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We investigate the wave packet dynamics of a pair of particles that undergoes a rapid change
of scattering length. The short-range interactions are modeled in the zero-range limit, where the
quench is accomplished by switching the boundary condition of the wave function at vanishing
particle separation. This generates a correlation wave that propagates rapidly to nonzero particle
separations. We have derived universal, analytic results for this process that lead to a simple phase-
space picture of the quench-induced scattering. Intuitively, the strength of the correlation wave
relates to the initial contact of the system. We find that, in one spatial dimension, the k−4 tail
of the momentum distribution contains a ballistic contribution that does not originate from short-
range pair correlations, and a similar conclusion can hold in other dimensionalities depending on the
quench protocol. We examine the resultant quench-induced transport in an optical lattice in 1D,
and a semiclassical treatment is found to give quantitatively accurate estimates for the transport
probabilities.

PACS numbers: 67.85.De, 03.65.Ge, 03.75.Kk

I. INTRODUCTION

It is a generic property of wave mechanics that an
abrupt change in a system’s boundary condition gen-
erates waves that propagate outward from the bound-
ary. The tap of a mallet excites phonons in a percus-
sive chime; with a flick of the wrist, a lion tamer snaps
his whip; electric pulses in an antenna generate a radio
broadcast. A similar phenomenon can occur in ultra-
cold quantum gases, where short-range interactions cre-
ate an effective boundary condition for the wave function
[1]. The “boundary” occurs at vanishing particle sepa-
ration, and in the ultracold regime, it is determined by
a single parameter called the scattering length, a. The
scattering length, and hence the boundary condition, can
be dynamically tuned by magnetic-field ramps [2, 3] or
optical switching [4] in the vicinity of a broad Feshbach
resonance [5–9]. In quasi-reduced dimensionalities, where
motion is frozen out by tight trapping in one or two di-
mensions, one can also exploit confinement-induced res-
onances [10, 11].

The response of ultracold atoms to a rapid change of
scattering length, or “quench”, is a topic of growing inter-
est in the field of AMO physics. Long-wavelength waves
were observed to propagate in the density-density corre-
lation function of a quenched 2D Bose condensate [12].
In the case of a 3D condensate quenched to resonance,
universal dynamics were observed as the system eventu-
ally reached an exotic state in which the three-body loss
was unexpectedly low [13]. The super-Tonks-Girardeau
state [14] was created in a 1D Bose gas whose interac-
tions were quenched from strong repulsion to strong at-
traction [15]. There has been a thrust of theory work to
accompany these exciting experimental advances, both
for bosons [16–34] and for fermions [35–38].

Dynamical waves that propagate in the pair correla-
tion function in response to an interaction quench, here-
after referred to as “quench-induced correlation waves”,

have been discussed at length in the context of several
many-body models. For the case of 2D and 3D quenched
Bose condensates, these correlations have been calculated
in the Bogoliubov approximation [12, 18, 19] and with
quantum kinetic theory [26]. Numerical results were pre-
sented for quenched 1D Bose gases in Refs. [28–30], with
analytical results for the Tonks-Girardeau regime given
in Ref. [27]. Other studies have calculated the spreading
of correlations in quenched single-band Hubbard models
using matrix-product-state [39] and variational-Monte-
Carlo [40] algorithms, accompanying recent experimental
progress in that realm [41].

Our work takes a different, but complementary, ap-
proach to correlation waves. We consider the ques-
tion: What does an interaction quench (alternatively, a
quenched boundary condition) do to the relative wave
function for a pair of particles? This question lies at the
root of the many-body quench problem, where interac-
tions are pairwise and three-body correlations are often
negligible. Two-body models offer the advantage that
they can be solved exactly and give direct access to the
wave function [42]. Moreover, they are immediately rele-
vant to few-body systems in optical tweezers [43–45] and
deep optical lattices [46]. In many instances, they have
given insight into understanding nonequilibrium many-
body phenomena [47–51]. They have also been shown to
give a quantitative description of short-time short-range
pair correlations in certain nonequilibrium many-body
systems [16, 17], a result that is extended in the present
study.

In this paper, we show that two-body models give
an intuitive description of the physics behind quench-
induced correlation waves. Section II reviews ballistic
expansion from the standpoint of a quench. Our phase-
space analysis shows that the correlation waves propagate
ballistically, ie. as if they were free particles. We demon-
strate that these waves, which are inherently nonlocal,
can contribute to the k−4 tail of a dynamical momentum
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FIG. 1: (Color online) Ballistic expansion of a bound-state
wave function. The black (thin) line represents the initial
wave function. The blue (thick, solid) line represents the wave
function at ~t/2µa2i = 0.008, and the magenta (dashed) line
is the wave function at ~t/2µa2i = 0.015.

distribution. This result is unexpected considering that
the ideas surrounding Tan’s contact relate the k−4 tail
exclusively to local correlations [52–54]. In Sec. III, we
discuss the leading-order behavior of the momentum dis-
tribution for arbitrary interaction quenches. We find that
there is generally a competition between short-range and
ballistic physics in the large-momentum limit, an effect
that is absent in equilibrium scenarios. Additionally, we
find that the amplitude of the correlation wave is deter-
mined chiefly by the initial and final scattering lengths,
and also by the initial amplitude of the wave function at
vanishing particle separation. Section IV outlines our so-
lution of the two-body quench problem in the presence of
an external lattice potential. We show that ballistic cor-
relation waves can propagate even in deep lattices, and
we present a simple semiclassical model that yields accu-
rate estimates for the transport that occurs. Section V
concludes our study.

II. BALLISTIC WAVES

It is instructive to begin with the simplest case in which
quench-induced correlation waves occur: a measurement
of the momentum distribution of a strongly interacting
ultracold gas. The general method is to rapidly turn off
the external trap and interactions, thereby freezing the
momentum distribution of the gas, and then to allow the
sample to expand freely before imaging. After expansion,
the image represents the column-integrated momentum
distribution of the gas. Correlation waves are generated
by this simple protocol, as we now demonstrate.
The above-described procedure constitutes an inter-

action quench in the sense that, trap effects aside, the
scattering length is rapidly changed from some initial
value (ai) to some final value (af ). The effect on the
wave function can be seen in the ballistic expansion of

a) b)

FIG. 2: (Color online) Wigner distribution Eq. (5) for the
ballistic expansion of a 1D bound state wave function at (a)
t = 0 and (b) ~t/2µa2i = 0.4. The dashed white line in (b)
represents the formula x = 2~kt/m, which corresponds to the
separation of two classical particles that start out on top of
each other (x = 0) and then fly apart with momenta ±~k.

a bound pair of interacting particles in 1D. In terms of
the particle separation x and coupling constant g1D, the
short-range interaction potential is

Vint(x) = g1Dδ(x). (1)

One can define a 1D scattering length via a = −~
2/µg1D,

where µ is the reduced mass for the pair. The interactions
are attractive (repulsive) for a > 0 (a < 0), and they
vanish for a = ±∞. For an initially bound pair of atoms,
the relative wave function is

ψ(x, t = 0) =
1√
ai
e−|x|/ai (2)

The time-dependent solution, upon turning off interac-
tions (af → ±∞), is most compactly written in momen-
tum space. We define the Fourier transform as

f̃(k) ≡
∫

dxe−ikxf(x), (3)

and the dynamical wave function is given by

ψ̃(k, t) =
2
√
ai

1 + k2a2i
e−iEkt/~ (4)

where Ek = ~
2k2/2µ is the relative kinetic energy. The

short-time dynamics of the position-space wave function
is shown in Fig. 1. At t = 0, the wave function has a kink
at vanishing particle separation. This kink is absent for
t > 0, where we see a correlation wave that propagates
to larger particle separations.
The ballistic expansion dynamics can be easily visu-

alized with a phase-space representation. The Wigner
function [55]

W (x, k, t) =

∫

dyeikyψ∗
(

x+
y

2
, t
)

ψ
(

x− y

2
, t
)

(5)

gives an approximate sense of the phase-space distribu-
tion of the instantaneous quantum state ψ(x, t). The
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position and momentum distributions can be found by
integrating:

|ψ(x, t)|2 =

∫

dk

2π
W (x, k, t)

|ψ̃(k, t)|2 =

∫

dxW (x, k, t)

. (6)

Figure 2(a) shows the Wigner function of the bound state
at t = 0. Initially, the k−2 tail of the momentum-space
wave function is responsible for the kink in the position-
space wave function at x = 0 (cf. Fig. 1). This is typical
for wave functions of 1D systems with short-range inter-
actions. It is generally understood that any state that
behaves as Ψ(x) ≈ Ψ(0)(1 − |x|/a) in the short range
should have a contribution

Ψ̃(k) ∼ 2Ψ(0)

ak2
+O(

1

k3
) (7)

to the large-momentum limit of the momentum-space
wave function [56]. This connection between short-range
correlations and large-momentum asymptotics led to the
development of universal “contact” relations for one-
dimensional systems [56, 57], which were subsequently
generalized to three-dimensions [52–54, 58, 59] and two-
dimensions [60–64].
Figure 2(b) shows that, after the interactions are

turned off, the large-momentum components of the wave
function propagate outwards to larger particle separa-
tions. Although the momentum distribution does not
change during the dynamics (cf. Eq. (4)), the momen-
tum components eventually separate spatially in a semi-
classical sense, with the fastest modes moving the far-
thest. [In the figure, we see that the spatial wings of the
phase-space distribution agree very well with the classi-
cal problem in which a pair of particles flies apart with
momentum ±~k (white dashed line), similar to the sug-
gestion of Ref. [65].] This mechanism leads to the usual
correspondence between the expanded spatial distribu-
tion and the initial momentum distribution, as probed by
ballistic expansion measurements of interacting systems.
We point out that such a mapping would not occur if the
interactions were turned off adiabatically or if they were
left unchanged; it was necessary to quench the system.
It is interesting that ballistic expansion leads to a mo-

mentum distribution whose k−4 tail does not correspond
to a kink in the short-range wave function. Rather, this
tail is responsible for the correlation wave that propa-
gates from the short range to the long range, as evi-
denced in Fig. 2. One can alternatively view this cor-
relation wave, and hence the k−4 tail in the dynamical

momentum distribution, to be the result of a rapidly dis-
turbed boundary condition. It can be shown that the
interaction potential in Eq. (1) enforces a log-derivative
boundary condition

∂xψ

ψ

∣

∣

∣

∣

x→0+
= −1

a
(8)

for symmetrized wave functions. The quench from ai > 0
to af = ±∞ changes this boundary condition discontinu-
ously, thereby generating a correlation wave. We expect
intuitively that such a wave should be generated when-
ever the quench is diabatic and af 6= ai. The strength
of the wave should depend on the mismatch between the
initial and final boundary conditions. For example, the
generated wave should be weak when af ≈ ai, and it
should be strong when a−1 changes drastically. We ex-
pect also that the large-momentum behavior of the wave
function should contain both short-range and ballistic
contributions, generalizing Eq. (7).

III. ARBITRARY QUENCHES

Reference [17] demonstrated that it is possible to find
closed-form solutions to the two-body quench problem in
3D for a broad class of initial wave functions. It was also
shown that the short-time, zero-range dynamics depend
on only three parameters: the initial scattering length
ai, the final scattering length af , and the initial zero-
range behavior of the wave function rψ(r, 0)

∣

∣

r→0+
. It

is natural to suppose that a similar universality should
persist in the large-momentum content of the quench-
induced ballistic wave, as this wave originates in the short
range and is a direct response to the change in boundary
condition. We indeed find this to be the case in each
dimensionality.
The derivation of the large-momentum limit of the 1D

dynamical wave function is given in Appendix A. In
short, one must project the initial wave function onto
the complete basis of energy eigenstates satisfying the
appropriate log-derivative boundary condition, Eq. (8),
and then propagate in time. We find that the large-
momentum limit of the wave function is

ψ̃(k, t) =

(

af
ai

− 1

)

2ψ(0, 0)

(k2af − i|k|)e
−iEkt/~

+
2ψ(0, t)

afk2
+O(

1

k3
)

(1D) (9)

for t > 0. The second term shown here comes from
the dynamical kink that appears in the short-range wave
function for finite values of af , as in Eq. (7) and in ac-
cordance with our intuition about the contact [56]. The
first term represents the ballistic wave that is generated
by the quench, similar to Eq. (4). As a consistency check,
it is easy to verify that Eq. (9) agrees with Eq. (4) in the
af → ±∞ limit. It is also immediately obvious that the
ballistic contribution vanishes in the limit that no quench
occurs (ie. af → ai).
It is significant that, after the quench, the large-

momentum limit of the wave function has two distinct
components that are both O(k−2). This occurs when-
ever the final scattering length is finite. Figure 3 shows
this behavior for the case in which an initial bound state
at a scattering length ai > 0 is quenched to a final scat-
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FIG. 3: (Color online) Wigner distribution Eq. (5) for a 1D
bound state wave function quenched to af = 2ai. The Wigner
function is evaluated at the same time as in Fig. 2(b), and for
the same initial scattering length ai. The dashed white line
represents the same classical model as shown previously.
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FIG. 4: (Color online) Quenching a bound-state to af =
−ai/2. The black (thin) line represents the initial wave func-
tion. The blue (thick, solid) line represents the wave function
at ~t/2µa2i = 0.008, and the magenta (dashed) line is the
wave function at ~t/2µa2i = 0.015. Compare with Fig. 1,
which depicts a quench to af = ±∞.

tering length af = 2ai. Similar to Fig. 2(a), we see large-
momentum content in the short range that is due to the
residual kink in the wave function. Similar to Fig. 2(b),
we see that the quench generates a ballistic correlation
wave that rapidly propagates to large particle separa-
tions. This is in strong contrast to equilibrium prob-
lems, where only the short-range correlations contribute
to the large-momentum asymptotics [56]. For this 1D
quench problem, the k−4 tail of the one-body momentum
distribution (∼ |ψ̃(k, t)|2) does not correspond perfectly
with the zero-range pair probability, indicating that one
must exercise care when interpreting the 1D contact in a
nonequilibrium context.
The amplitude of the ballistic correlation wave shown

in Eq. (9) can be adjusted by changing the final scatter-
ing length af . Figure 4 shows the short-time position-
space wave function for a bound state that is quenched

to af = −ai/2, evaluated at the same times as in Fig. 1.
One can see that the quench from attraction (ai > 0)
to repulsion (af < 0) has increased the amplitude of the
correlation wave when compared to the ballistic expan-
sion case (af = ±∞). Equation (9) indicates that this
enhancement is by approximately a factor of 3.

One may observe from Eq. (9) that quenches to the
Tonks-Girardeau regime (af → 0−) generate especially
strong ballistic waves. In this limit, the wave function
behaves as

ψ̃(k, t) =
2ψ(0, 0)

i|k| e−iEkt/~ +O(
1

k2
) (10)

for large k and t > 0, with the ballistic component dom-
inating the short-range. One can intuit the k−1 tail
by observing that the final energy of the system is de-
termined by the expectation value of the post-quench
Hamiltonian in the initial state; this energy must diverge
as gf ∼ −1/af → ∞. For t > 0, the interaction energy
must vanish because ψ(0, t) = 0. Conservation of en-
ergy therefore requires that, after the quench, the kinetic
energy diverge:

∫

dk

2π

∣

∣

∣
ψ̃(k, t)

∣

∣

∣

2 ~
2k2

2µ
→ ∞. (11)

This was first pointed out by the authors of Ref. [27],
who calculated analytically the dynamical density cor-
relations for a many-body system of density n that is
quenched from noninteracting to the Tonks-Girardeau
regime. Our results connect smoothly with theirs in the
short-time (~n2t/m ≪ 1), short-range (nx ≪ 1) limit.
In this limit, their dynamical pair correlations take the
form of a relative wave function that behaves exactly
as in Eq. (10) except that ψ(0, 0) → √

n. If we were
to simulate the many-body problem with a two-body
model, as in Ref. [17], we would use this same prescrip-
tion. This prescription also leads to quantitative agree-
ment (at short times) with the numerical calculations of
g(2)(0, t) in Ref. [30], which considered a broad range of
af < 0. This reinforces the idea that properly calibrated
few-body models can quantitatively describe short-time
short-range correlation phenomena for quenched many-
body systems [17].

The derivation given in Appendix A for quenched one-
dimensional systems can be straightforwardly generalized
to two and three dimensions. In direct analogy with
Eq. (9), the results for t > 0 are

ψ̃(k, t) = ln

(

ai
af

) 2π
(

ψ(ρ,0)
ln(ρ/b)

)∣

∣

∣

ρ→0+

k2
(

ln(kaf )− iπ2
) e−iEkt/~

−
2π

(

ψ(ρ,t)
ln(ρ/b)

)∣

∣

∣

ρ→0+

k2
+O(

1

k3
)

(2D)

(12)
where b > 0 is an arbitrary length scale that makes the
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argument of the logarithm dimensionless, and

ψ̃(k, t) =

(

1−af
ai

)

4π (rψ(r, 0))|r→0+

k2(1 + ikaf)
e−iEkt/~

+
4π (rψ(r, t))|r→0+

k2
+O(

1

k4
)

(3D).

(13)
For the two-dimensional case, we define the scattering
length with the convention that the bound state has en-
ergy EB = −~

2/2µa2 [66, 67]. Both in 2D and in 3D, we
see that the ballistic contribution (first term) vanishes
when af = ai. It can also be verified that both formulas
reduce to the free-particle result when interactions are
turned off (af = ∞ in 2D, and af = 0 in 3D).
The ballistic contribution in Eqs. (12)-(13) is sublead-

ing to the short range in the large-k limit, but it is nev-
ertheless large compared to what one expects in equi-
librium. The subleading terms of all equilibrium states
are O(k−4) for both dimensionalities. In contrast, we see
that the quench induces new subleading structure, which
is O(k−2 ln−1(k)) in 2D and O(k−3) in 3D. This sub-
leading behavior in 3D was first pointed out in Ref. [16]
for the case of a quench from noninteracting to uni-
tarity, which is a specific instance of Eq. (13). It was
also observed in Hartree-Fock-Bogoliubov simulations of
quenched Bose-Einstein condensates [17], although the
nonlocal and ballistic origin of the effect was not obvious
in that context.
Despite the subleading nature of the ballistic terms

in Eqs. (12)-(13) for finite af , one can generate leading-
order O(k−2) behavior by turning off interactions. This
is along the lines of the ballistic-expansion arguments
presented in Sec. II. If we then turn on interactions be-
fore the wave spreads appreciably, the wave function will
develop a short-range singularity that will separately con-
tribute a term of O(k−2) to ψ̃(k, t). As was found for a
single quench in 1D [Eq. (9)], the short-range and bal-
listic components can therefore occur at the same order
in the large-k limit of the wave function. Again, we con-
clude that the considerations that relate the momentum
tail exclusively to short-range correlations in equilibrium
do not always hold outside of equilibrium.
We conclude this section by remarking on the limi-

tations of our ballistic analysis. The zero-range approxi-
mation, wherein interactions are represented with bound-
ary conditions at vanishing particle separation, has been
enormously successful in describing ultracold quantum
gases near broad Feshbach resonances [9]. This approx-
imation is only valid for momenta satisfying kr0 ≪ 1,
where r0 is the range of the interaction. In experi-
ments that use tight optical trapping to create quasi-low-
dimensional geometries, the oscillator length of the tight
trap represents another scale that bounds the “range” of
the interaction in the reduced dimensionality. The im-
mediate result is that the momentum tails discussed in
the context of zero-range models do not extend out in-
definitely to large k, although the point of breakdown
(kr0 ∼ 1) might not be easily observable in typical signal

to noise by a broad resonance (cf. Ref. [68]).
Our analysis also invoked the sudden approximation,

wherein the scattering length (alternatively, the bound-
ary condition) is assumed to change instantaneously. The
consequence is that ballistic modes of arbitrarily large en-
ergy are generated by the quench, as shown in Eqs. (9)-
(13). Any experimental realization of the quench proto-
col will occur over a finite timescale [2, 12, 13], and this
will lead to an energy cutoff in the ballistic modes that
can be generated. However, optical switching of inter-
actions was demonstrated to be possible on timescales
that are short compared to those set by the interaction
range [4]. It follows that experimentally feasible quench
times do not introduce any intrinsic constraint on the
quench protocol beyond that already introduced by the
range of interactions. We do expect, however, that slower
quenches will produce weaker correlation waves; in the
limit that interactions are changed adiabatically, no cor-
relation waves are generated.

IV. LATTICE TRANSPORT

It makes sense to suppose that the ballistic nature
of quench-induced correlation waves should allow for
transport over potential-energy barriers. Semiclassically
speaking, some part of the k−2 ballistic tail in Eq. (9) al-
ways has enough energy to cross a barrier of finite height,
as suggested in Ref. [69]. We expect that the amount of
transport can be tuned by adjusting the amplitude of
the wave and, therefore, the strength of the quench. In
this section, we investigate the quench-induced dynamics
that occurs for a pair of particles in a single site of a 1D
optical lattice. We find that a semiclassical adaptation
of our quantum description gives a good measure of the
quench-induced transport.
Interaction-quench effects in an optical lattice were re-

cently discussed in the numerical results of Refs. [70,
71]. There, the authors used the multi-layer multi-
configuration time-dependent Hartree method for bosons
(ML-MCTDHB) to investigate the dynamics of several
interacting bosons in a few lattice sites. They found that
a quench can trigger rapid transport between wells, as
well as breathing and cradle modes within a given well.
Such higher-band effects are ignored in typical Hubbard
models that only include the lowest Wannier state in
the formalism. Bound states, strong interactions, and/or
strong quenches may distort the wave function consider-
ably from the Wannier description, thereby necessitating
models that encompass higher-bands. The inclusion of
higher bands, either in the ML-MCTDHB sense or in the
spirit of a multi-band Hubbard model [72], makes it dif-
ficult to obtain numerically converged results for many-
body systems on a lattice with strong interactions and
strong quenches. Our two-body calculation should pro-
vide a useful benchmark in quantitatively understanding
the rapid transport that takes place after an interaction
quench.
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The relative and center-of-mass coordinates do not sep-
arate for the case of an interacting pair of atoms in an op-
tical lattice, and we therefore resort to numerics to inves-
tigate the exact quantum dynamics. Without loss of gen-
erality, we consider identical bosons of mass m. We sim-
plify expressions by scaling lengths by the lattice spac-
ing ℓ; we similarly scale energies by ~

2/mℓ2 = 2ER/π
2,

where ER is the recoil energy of the lattice. The time-
dependent Schrödinger equation for this system can then
be written as

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x21
− 1

2

∂2Ψ

∂x22
+ Vlat(x1)Ψ + Vlat(x2)Ψ + Vint(x1 − x2)Ψ

(14)
where the interaction potential is given by Eq. (1), and
the optical lattice potential is given by

Vlat(xj) = V0 sin
2(πxj), (15)

and V0 is the depth of the lattice. Inasmuch as the inter-
action quench directly excites relative momenta, it is con-
venient to work with the relative coordinate x = x1 − x2
and the center-of-mass coordinateX = (x1+x2)/2. After
changing variables, one finds that

i
∂Ψ

∂t
= −∂

2Ψ

∂x2
− 1

4

∂2Ψ

∂X2

+ V0 (1− cos (2πX) cos (πx))Ψ + Vint(x)Ψ

.

(16)
The energy eigenstates corresponding to Eqs. (14)-(16)
were found numerically in Ref. [73] (see also Ref. [74] for
the 3D analogue). Here, we instead solve for the dynam-
ical wave function by time-evolving an initial condition
using the split-operator method [75]. We exploit bosonic
symmetry [Ψ(x,X) = Ψ(−x,X)] by discretizing the wave
function only for x ≥ 0; spectral transforms are taken
along x using the discrete cosine transform, and they are
taken alongX using the fast fourier transform. We model
short-range interactions on the spatial grid by employing
a potential that has support only at the x = 0 grid point.
We have found that representing − 2

aδ(x) → − 2
aδx,0/∆x,

where ∆x is the grid spacing along the x direction, leads
to the correct log-derivative boundary condition Eq. (8)
in the limit that ∆x≪ |a| [76].
Our numerical study focuses on quenched systems for

which the induced transport is expected to be the most
significant. As indicated in Eq. (9) and alluded to in
Ref. [69], the amplitude of the ballistic wave is propor-
tional to the initial probability amplitude that the atoms
are in the same position, ψ(0, 0). This quantity is largest,
in equilibrium, when the system is in a bound state. We
therefore choose the initial condition for the transport
problem Eq. (16) to be a bound state in a single lattice
site. This configuration represents a subsystem of the
state described by Ref. [77], which reported observing a
single molecule per lattice site. For a deep lattice, the
bottom of the well can be approximated as a harmonic
oscillator potential of frequency ω = π

√
2V0 and width

a) b)

FIG. 5: (Color online) Quenching a bound state from ai =
0.2ℓ to af = −ai on a single lattice site. The lattice is assumed
to have depth of 10ER. a) The initial two-body probability
density |Ψ(x1, x2)|

2 for a bound state on a lattice site (t = 0).
b) The same quantity calculated at ~t/mℓ2 = 0.01. Note the
logarithmic color scale, whose lower limit is a cutoff.

aho = 1/
√
ω. One can write the approximate initial con-

dition as

Ψ(x,X) = ψ0(x)φ0(X), (17)

where φ0(X) = (2/πa2ho)
1/4e−X

2/a2ho describes the
center-of-mass degree of freedom, and ψ0(x) is the molec-
ular state dressed by the oscillator [42]. For a≪ aho, one
can show that ψ0 approaches the ordinary bound state
given by Eq. (2). For our simulations, we will consider
an initial bound state of scattering length ai = 0.2 in a
lattice of depth V0 = 10ER. The two-body probability
density associated with this initial condition is shown in
separate-particle coordinates in Fig. 5(a).
As discussed previously, we expect that an interaction

quench will generate an energetic correlation wave that
propagates over the potential barriers that separate indi-
vidual lattice sites. This transport is shown in Fig. 5(b)
a short time after quenching to af = −ai. The wave has
the same general structure as in Fig. 4, with spatially
decaying oscillations and a cusp of reduced probability
when both particles come together. Even after such a
short time, we see that the wave already extends a cou-
ple of lattice sites in each direction.
It is instructive to quantify the amount of quench-

induced transport that takes place. We can define a
dynamical probability for the liklihood that both atoms
remain in the central well:

PCC(t) =

∫

|x1|<
1
2

dx1

∫

|x2|<
1
2

dx2|Ψ(x1, x2, t)|2. (18)

In like manner, we also define the probability that both
atoms have tunneled,

PTT (t) =

∫

|x1|>
1
2

dx1

∫

|x2|>
1
2

dx2|Ψ(x1, x2, t)|2, (19)

and the probability that a single atom has tunneled,

PTC(t) = 2

∫

|x1|>
1
2

dx1

∫

|x2|<
1
2

dx2|Ψ(x1, x2, t)|2. (20)
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FIG. 6: (Color online) Lattice transport for a bound state that
is quenched from ai = 0.2ℓ to (a) af = ±∞ and (b) af = −ai.
The solid blue line denotes the dynamical probability of both
atoms occupying the central well of the lattice, PCC(t); the
solid cyan line is the probability of a single atom occupying
the central well PTC(t); the solid red line is the probability
that no atoms occupy the central lattice site, PTT (t). The
horizontal dashed lines correspond to the semiclassical esti-
mates for these probabilities.

Here, we have exploited the symmetry of the bosonic
wave function. The complementarity of the integration
regions results in the identity PCC+PTT+PTC = 1 at all
times. These probabilities are plotted for af = ±∞ and
af = −ai in Figs. 6(a) and 6(b), respectively. In both
cases, the atoms begin in the central well (PCC(0) ≈ 1).
After the quench, the transport probabilities smoothly
saturate to values that depend on af . We note that the
transport is substantial even though the lattice depth is
of the order required for a typical Mott-insulating state
in 1D [78, 79].

The ballistic description of the previous section leads
to an intuitive, semiclassical model of transport. We can
estimate the saturated values of PCC , PTT , and PTC by
considering the following question: What fraction of the

momentum distribution describes ballistic atoms that are
energetic enough to make it over the barrier?
The simplest analysis can be made for the case in which

the interactions are turned off (af = ±∞). Short-range
physics then does not contribute to the momentum dis-
tribution, and we can consider ballistic effects to stem
entirely from the momentum-space version of the initial
condition Eq. (17), similar to our analysis in Sec. II. One

can find the initial two-body wave function Ψ̃(k1, k2, 0)
from Eq. (17) via

Ψ̃(k1, k2, 0) = ψ̃0(k)φ̃0(K)

= ψ̃0(k1 − k2)φ̃0

(

k1 + k2
2

)

(21)

where we have changed to separate-particle momentum
coordinates k1 and k2 from the relative and center-of-
mass coordinates k and K. In a semiclassical sense, we
expect that atoms with kinetic energy k2i /2 < V0 don’t
make it over the barrier. Hence, we estimate that the
probability for both atoms to stay in the central lattice
site is given by

PCC →
∫

k2
1
/2<V0

dk1
2π

∫

k2
2
/2<V0

dk2
2π

|Ψ̃(k1, k2, 0)|2. (22)

Similarly, we estimate the other transport probabilities
to be

PTT →
∫

k2
1
/2>V0

dk1
2π

∫

k2
2
/2>V0

dk2
2π

|Ψ̃(k1, k2, 0)|2

PTC → 2

∫

k2
1
/2>V0

dk1
2π

∫

k2
2
/2<V0

dk2
2π

|Ψ̃(k1, k2, 0)|2
. (23)

These probabilities are plotted as the horizontal dashed
lines in Fig. 6(a), and they agree reasonably well with
the saturation observed in the dynamics.
When af is finite, the transport estimates should in-

clude only the ballistic contribution to the momentum
distribution. This much is clear from the fact that, in
the absence of a quench, the k−4 tail of the momen-
tum distribution contributes to the short range instead
of to transport. More generally, the momentum distri-
bution has a mixture of short-range and ballistic effects,
as shown in Eq. (9) to leading order. We have found
that, in most cases, an accurate estimate of transport
probabilities requires going beyond leading order so as to
suitably include momenta k ∼

√
2V0. In using Eqs. (21)

and (23), we replace ψ̃0(k) with the full ballistic wave

function ψ̃
(S)
bal (k, t) derived in Appendix A and given by

Eq. (A9) [80]. The resulting estimates for the case of
af = −ai are plotted as dashed lines in Fig. 6(b). The
increased transport that occurs for this quench is well
described by the semiclassical estimate. This agreement
owes itself to the fact that a wave of energy Ek incident



8

on a potential barrier of height V0 has near unity trans-
mission for Ek ≫ V0. These waves dominate the integrals
in Eq. (23) when the quench is strong.
It is interesting that the saturation timescale in

Figs. 6(a)-(b) does not appear to depend on the final
scattering length of the quench. We have found that the
saturation time is well approximated by the time it takes
an atom of momentum k =

√
2V0 to travel one lattice

spacing. This supports our semiclassical description of
quench-induced transport. For the lattice depth used in
our simulations, the saturation timescale is smaller than
the lowest-band tunneling time by more than two orders
of magnitude. The higher-band physics at play in this
transport process comes from our use of strong interac-
tions [81, 82] as well as from the quench itself [70, 71, 83].

V. CONCLUSION

To summarize, we have taken a wave-function-based
approach to describe the correlation waves induced by
an interaction quench. Our calculations made use of
the zero-range approximation for particle-particle in-
teractions, represented here with a scattering-length-
dependent boundary condition at vanishing particle sep-
aration. Within this approximation, the interaction
quench disturbs the boundary and generates a wave that
propagates ballistically to nonzero particle separations.
We have derived the leading-order behavior of this wave
in momentum space for one, two, and three spatial di-
mensions. These results are intuitive in that the am-
plitude of the correlation wave depends only on the ini-
tial amplitude at the boundary and the scattering length
before and after the quench. In each dimensionality,
the ballistic contribution to the wave function dominates
the next-to-leading-order terms that occur in equilib-
rium systems. Particularly interesting is the fact that,
in one dimension, the k−2 tail of the momentum-space
wave function is generally determined by both short-
range and ballistic effects. Similar results can occur in
two and three dimensions, depending on the quench se-
quence. It is significant that a protocol as simple as a
quench can surprise the intuition that usually associates
large-momentum behavior exclusively with short-range
physics. On this account, our two-body calculations in-
dicate that one must exercise care when interpreting the
contact out of equilibrium.
Our simulations reveal that quench-induced correla-

tion waves can cause considerable transport in a 1D
optical lattice. The amount of transport that takes
place is readily tunable by altering the initial short-range
pair probability of the state, as well as the strength of
the quench. Our analytic two-body calculation makes
possible a semiclassical framework within which both
the transport and the saturation time can be estimated
with surprising accuracy. We expect that similar results
hold for optical-lattice systems in higher dimensionali-
ties whose numerical calculations are more challenging.

It would be interesting to see what role these ballistic
dynamics might play in a quenched many-body system.
For example, the system described in Ref. [77], which
was essentially a Mott insulator of molecules in a lat-
tice, might have phase coherence partially restored by
the colliding ballistic waves that a quench might gener-
ate. One can expect generally that ballistic waves should
be damped by collisions in a many-body system. This
damping is difficult to model quantitatively without in-
troducing a certain amount of arbitrariness to the theory
[22–26]. At the same time, it is the crux of the question
of how isolated quantum many-body systems equilibrate
despite the high level of excitation provided by a quench.
It may be possible to shed light on the matter by inves-
tigating how ballistic waves collide even at the few-body
level. This remains for future work.
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Appendix A: Two-Body Solution in 1D

In this appendix, we focus on the two-body solution
for interacting particles in one dimension. The solutions
for other dimensionalities can be found in essentially the
same manner. We simplify expressions by scaling dis-
tances by an arbitrary length scale ξ and energies by
~
2/2µξ2. In free space, the time-dependent Schrödinger

equation for the relative wave function ψ(x, t) is

i
∂ψ(x, t)

∂t
= −∂

2ψ(x, t)

∂x2
− 2

af
δ(x)ψ(x, t) (A1)

where af is the 1D scattering length after the quench.
Without loss of generality, we will consider the parti-
cles to be identical bosons. Symmetrization then requires
that the relative wave function satisfy ψ(x, t) = ψ(−x, t).
The overall effect of the interaction is to enforce the log-
derivative boundary condition shown in Eq. (8).
We can propagate a given initial condition ψ(x, 0) in

time by expanding in the energy eigenstates that satisfy
the post-quench log-derivative boundary condition. The
scattering states are

ψ
(S)
k′ (x) = Ak′ [sin(k

′|x|) − k′af cos(k
′x)] , Ek′ = k′2,

(A2)
where

Ak′ =
1

√

2πk′(1 + k′2a2f )
(A3)

is a constant that enforces energy normalization. These
states are uniquely defined for k′ > 0. For af > 0, the
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bound state solution is given by Eq. (2), with ai → af ,
and its energy is EB = −1/a2f . As we are focusing on
quench-induced scattering, it will be helpful to decom-
pose the time-dependent wave function onto its scatter-
ing and bound contributions [84]:

ψ(x, t) = ψ(S)(x, t) + ψ(B)(x, t), (A4)

where

ψ(S)(x, t) ≡
∞
∫

0

dEk′e
−iE

k′ tψ
(S)
k′ (x)

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

(A5)
and

ψ(B)(x, t) ≡ Θ(af )e
−iEBtψB(x) 〈ψB(x′)|ψ(x′, 0)〉 ,

(A6)
and where 〈·|·〉 denotes a projection integral. The heavi-
side function Θ(af) determines whether or not the bound
state should be included in the dynamics. We will assume
that ψ(x, 0) is normalizable and smooth everywhere ex-
cept possibly for a nontrivial log-derivative at x = 0.
It is most convenient to solve for the momentum-space

wave function, as in Eq. (4). This requires taking the
Fourier transform of the energy eigenstates. For af > 0,
the Fourier transform of the bound state can be inferred
from Eq. (4)

ψ̃B(k) =
2
√
af

1 + k2a2f
. (A7)

The Fourier transform of the scattering states takes a
more complicated form, but it can be written as

ψ̃
(S)
k′ (k) = Ak′

[

− 2k′π (i+ k′af ) δ(k
′2 − k2)

+
2k′

k′2 − k2 − iǫ

] , (A8)

where we use the convention ǫ → 0+. Written in this
way, there are two parts that compose the scattering
contribution ψ(S)(x, t) in Eq. (A5). The first part can
be evaluated trivially in momentum space by exploiting
the delta function in Eq. (A8). We write it as follows:

ψ̃
(S)
bal (k, t) ≡ −2π|k|A|k| (i+ |k|af )

×
〈

ψ
(S)
|k| (x

′)
∣

∣

∣
ψ(x′, 0)

〉

e−iEkt
(A9)

We call this the “ballistic” contribution to the wave func-
tion due to its free-particle-like f(k)e−iEkt behavior, sim-
ilar to Eq. (4). The second contribution can be written
as

ψ̃(S)
sr (k, t) =

∞
∫

0

2k′dk′e−ik
′2t

[

2k′Ak′

k′2 − k2 − iǫ

]

×
〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

, (A10)

FIG. 7: Integration contour in the complex k′ plane. The
crosses denote the poles of the second term in Eq. (A8). The
final leg of the integral is along arg[k′] = −π/4.

and we will see that it generally contributes to the short-
range part of the wave function. In sum, we can write

ψ̃(k, t) = ψ̃
(S)
bal (k, t) + ψ̃(S)

sr (k, t) + ψ̃(B)(k, t). (A11)

for the full momentum-space wave function.
One can make progress with Eq. (A10) by exploiting

the residue theorem. The integration, as written, is along
the positive real k′ axis. If we close the contour as shown
in Fig. 7, the contribution from the |k′| → ∞ arc van-
ishes. The only poles that can contribute residues must
come from the analytic continuation of the scattering
projection inside the integration loop. We have found
empirically that, if ψ(x, 0) decays smoothly and without
oscillation (such as for a bound state or a ground-state
Busch wave function [42]), the integrand is analytic in-
side the closed contour and the integral vanishes [85].
The two straight legs of the integral then cancel, and we
can rewrite Eq. (A10) as an integral along k′ = ze−i

π

4 for
real, nonnegative z:

ψ̃(S)
sr (k, t) = −4ie−i

π

4

∞
∫

0

dze−z
2t z2

−iz2 − k2

×
[

Ak′
〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉]

k′ 7→ze−i
π

4

=
4ie−i

π

4

k2

∞
∫

0

dz
e−z

2t

1 + iz2/k2
z2

×
[

Ak′
〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉]

k′ 7→ze−i
π

4

(A12)
where the factor in brackets has been analytically con-
tinued. This quantity can be evaluated in closed form for
several interesting cases, including where ψ(x, 0) is an ar-
bitrary bound-state wave function, although the expres-
sions are generally too lengthy to usefully write down.

The physical significance of ψ̃
(S)
sr (k, t) can be seen if

one compares it with the zero-range contribution to the
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scattered wave function, ψ(S)(0, t). Using Eq. (A2), we
can write the result as

ψ(S)(0, t) =

∞
∫

0

dEk′e
−iE

k′ tψ
(S)
k′ (0)

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

= −af
∞
∫

0

dEk′e
−iE

k′ tk′Ak′
〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

= 2iafe
−iπ

4

∞
∫

0

dze−z
2tz2

×
[

Ak′
〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉]

k′ 7→ze−i
π

4

(A13)
where we have again exploited the integration contour in
Fig. 7. A direct comparison of Eq. (A12) and Eq. (A13)
indicates that

ψ̃(S)
sr (k, t) =

2ψ(S)(0, t)

afk2
+O

(

1

k4

)

(A14)

for large k satisfying k2t≫ 1. This verifies our claim that

ψ̃
(S)
sr generally encodes the short-range behavior of the

scattered wave. The Gaussian suppression in Eqs. (A12)-
(A13) indicates that this contribution to the wave func-
tion vanishes in the t→ ∞ limit. This is as expected for
an unconfined wave packet composed entirely of scatter-
ing states, which must spread out in space as time passes.

With significantly less work, one can also show that

ψ̃(B)(k, t) =
2ψ(B)(0, t)

afk2
+O

(

1

k4

)

(A15)

for the bound-state contribution to the dynamical wave
function.
We now examine the large-momentum behavior of

the ballistic contribution to the wave function, given by
Eq. (A9). It can be shown that

∞
∫

−∞

dx [sin(k′|x|) − k′af cos(k
′x)]ψ(x, 0)

=
2ψ(0, 0)

k′

(

1− af
ai

)

+O
(

1

k2

)

(A16)

for a wave function whose short range behaves as
ψ(x, 0) ≈ ψ(0, 0)(1 − |x|/ai), and whose long range
is regular and smooth. This leading-order behavior of
the projection encodes the mismatch between the initial
and final boundary conditions. Inserting this result into
Eq. (A9), we find that

ψ̃
(S)
bal (k, t) =

(

af
ai

− 1

)

2ψ(0, 0)

(k2af − i|k|)e
−iEkt +O

(

1

k3

)

(A17)
after some algebra. Combining Eqs. (A14), (A15), and
(A17), we arrive at Eq. (9).
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and G. Rempe, Nat. Phys. 2, 692 (2006).

[78] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[79] W. Zwerger, J. Opt. B 5, S9 (2003).
[80] For quenches to attractive interactions (af > 0),

the semiclassical estimate for PCC requires inserting

ψ̃
(S)
bal (k, t) into Eqs. (21)-(22) and then adding the prob-

ability that the atoms remain bound after the quench.
Bound atoms will remain in the central well during the
short timeframe of quench-induced transport.
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