,γ(t) = D(t) = 0) and the en-
velope P2(t) is independent of time. In other words the oscil-
lations do not damp, when the initial state is a non-interacting
Fermi gas. The coefficient c(∆) increases quadratically for
∆� Ji and reaches a maximum for larger values of the order
parameter. Finally, the damping coefficient decreases for in-
creasing temperature. This motivates the use of c(∆) to detect
the order parameter experimentally.

In summary we see that the BCS type correlations lead to an
increased dephasing of the different momentum modes, which
leads to additional damping of the oscillations. Isolating this
effect from other damping origins may, however, be challeng-
ing in experiment.

C. Time evolution of the order parameter

The time evolution of the pairing order parameter ∆(t) af-
ter a quench has been simulated extensively [21–32, 34, 35].
Here we present our results for ∆(t) and compare with
Ref. [34], which we found to be most closely related to our
calculations. We evaluate ∆(t) using the formalism intro-
duced in Sec. III and find for a sudden ramp to a lattice with
J f = J′f = 0

∆(t) = ∆exp
(
itU f

)
, (23)

independent of temperature. Hence, its amplitude is constant
while its phase oscillates with the same frequency |U f |/(2π)
as the momentum modes. (In fact, we can show that for any
state only the phase of the pairing order parameter oscillates
in time.)
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FIG. 6: (color online) Density-density correlations in momentum space Ckγ,pσ (t) in the first band (γ = σ = 1) after a sudden ramp of the lattice
depth in a periodic honecycomb lattice with 12×12 unit cells at kBT = 0.3Ji, ∆ = 1Ji (Ui =−3.53Ji) and filling fraction n = 0.45. All panels
show several snapshots in dimensionless time x = t|U f |/(2π), where the coloring scheme determines the time point as indicated in the legend.
We use k = (0,0)T and the Dirac point (k = 1/3(k1 +k2)) in panels (a) and (b), respectively, and show the correlations as a function of p for
p = (p, p)T . The insets show a zoom of the full figure with the y-axis scaled by a factor of 1000. Panel (c) shows the correlations within the
first band for p =−k and p = (p, p)T . The dotted red line shows |Ip(t)|2 computed for 102×102 lattice sites for comparison. In all panels the
units of p are chosen such that p =−1,1 at the K-points, which are indicated by dashed vertical lines.

Reference [34] solves the mean-field Bogoliubov-de
Gennes (BdG) equations for a homogenous system at zero
temperature for either slow or fast changes of the interaction
strength. Unlike our simulations, they assume that the system
remains in a BCS state for all times. For both fast and slow
ramps, they find damped oscillations of the amplitude of the
order parameter around an average value ∆∞, with a frequency
of 2|∆∞|/(2π). Only for ramps slow compared to their Fermi
energy the average value ∆∞ equals the order parameter of the
BCS ground state of the final Hamiltonian. In other words,
our and the BdG models make different predictions for the
oscillation frequency as well as the average value.

We note that Eq. 23 is valid for an infinitely fast ramp of the
lattice depth and found to be true for one dimensional, square
and honeycomb lattices. In contrast, we expect that the BdG
simulations of Ref. [34] are only valid for slow quenches to
interaction strengths, that are not too large and do not lead to
high energy excitations. For fast quenches, on the other hand,
we trust our calculations. In summary, even though the two
simulations are similar in spirit, they are complementing each
other by exploring different quench regimes.

D. Time evolution of the density-density correlation function

The density-density correlations of the BCS ground state

Ckγ,pσ =
〈

a†
k,γ ak,γ b†

p,σ bp,σ

〉
−
〈

a†
k,γ ak,γ

〉〈
b†

p,σ bp,σ
〉

(24)

have been of much interest as they can be measured in exper-
iment and are, within mean-field theory, directly proportional
to the gap Ckγ,pσ = δk,−pδγ,σ |∆|2/(4E2

k,γ)[12–18].
We compute the time-evolved density-density correlations

Ckγ,pσ (t) by inserting the exponentials eitH(J f ,J′f ,U f ) inside all
expectation values in Eq. 24. Here, only the case of a deep

lattice, such that J f = J′f = 0, is considered. In principle,
we could use the formalism introduced in Sec. III to compute
Ckγ,pσ (t). We would, however, have to evaluate an expecta-
tion value of 12 operators. This correpsonds to 6! = 720 dif-
ferent terms and is therefore tedious to compute by hand. We
therefore use a different approach, which, while giving less
insight, is much easier to automate for higher order correla-
tion functions. First, we separate the time dependence from
the expectation values by using an identity similar to Eq. A5.
Then we evaluate the time-independent expectation values of
operators in lattice space instead of momentum space. This
has the advantage that the expectation values of L operators
factor into a product of two-operator expectation values and
we do not get multi-dimensional sums as in Eq. A9. In fact,
Wicks theorem can be applied [48] and we find

〈
c†

1c†
2 . . .c

†
LcL′ . . .c2′c1′

〉
= ∑

s∈S(L)

[
sign(s)

L

∏
j=1

〈
c†

jcs( j)′
〉]

,

(25)

where each of the number indices i denotes a multi-index with
unit-cell index ni, sublattice site Ci and spin σi. Primed in-
dices denote a set of different independent multi-indices. Fur-
thermore the operators ci = ani,Ci for σi =↓ and ci = b†

ni,Ci
for

σi =↑. Finally, S(L) is the set of all permutations of the num-
bers 1,2, . . . ,L and sign(s) denotes the sign of the permutation
s. Note that it is important that the left hand side of Eq. 25 is
normal ordered in the sense that all c†

i operators are left of the
c j operators.

The density-density correlations are periodic with the same
frequency |U f |/(2π) as the momentum occupation numbers.
In fact, Ckγ,pσ (t) = C1 + C2 cos(tU f ) + C3 cos2(tU f ) with
time-independent, but momentum- and band-dependent, real
coefficients Ci, i= 1,2,3. Furthermore Fig. 6 (a) and (b) show
that throughout the whole time evolution the correlations are
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FIG. 7: (color online) Density-density correlations in momentum space Cpγ,−pσ (t) after a sudden ramp of the lattice depth in a periodic
honeycomb lattice with 12×12 unit cells at kBT = 0.3Ji, ∆ = 1Ji (Ui =−3.53Ji) and filling fraction n = 0.45. We show the correlations as a
function of time for several momentum values p, where the coloring scheme determines the momentum as indicated in the legend. Panel (a)
shows the correlations within the first band, panel (b) the correlations between the first and the second band and (c) shows Cp1,−p1(t)−|Ip1(t)|2
within the first band. The latter expression is zero when calculated within mean-field theory. Finally, we note that the red and dotted blue lines
overlap in panel (a).

dominated by momenta p =−k. A finite background remains
with values about a factor of 100 smaller. While we show
results for kBT = 0.3Ji, we note that the results for different
temperatures and in particular zero temperature are qualita-
tively the same.

A closer investigation of the p = −k correlations in Fig. 6
(c) reveals that the amplitude of the oscillations at the Dirac
point is smaller than at any other momentum point. The same
holds for the correlations within the second band as we see
in Fig. 7 (a). In contrast, Fig. 7 (b) shows that the opposite is
true for the correlations between the first and the second band.
In fact, these two bands develop significant anti-correlations,
i.e. negative values of the correlation function, throughout the
time evolution.

Figure 7 (c) compares results obtained within mean-
field theory with our exact results. In fact, when us-
ing the mean-field Hamiltonian for the time-evolution
the initial state remains a BCS type state and for all
times and

〈
a†

k,γ ak,γ b†
p,σ bp,σ

〉
=
〈

a†
k,γ ak,γ

〉〈
b†

p,σ bp,σ

〉
+

〈
a†

k,γ b†
p,σ

〉〈
bp,σ ak,γ

〉
. Hence, this implies that the difference

Ck1,p1(t)−δk,−p|Ik1(t)|2 (26)

is strictly zero, where Ik,1(t) =〈
e−itH(J f ,J′f ,U f )b−k,1ak,1eitH(J f ,J′f ,U f )

〉
. In other words, a

mean-field theory predicts a zero background in the insets
of Figs. 6(a) and (b), where we find small non-zero values
from the exact J f = 0 simulations. Furthermore Fig. 7 (c)
shows the expression in Eq. 26, at p = −k evaluated within
our exact theory. We see that the correlations at p =−k have
small deviations from the mean-field theory for all momenta,
but which are particularly pronounced at the Dirac point.

V. CONCLUSIONS AND OUTLOOK

We have analyzed the exact time evolution of a BCS state
after a sudden quench of the lattice depth. For zero tun-
neling after the quench we find undamped collective os-
cillations of the momentum occupation numbers with fre-
quency |U f |/(2π). The observation of these oscillations is ex-
perimentally accessible through time-of-flight measurements.
Small finite hopping after the quench leads to dephasing of
different momentum modes and a corresponding damping of
the oscillations. On short time scales we observe that at any
fixed temperature the damping is stronger for larger order
paramter ∆. In particular, our perturbative calculations find
no damping at all if the initial state is a non-interacting Fermi
gas. Measuring the quadratic damping coefficient may there-
fore be used to estimate the size of the order parameter.

We note, however, that the measurement of the dephasing
time will be challenging and always only be an indirect proof
of a finite order parameter for the fermions. For example,
additional numerical calculations for small lattice sizes, pre-
sented in App. B, show that an improved description of the
initial thermal-equilibrium state leads to additional damping.
A direct comparison of the analytical and the small size nu-
merical model has to be taken with care due to the signifi-
cant difference in lattice size and topology. Still, it may be
challenging to experimentally distinguish different damping
mechanisms.

Finally, experimental limitations might make it hard to ex-
tract the dephasing time. In order to mitigate the effect of ad-
ditional dephasing mechanisms the contribution of the BCS-
type correlations to the damping of the oscillations can be in-
creased by using larger hopping after the quench, as can be
seen from Eq. 21. Although our perturbative results are not
valid in that regime, we expect that the qualitative behaviour
remains the same. In experiments additional dephasing can
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occur due to density inhomogeneities in the initial state. We
expect this to lead to small corrections as mass transport is ab-
sent when J = 0 and very small for small non-zero J. Based
on findings with similar quench experiments with ultra-cold
bosonic atoms [49–51] it will be more important to include
the effect of weak confining potentials after the quench. A
spatially varying on-site energy leads to additional dephasing.
The experiments with bosons have shown that confinement ef-
fects can to a large extent be mitigated, for example by using
shallow traps or box potentials [52, 53]. Similar observations
may be expected for Fermions, which makes the investigation
of confinement effects an interesting direction for future re-
search.

For the time evolution of the order parameter we find os-
cillations of the phase with frequency |U f |/(2π). This dif-
fers from previous results [21–32, 34] obtained from treating
both the initial state as well as the time evolution within the
mean-field approximation. Our results, are valid for ramps
fast compared to the timescale of interactions, while we ex-
pect mean-field theory to be valid in the opposite limit. Also
we note that Ref. [34], which we found to be most closely re-
lated to our work, considers a continuous system, while ours
is a discrete lattice. Although it is not clear how to take the
continuum limit, the fact that we observe qualitatively similar
time evolutions for different discrete lattice topologies sug-
gests that the comparison to a continous system is valid. Still,
the two approaches complement each other by exploring dif-
ferent quench regimes.

The lowest two bands of the honeycomb lattice touch lin-
early at the Dirac point. This gives rise to a kink in the mo-
mentum distribution, which remains visible throughout the
time evolution. We further observe that the density-density
correlations, which perform periodic oscillations with the
same frequency |U f |/(2π) as the momentum occupation num-
bers, show pronounced differences in the amplitude of the os-
cillations at the Dirac point as compared to other momenta.
Both within the first and second band the oscillation ampli-
tude is significantly smaller at the Dirac point. The opposite
is true for the correlations between the first and the second
band. While initially uncorrelated, the system develops strong
anti-correlations between those two bands at the Dirac point.
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Appendix A: Detailed calculation for the time evolution
procedure

Here we present details for the calculation of the time evo-
lution expression in Eq. 13. The calculation is most elegant
when evaluating parts of the expression in momentum space
and others in lattice space. Therefore it will be convenient to
write the Hamiltonian of Eqs. 1-4 in lattice space

HJ =−J ∑
〈nC,mD〉n

(
a†

m,Dan,C +b†
m,Dbn,C

)

− J′ ∑
〈nC,mC〉nn

(
a†

m,Can,C +b†
m,Cbn,C

)
(A1)

HU =U ∑
n,C

a†
n,Can,Cb†

n,Cbn,C (A2)

Hµ =−µ ∑
n,C

(
a†

n,Can,C +b†
nCbn,C

)
, (A3)

where 〈nC,mD〉n denotes sums over nearest neighbours, while
〈nC,mD〉nn denotes sums over next-nearest neighbours. The
operators a†

nC (b†
nC) and anC (bnC) create and annihilate a spin

down (up) fermion in the unit cell n with sublattice site C =
A,B and are related to the momentum space operators through
the site-specific Fourier transformations

ak,C =
1√
M ∑

n
e−ik·nan,C , (A4)

where n is the vector pointing to the origin of the n-th unit cell.
Equivalent Fourier transforms are defined for the b operators.

1. Zero hopping

It is instructive to begin with the calculation of Eq. 11
for the J f = J′f = 0 case. The simple form of HU in lattice
space is exploited by expanding a†

k,γ ak,γ in terms of the oper-

ators a†
n,Cam,D, with C,D = A,B. The time evolution operator

exp(itHU ) is readily applied to each of the terms in the expan-
sion separately

e−itHU a†
n,Cam,DeitHU = a†

n,Cam,D

[(
1+b†

n,Cbn,C
(
e−itU −1

))

(
1+b†

m,Dbm,D
(
eitU −1

))]
. (A5)

By inserting this into Eq. 11 and transforming all operators
back into momentum space we obtain a sum of expectation
values, where each term has at most six creation or annihila-
tion operators. The expectation values are evaluated by using
the Bogoliubov transformation to a non-interacting Hamilto-
nian (see Eq. 8) and noting that Wicks theorem is applicable
to the Bogoliubov operators [48]. For example

〈
a†

k,Aak,A

〉
=

1
2
(nk,α +nk,β ) (A6)

〈
b−k,Aak,A

〉
=

1
2
(Gk,α +Gk,β ) . (A7)
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The result is Eq. 13 with the definitions

Wk,γ = nk,γ
(
n2−n

)
+(1−2n)Re

(
Gk,γ D∗

)

+n2−Q(k)−R(k)− (−1)γ S(k)− (−1)γ T (k) (A8)

and

Q(k) =
1

M2 ∑
pq

nk+q−p,+np,+nq,+ (A9)

R(k) =
1

M2 ∑
pq

np+q−k,+Re
(
G∗p,+Gq,+

)
(A10)

S(k) =
1

M2 ∑
pq

cos
(
φk−φk+q−p−φp +φq

)

×nk+q−p,−np,−nq,− (A11)

T (k) =
1

M2 ∑
pq

cos
(
φk−φp−φq +φp+q−k

)

×np+q−k,−Re
(
G∗p,−Gq,−

)
. (A12)

It is furthermore convenient to define np,± = 1
2 (np,2± np,1),

Gp,± = 1
2 (Gp,2±Gp,1) and the spin-independent filling frac-

tion

n =
1

2M ∑
p,γ

〈
a†

p,γ ap,γ
〉
=

1
2M ∑

p,γ
np,γ , (A13)

which is the average number of atoms per site per spin. The
remaining summations in Eq. A9-A13 are evaluated numeri-
cally for equal numbers of sites M1 and M2 along the e1 and
e2 directions. In fact, we choose M1 = M2 = 102 in Figs. 2
and 3 and M1 = M2 = 48 in Figs. 4 and 5. In both cases we
have checked that including more lattice sites does not change
the results of the calculation.

2. Small but finite hopping

We now consider the time-evolution expression in Eq. 11
within the Suzuki approximation (see Eq. 17). As HJ com-
mutes with a†

k,γ ak,γ the time evolution expression immediately
simplifies to

Pk,γ(t) =
〈

e−itHJ/2e−itHU a†
k,γ ak,γ eitHU eitHJ/2

〉
. (A14)

Next we insert the identity 1 = eitHJ/2e−itHJ/2 in between all
creation and annihilation operators of Eq. A14 and compute

e−itHJ/2ak,γ eitHJ/2 = eitνk,γ/2ak,γ , (A15)

where νk,γ is the same as εk,γ , but now evaluated at J f and J′f .
From Eq. A15 we see that the hopping part of the Hamiltonian
simply multiplies each of the operators with a phase. By eval-
uating the expectation values in Eq. A14 in the same way as
in Sec. A 1 we obtain Eq. 13 with the definitions from Eqs. 18
and 19.

Appendix B: Time evolution of small systems using exact
diagonalization

1. Methods

We extend our study to initial states with zero order param-
eter when simultaneously the interaction strength is non-zero.
These equilibrium states of the Fermi-Hubbard Hamiltonian
occur for initial temperatures higher than the critical temper-
ature of the BCS phase transition. Calculating the subsequent
time evolution falls outside the applicability of our analytical
model. We have therefore performed numerical calculations
for small systems with six lattice sites and either two or three
spin-up and spin-down fermions. We use a range of tempera-
tures 0< kBT < 10Ji and tight binding parameters from Fig. 4.

These numerical calculations are based on exact diagonal-
ization of the lattice-space Hamiltonian, introduced in App. A.
In the following we briefly describe the procedure. First, we
determine the matrix form of the initial Hamiltonian Hi =
H(Ji,J′i ,Ui) in a complete set of Fock basis functions with
fixed and equal number of spin-up and spin-down fermions.
Next, we numerically diagonalize Hi obtaining eigenvalues
E(i) and eigenfunctions |ψ(i)〉. Expectation values of an ob-
servable O with respect to initial states in thermal equilibrium
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FIG. 8: (color online) Quadratic coefficient c1D, quantifying the
damping of the oscillations of the momentum occupation Pk=0(t),
as a function of temperature for U f = −5Ji, J f = 0.02|U f | and
a filling fraction of 1/3. Different curves show c1D for differ-
ent values of Ui as indicated in the legend above the figure. We
use exact diagonalization with 6 lattice sites for the calculation
and obtain the coefficient c1D from a parabolic fit to Pk=0(t) at
t|U f |/(2π) = 0,1,2. The inset shows the real-space pair correlation
∆eff = −Ui/(M2)∑nm〈a†

namb†
nbm〉 for the same set of parameters.

The pair correlation is an estimate for the mean-field order parame-
ter ∆.

(color online)
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at temperature T are given by

〈O〉= 1
Z ∑

l
exp
(
−E(i)

l /(kBT )
)〈

ψ(i)
l |O|ψ

(i)
l

〉
, (B1)

where Z = ∑
l

exp
(
−E(i)

l /(kBT )
)

and l is an index runnning over all eigenstates. The eigenval-
ues and the eigenfunctions of the final Hamiltonian are com-
puted in a similar fashion. The time evolution of the initial
states can then be expressed in terms of the overlap with the
final eigenstates.

2. Numerical results

We compute the time evolution of the momentum occupa-
tion numbers Pk(t). All momentum modes perform collec-
tive oscillations with frequency |U f |/(2π). The oscillations
are undamped for J f = 0 and we obtain a finite amount of
damping that is quadratic to lowest order in time for non-zero
J f . Hence, these results are in good agreement with our ana-
lytical calculation and motivate a comparison of the damping
strength between the two approaches.

In analogy to P2(t) from Eq. 20 we define Pk=0(t) as the
envelope of Pk=0(t). We obtain Pk=0(t) from a quadratic fit
to Pk=0(t) at the three time points t|U f |/(2π) = 0,1,2. To

good approximation these points correspond to the maxima of
Pk=0(t). As there is no contribution linear in time

Pk=0(t) = Pk=0(0)
[
1− c1D J2

f t
2] . (B2)

The quadratic coefficient c1D is the analog to the coefficient
c(∆) in Eq. 21 and quantifies the damping of Pk=0(t). We
show c1D as a function of temperature for several initial in-
teraction strengths in Fig. 8. Many aspects of this figure are
in good agreement with the analytical calculations presented
in Sec. IV B. In particular, we see that for any fixed Ui the
damping is reduced for higher temperatures. Furthermore the
damping strength is independent of Ui when the temperature
kBT is much larger than Ui. For low temperatures, when the
order parameter becomes substantial, there is a significant in-
crease in c1D. Finally c1D is larger for larger Ui, hence larger
order parameter, for sufficiently high temperatures. The most
surprising difference to our analytical calculation is that we
observe a finite amount of damping even for a non-interacting
Fermi gas. We believe that this damping occurs, because we
use a small system size and the canonical ensemble, where
even a non-interacting Fermi gas is correlated.

In summary, our small numerical calculations show, in
agreement with our analytical calculations, that the quadratic
coefficient c1D approximately follows the value of the order
parameter.
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